1
|
Zhang X, Gao M, Zhang C, Peng B. Enzymatic processes for animal hide/skin collagen fiber purification processing: Recent progress, challenges and recommendations. BIORESOURCE TECHNOLOGY 2025; 418:131955. [PMID: 39643060 DOI: 10.1016/j.biortech.2024.131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/15/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Collagen fiber purification is the most important pretreatment process in the recycling of animal hide/skin, by-products of meat production, and can be utilized to produce value-added materials. Traditional animal hide/skin resource utilization technologies face serious challenges in the aspect of production efficiency and environmental sustainability. Enzymatic collagen fiber purification processing is thought to be one of the most promising technologies that can minimize the use of chemicals and energy, reduce CO2-eq emissions, and achieve sustainable development of animal hide/skin reutilization. However, enzymatic processes have not been well accepted for industrial-scale applications in factories so far. In this review, recent progress and challenges of enzymatic collagen fiber purification processing were comprehensively overviewed in the aspect of the key mechanisms and technologies of enzyme application. Recommendations for the direction of enzyme selection and development were put forward, which is expected to pave the way for the industrial-scale application of enzymes in animal hide/skin collagen fiber purification processing.
Collapse
Affiliation(s)
- Xu Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Mengchu Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Shandong Lonct Enzymes Co., Ltd., Linyi 276400, PR China
| | - Chunxiao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Al-Fatimi M. Traditional knowledge of wild plants on traditional tools, materials, products and economic practices in southern Yemen. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:62. [PMID: 38898489 PMCID: PMC11186198 DOI: 10.1186/s13002-024-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The traditional knowledge in southern Yemen is rich in wild medicinal and food plants, which has been documented in our previous studies. In addition, other significant and general traditional usage for the daily livelihood requirements of local people (beyond medicinal and food plant uses) has not been studied before and needs urgent documentation. METHODS Ethnobotanical data on of wild plants used by local people in southern Yemen were collected by oral questionnaire interviews. Most informants (n = 1020) were local elderly from 15 different localities in southern Yemen. The local names and non-medicinal and non-food uses of plants were identified and analyzed. RESULTS The ethnobotanical data resulted various traditional uses of 73 plant species distributed in 28 families. The most represented families were Fabaceae, Asteraceae and Malvaceae. The most growth forms were trees and shrubs. Seven main and common categories of traditional uses were determined and classified as handicraft, health aids, livestock husbandry and beekeeping, economic and commercial plant products, agriculture tools, construction timber and fuel. The most cited species were identified for Ziziphus spina-christi, Vachellia tortilis, Vachellia nilotica, Anisotes trisulcus, Dracaena hanningtonii (Sansevieria ehrenbergii) and Aerva javanica, which have multi-purpose values of traditional usage. Nine major traditional uses of local wild plants were recorded: handicraft, agriculture tools, products aid general health, economic products, construction timber, livestock husbandry, bee keeping, fuel and ornamental. CONCLUSIONS Despite the challenges on local traditional knowledge of wild plants, it still requested vital to many usages of traditional life and still have an economic value and heritage required of develop the daily livelihood level of the local people especially in rural areas. This includes the traditional uses of wild plants in handicraft skills, tools of agriculture, constructions. The importance of the continuity of traditional industries and their transmission to generations lies in the local population's reliance on local natural resources without relying on external resources in situations such as wars. This is the first study that contributes to documenting and analyzing the indigenous knowledge on traditional general usage of wild plants in southern Yemen.
Collapse
Affiliation(s)
- Mohamed Al-Fatimi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Aden, Aden, Yemen.
