1
|
Ju R, Han B, Han F, Peng Y. Efficient Expression and Characterization of an Endo-Type Lyase HCLase_M28 and Its Gradual Scale-Up Fermentation for the Preparation of Chondroitin Sulfate Oligosaccharides. Appl Biochem Biotechnol 2024; 196:6526-6555. [PMID: 38386140 DOI: 10.1007/s12010-024-04878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Glycosaminoglycan (GAG) lyases have been critical in structural and functional studies of GAGs. HCLase_M28, a lyase identified from the genome of Microbacterium sp. M28 was heterologously expressed, enzymatically characterized, and prepared in large-scale fermentation for the production of chondroitin sulfate (CS) oligosaccharides. Results showed that the expression of HCLase_M28 in Escherichia coli BL21 (DE3)-pET24a-HCLase_M28opt1 and Bacillus subtilis W800-pSTOP1622-HCLase_M28opt2 were 108-fold and 25-fold that of wide strain. The optimal lytic reaction of HCLase_M28 happened in 20 mM Tris-HCl (pH 7.2) at 50 °C with a specific activity of 190.9 U/mg toward CS-A. The degrading activity was slightly simulated in presence of 1 mM Ca2+ and Mn2+ while severely inhibited by Hg+, Cu2+, Fe3+, and SDS. TLC and ESI-MS analysis proved HCLase_M28 was an endolytic lyase and degraded CS and hyaluronic acid into unsaturated disaccharides. Through a gradual scale-up of fermentation in 5 L, 100 L, and 1000 L, a highly efficient intracellular expression of HCLase_M28 with an activity of 3.88 × 105 U/L achieved within a 34 h of cultivation. Through ultrafiltration, CS oligosaccharides with DP of 2 to 8 as the main components could be controllably prepared. The successful large-scale fermentation made HCLase_M28 a promising enzyme for industrial production of CS oligosaccharides.
Collapse
Affiliation(s)
- Ruibao Ju
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanfei Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Saroha P, Rathore AS. Production of bioactive recombinant monoclonal antibody fragment in periplasm of Escherichia coli expression system. Prep Biochem Biotechnol 2023; 53:1288-1296. [PMID: 37040146 DOI: 10.1080/10826068.2023.2195482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The microbial expression system (Escherichia coli) is the most widely studied host for the production of biotherapeutic products, such as antibody fragments, single chain variable fragments and nanobodies. However, recombinant biotherapeutic proteins are often expressed as insoluble proteins, thereby limiting the utility of E. coli as expression system. To overcome this limitation, various strategies have been developed, such as changes at DNA level (codon optimization), fusion with soluble tags and variations in process parameters (temperature), and inducer concentration. However, there is no "one size fits all" strategy. The most commonly used approach involves induction at low temperature, as reducing the temperature during cultivation has been reported to increase bioactive protein production in E. coli. In this study, we examine the impact of various process parameters, such as temperature and inducer concentration, as well as, high plasmid copy number vector for achieving enhanced soluble expression of TNFα inhibitor Fab. An interaction amongst these parameters has been observed and their optimization has been demonstrated to result in expression of 30 ± 3 mg/L antibody fragment using E. coli. This case study illustrates how process optimization can contribute toward making biotherapeutics affordable.
Collapse
Affiliation(s)
- Preeti Saroha
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India
| |
Collapse
|
3
|
Liu K, Liu Y, Li X, Zhang X, Xue Z, Zhao M. Efficient production of α-ketoglutaric acid using an economical double-strain cultivation and catalysis system. Appl Microbiol Biotechnol 2023; 107:6497-6506. [PMID: 37682299 DOI: 10.1007/s00253-023-12757-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The whole-cell catalysis strategy of alpha-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) using recombinant Escherichia coli, in which L-glutamate oxidase (LGox) was over-expressed, has replaced the traditional chemical synthesis strategy. However, large amounts of toxic by-product, H2O2, should be eliminated through co-expressing catalase (Cat), thus severely increasing burden in cells. To efficiently and economically produce α-KG, here, the genes SpLGox (from Streptomyces platensis NTU3304) and SlCat (from Streptomyces lividans TK24) were inserted into the low-dosage-IPTG (Isopropyl β-D-Thiogalactoside) inducible expression system, constructed in our previous work, in E. coli, respectively. Besides, a double-strain catalysis system was established and optimized to produce α-KG, and the productivity of α-KG was increased 97% compared with that through single strain catalysis. Finally, a double-strain cultivation strategy was designed and employed to simplify the scale-up fermentation. Using the optimized whole-cell biocatalyst conditions (pH 7.0, 35 °C), majority of the L-glutamic acid was transformed into α-KG and the titer reached 95.4 g/L after 6 h with the highest productivity at present. Therefore, this strategy may efficiently and cost-effectively produce α-KG, enhancing its potential for industrial applications. KEY POINTS: • SpLGox and SlCat were over-expressed to catalyze L-Glu to α-KG and eliminate by-product H2O2, respectively. • Double-strain cultivation and catalysis system can efficiently and cost-effectively produce α-KG from L-Glu.
Collapse
Affiliation(s)
- Kun Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yan Liu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiangfei Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiushan Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhenglian Xue
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| |
Collapse
|
4
|
Zhang RX, Wu ZW, Zhang SJ, Wei HM, Hua CW, Li L, Yang TY. Gene cloning and molecular characterization of a thermostable chitosanase from Bacillus cereus TY24. BMC Biotechnol 2022; 22:30. [PMID: 36303174 PMCID: PMC9615241 DOI: 10.1186/s12896-022-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background An important conceptual advance in health and the environment has been recognized that enzymes play a key role in the green processing industries. Of particular interest, chitosanase is beneficial for recycling the chitosan resource and producing chitosan oligosaccharides. Also, chitosan gene expression and molecular characterization will promote understanding of the biological function of bacterial chitosanase as well as explore chitosanase for utilizing chitosan resources. Results A chitosanase-producing bacterium TY24 was isolated and identified as Bacillus cereus. Moreover, the chitosanase gene was cloned and expressed in Escherichia coli. Sequence analysis reveals that the recombinant chitosanase (CHOE) belongs to the glycoside hydrolases 8 family. The purified CHOE has a molecular weight of about 48 kDa and the specific activity of 1150 U/mg. The optimal pH and temperature of CHOE were 5.5 and 65 °C, respectively. The enzyme was observed stable at the pH range of 4.5–7.5 and the temperature range of 30–65 °C. Especially, the half-life of CHOE at 65 °C was 161 min. Additionally, the activity of CHOE was remarkably enhanced in the presence of Mn2+, Cu2+, Mg2+ and K+, beside Ca2+ at 5 mM. Especially, the activity of CHOE was enhanced to more than 120% in the presence of 1% of various surfactants. CHOE exhibited the highest substrate specificity toward colloid chitosan. Conclusion A bacterial chitosanase was cloned from B. cereus and successfully expressed in E. coli (BL21) DE3. The recombinant enzyme displayed good stability under acid pH and high-temperature conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00762-6.
Collapse
Affiliation(s)
- Rong-Xian Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
| | - Zhong-Wei Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Shu-Juan Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Hui-Min Wei
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Cheng-Wei Hua
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Lan Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| | - Tian-You Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
| |
Collapse
|
5
|
Wang J, Wang P, Zhu M, Chen W, Yu S, Zhong B. Overexpression and Biochemical Properties of a GH46 Chitosanase From Marine Streptomyces hygroscopicus R1 Suitable for Chitosan Oligosaccharides Preparation. Front Microbiol 2022; 12:816845. [PMID: 35173697 PMCID: PMC8841797 DOI: 10.3389/fmicb.2021.816845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the various biological activities of chitosan oligosaccharides (COSs), they have great potential value for use in many areas. Chitosanase plays an important role in enzymatic preparation of COSs. Herein, a gene encoding a chitosanase (ShCsn46) from marine Streptomyces hygroscopicus R1 was cloned and the sequences encoding ShCsn46 without signal peptide were optimized based on the codon usage of Pichia pastoris (P. pastoris). In addition, the optimized gene was ligated to pPICZαA and transformed to P. pastoris X33. After screening, a recombinant strain named X33-Sh33 with the highest activity was isolated from 96 recombinant colonies. The maximum activity and total protein concentration of the recombinant strain ShCsn46 were 2250 U/ml and 3.98 g/l, respectively. The optimal pH and temperature of purified ShCsn46 were 5.5 and 55°C, respectively. Meanwhile, ShCsn46 was stable from pH 5.0 to 10.0 and 40 to 55°C, respectively. The purified ShCsn46 was activated by Mn2+ and inhibited by Cu2+, Fe2+, and Al3+. In addition, substrate specificity of the purified ShCsn46 showed highest activity toward colloidal chitosan with 95% degree of deacetylation. Furthermore, the purified ShCsn46 exhibited high efficiency to hydrolyze 4% colloidal chitosan to prepare COSs. COSs with degree of polymerization of 2–6, 2–5, and 2–4 were controllably produced by adjusting the reaction time. This study provides an excellent chitosanase for the controllable preparation of COSs with a desirable degree of polymerization.
Collapse
Affiliation(s)
- Jianrong Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Jianrong Wang,
| | - Ping Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Mujin Zhu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Wei Chen
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Si Yu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Bin Zhong
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| |
Collapse
|
6
|
Jiang Z, Ma S, Guan L, Yan Q, Yang S. Biochemical characterization of a novel bifunctional chitosanase from Paenibacillus barengoltzii for chitooligosaccharide production. World J Microbiol Biotechnol 2021; 37:83. [PMID: 33855634 DOI: 10.1007/s11274-021-03051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
A novel chitosanase gene, designated as PbCsn8, was cloned from Paenibacillus barengoltzii. It shared the highest identity of 73% with the glycoside hydrolase (GH) family 8 chitosanase from Bacillus thuringiensis JAM-GG01. The gene was heterologously expressed in Bacillus subtilis as an extracellular protein, and the highest chitosanase yield of 1, 108 U/mL was obtained by high-cell density fermentation in a 5-L fermentor. The recombinant chitosanase (PbCsn8) was purified to homogeneity and biochemically characterized. PbCsn8 was most active at pH 5.5 and 70 °C, respectively. It was stable in a wide pH range of 5.0-11.0 and up to 55 °C. PbCsn8 was a bifunctional enzyme, exhibiting both chitosanase and glucanase activities, with the highest specificity towards chitosan (360 U/mg), followed by barley β-glucan (72 U/mg) and lichenan (13 U/mg). It hydrolyzed chitosan to release mainly chitooligosaccharides (COSs) with degree of polymerization (DP) 2-3, while hydrolyzed barley β-glucan to yield mainly glucooligosaccharides with DP > 5. PbCsn8 was further applied in COS production, and the highest COS yield of 79.3% (w/w) was obtained. This is the first report on a GH family 8 chitosanase from P. barengoltzii. The high yield and remarkable hydrolysis properties may make PbCsn8 a good candidate in industrial application.
Collapse
Affiliation(s)
- Zhenqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Suai Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Leying Guan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Li C, Jiang S, Du C, Lu Z, He N, Zhou Y, Jiang S S, Zhang G G. High-Level Extracellular Expression of a New β-N-Acetylglucosaminidase in Escherichia coli for Producing GlcNAc. Front Microbiol 2021; 12:648373. [PMID: 33776979 PMCID: PMC7996098 DOI: 10.3389/fmicb.2021.648373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
N-acetyl-β-D glucosamine (GlcNAc) is wildly used in cosmetics, nutraceuticals and pharmaceuticals. The traditional chemical process for GlcNAc production from chitin causes serious acidic pollution. Therefore, the enzymatic hydrolysis becomes a great promising and alternative strategy to produce GlcNAc. β-N-acetylglucosaminidase (NAGase) can hydrolyze chitin to produce GlcNAc. Here, a GH3 family NAGase encoding gene BlNagZ from Bacillus licheniformis was expressed extracellularly in Escherichia coli guided by signal peptide PelB. The recombinant BlNagZ presented the best activity at 60°C and pH 5.5 with a high specific activity of 13.05 U/mg. The BlNagZ activity in the fermentation supernatant can reach 13.62 U/mL after optimizing the culture conditions, which is 4.25 times higher than optimization before. Finally, combining BlNagZ with chitinase ChiA we identified before, chitin conversion efficiency to GlcNAc can reach 89.2% within 3.5 h. In all, this study provided not only a high active NAGase, and a secreted expression strategy to reduce the cost of production, which is conducive to the industrial application.
Collapse
Affiliation(s)
- Congna Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Shun Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Chao Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Sijing Jiang S
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Guimin Zhang G
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Hausjell J, Kutscha R, Gesson JD, Reinisch D, Spadiut O. The Effects of Lactose Induction on a Plasmid-Free E. coli T7 Expression System. Bioengineering (Basel) 2020; 7:E8. [PMID: 31935883 PMCID: PMC7175309 DOI: 10.3390/bioengineering7010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host Escherichia coli presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts are made to establish plasmid-free expression, ensuring more stable process conditions. Another strategy to stabilize production processes is lactose induction, leading to increased soluble product formation and cell fitness, as shown in several studies performed with plasmid-based expression systems. Within this study we wanted to investigate lactose induction for a strain with a genome-integrated gene of interest for the first time. We found unusually high specific lactose uptake rates, which we could attribute to the low levels of lac-repressor protein that is usually encoded not only on the genome but additionally on pET plasmids. We further show that these unusually high lactose uptake rates are toxic to the cells, leading to increased cell leakiness and lysis. Finally, we demonstrate that in contrast to plasmid-based T7 expression systems, IPTG induction is beneficial for genome-integrated T7 expression systems concerning cell fitness and productivity.
Collapse
Affiliation(s)
- Johanna Hausjell
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, 1060 Vienna, Austria; (J.H.); (R.K.)
| | - Regina Kutscha
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, 1060 Vienna, Austria; (J.H.); (R.K.)
| | - Jeannine D. Gesson
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria; (J.D.G.); (D.R.)
| | - Daniela Reinisch
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria; (J.D.G.); (D.R.)
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, 1060 Vienna, Austria; (J.H.); (R.K.)
| |
Collapse
|
9
|
Lyu Y, Zeng W, Du G, Chen J, Zhou J. Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans. BIORESOURCE TECHNOLOGY 2019; 289:121612. [PMID: 31203178 DOI: 10.1016/j.biortech.2019.121612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/25/2023]
Abstract
Herba Epimedii is a traditional Chinese herbal medicine that contains a mixture of bioactive flavonoid glycosides. Among them, icariin has the most outstanding bioactive functions, while epimedin C exhibits substantial toxicity. A recombinant α-L-rhamnosidase (synAnRhaE) from Aspergillus nidulans was expressed in Escherichia coli to promote the efficient bioconversion of epimedin C to icariin. A hydrolase activity of 574.5 U L-1 was acquired via optimized fed-batch fermentation in a 5-L bioreactor. The enzyme proved to be stable in an acidulous pH range below 55 °C with an optimal pH of 4.5 and optimal temperature of 55 °C. Epimedin C (1 g L-1) was 100% converted to icariin within 90 min using recombinant cells. The resting cells proved to be selective for epimedin C and 2″-O-rhamnosylicariside II in crude extracts of the epimedium plant. This work provides an original and efficient biocatalyst system that can be applied in industrialized production of icariin.
Collapse
Affiliation(s)
- Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Effect of rare codons in C-terminal of green fluorescent protein on protein production in Escherichia coli. Protein Expr Purif 2018; 149:23-30. [DOI: 10.1016/j.pep.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
|
11
|
Liaqat F, Sözer Bahadır P, Elibol M, Eltem R. Optimization of chitosanase production by Bacillus mojavensis EGE-B-5.2i. J Basic Microbiol 2018; 58:836-847. [PMID: 30022499 DOI: 10.1002/jobm.201800132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/20/2018] [Accepted: 06/30/2018] [Indexed: 11/06/2022]
Abstract
Maximum production of industrially important enzymes such as chitosanases through media optimization still holds foremost interest. The present study was conducted to improve chitosanase activity of an indigenous strain identified as Bacillus mojavensis. Initially, carbon and nitrogen sources were optimized by one-variable-at-a-time approach. Further, fermentation medium was optimized using Plackett-Burman (PB) and central composite designs (CCD). PB verified soluble starch (SS), colloidal chitosan (CC) peptone, and NaCl as most significant variables affecting chitosanase production. CCD results predicted the optimum concentrations of SS, CC, peptone, and NaCl as 7.8, 7.0, 6.5, and 2.7 g L-1 , respectively to achieve maximum chitosanase activity (21.1 U ml-1 ). Discovery of the novel optimal medium has improved chitosanase production by B. mojavensis up-to 9.5 folds. Lastly, 18.6 U ml-1 chitosanase activity was achieved in stirred tank bioreactor using optimal medium, which is quite satisfactory to proclaim this strain as a potential candidate to provide commercial chitosanase.
Collapse
Affiliation(s)
- Fakhra Liaqat
- Graduate School of Natural and Applied Sciences, Department of Biotechnology, Ege University, Izmir, Turkey
| | - Pınar Sözer Bahadır
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE MATAL), Izmir, Turkey.,Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Murat Elibol
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Rengin Eltem
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| |
Collapse
|
12
|
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2017; 102:1545-1556. [DOI: 10.1007/s00253-017-8700-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
|
13
|
Qin W, Liu X, Yu X, Chu X, Tian J, Wu N. Identification of cadmium resistance and adsorption gene from Escherichia coli BL21 (DE3). RSC Adv 2017. [DOI: 10.1039/c7ra10656d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cadmium resistance and adsorption genecapBfromEscherichia coliBL21 (DE3).
Collapse
Affiliation(s)
- Weitong Qin
- Biotechnology Research Institute
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| | - Xiaoqing Liu
- Biotechnology Research Institute
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| | - Xiaoxia Yu
- Biotechnology Research Institute
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| | - Xiaoyu Chu
- Biotechnology Research Institute
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| | - Jian Tian
- Biotechnology Research Institute
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| | - Ningfeng Wu
- Biotechnology Research Institute
- Chinese Academy of Agricultural Sciences
- Beijing 100081
- China
| |
Collapse
|