| |
Collapse
|
3
|
Srivastava G, Gaur N, Makde RD, Jamdar SN. Autoproteolysis of Procerain and Procerain B mediated by structural changes. PHYTOCHEMISTRY 2022; 196:113086. [PMID: 35091212 DOI: 10.1016/j.phytochem.2022.113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Procerain (Pc) and Procerain B (PcB) are two latex proteases from Calotropis procera having potential applications in food and other industries. However, autolytic degradation of these proteases limits their potential use in industry. Nevertheless, basic mechanism underlying the autoproteolysis has not been detailed. In order to understand the same, we subjected the enzymes to various denaturing and activating conditions. The results showed that structural changes induced by different denaturing conditions trigger their autoproteolysis. We also observed differential response of Pc, PcB and other papain-like proteases towards autocatalysis in presence of reducing agent in-spite of sharing the same structural fold, including the number of disulfide bonds. The possible reason underlying this intriguing observation is also discussed. Further, present work establishes that structural changes in the proteases lead to autoproteolysis and the enzymes are stable unless they experience structural perturbation. These findings could thus be useful for their practical applications in industries.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Neeraj Gaur
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Ravindra D Makde
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
4
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
5
|
Wang H, Cai C, Gan L, Tian Y. New application of SptA protease: A cleaner and potential water-conserving approach to dehairing of skin. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2003788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hongbin Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, PR China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Chufan Cai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, PR China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, PR China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, PR China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, PR China
| |
Collapse
|
6
|
Wadhwani BD, Mali D, Vyas P, Nair R, Khandelwal P. A review on phytochemical constituents and pharmacological potential of Calotropis procera. RSC Adv 2021; 11:35854-35878. [PMID: 35492791 PMCID: PMC9043578 DOI: 10.1039/d1ra06703f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
Calotropis procera is locally known as Aak or Madar in Hindi, milk weed in English and belongs to the family Apocynaceae and subfamily Asclepiadoideae. Although a wasteland plant, it is of sacred use as its flowers are offered for worshipping Lord Shiva, a Hindu God. Tribes all over the world use the plant in treatment of various diseases like snake bite, body pain, asthma, epilepsy, cancer, sexual disorders, skin diseases and many more. This plant contains various phytoconstituents such as flavonoids, terpenoids, cardenolides, steroids oxypregnanes etc. Though literature searches reveal many reviews about ethnomedicinal uses, chemical composition and pharmacological activities, no recent papers are available that provide an overview of the therapeutic potential and toxicity of Calotropis procera. Hence, the insight of this review is to provide a systemic summary of phytochemistry, pharmacology, toxicology and therapeutic potential of Calotropis procera and to highlight the gaps in the knowledge so as to offer inspiration for future research. Calotropis procera is also known as Aak or Madar. The present review provides a systematic outline of phytochemistry, toxicology, pharmacology and therapeutic potential of Calotropis procera.![]()
Collapse
Affiliation(s)
| | - Deepak Mali
- Department of Chemistry, Mohanlal Sukhadia University Udaipur-313001 India
| | - Pooja Vyas
- Department of Chemistry, Mohanlal Sukhadia University Udaipur-313001 India
| | - Rashmy Nair
- Department of Chemistry, S.S. Jain Subodh P.G. College Jaipur-302004 India
| | - Poonam Khandelwal
- Department of Chemistry, Mohanlal Sukhadia University Udaipur-313001 India
| |
Collapse
|
7
|
Gao M, Zhang X, Tian Y, Zhang C, Peng B. Development and validation of a label-free method for measuring the collagen hydrolytic activity of protease. Bioprocess Biosyst Eng 2021; 44:2525-2539. [PMID: 34405273 DOI: 10.1007/s00449-021-02624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Collagen is the most abundant fibrous structural protein, and therefore, the quantitative evaluation of the effect of protease on collagen has a profound influence on enzyme application. In this research, unlabeled native bovine hide powder was utilized to detect collagen hydrolytic activity of the protease. The optimum conditions of the determination method were as follows: 30 mg/mL substrate concentration, 30 min reaction time, and 2-9 U/mL enzyme concentration. Then, several typical industrial protease preparations were chosen to measure collagenolytic activities at different temperatures and pH values, whose change trends were quite distinct from those of proteolytic activity assay method based on casein or dye-labeled hide powder substrate. Especially, in the pH 5-7, casein hydrolytic activities of these proteases showed sharper peaks with relative activity from 6% to 100%, whereas, their collagen hydrolytic activities based on native hide powder exhibited 30-100% with broader peaks. And collagen hydrolytic activities resulted from using dye-labeled substrate reached a lower optimum pH value than that of other methods. Besides, the results of these measurements displayed a moderate degree of reproducibility. This method is more reasonable than the protease assay method using casein or labeled hide powder as the substrate in many fields.
Collapse
Affiliation(s)
- Mengchu Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Xu Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yongxin Tian
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Chunxiao Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China.,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| | - Biyu Peng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China. .,National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Insights into substrate specificity of proteases for screening efficient dehairing enzymes. Int J Biol Macromol 2021; 172:360-370. [PMID: 33460659 DOI: 10.1016/j.ijbiomac.2021.01.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Though numerous proteases have been isolated and screened for the dehairing purpose, their use in the leather industry is limited mainly due to high cost, the need for expertise, and control during unit operation and alterations in the quality of leather due to lack of the right kind of substrate specificity of the enzymes used. This paper deals with the comparative specificity and dehairing efficiency of proteases isolated from Bacillus cereus VITSP01 (PE2) and Brevibacterium luteolum VITSP02 (PE). PE2 and PE were found to be trypsin-like and elastase-like serine proteases respectively. The protease of VITSP02 degraded the proteoglycans efficiently in comparison to that of VITSP01. The results suggest that the possible targets of the studied proteases might be skin proteoglycans, including those cementing the hair root bulb. Hence, an in-depth study on the substrate specificity of the dehairing proteases would help in designing an improved screening method for isolating potent dehairing enzymes.
Collapse
|
9
|
Kaur A, Batish DR, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:690806. [PMID: 34220914 PMCID: PMC8248367 DOI: 10.3389/fpls.2021.690806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope, and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation, and synthesis of nanoparticles. It has been widely used in traditional medicinal systems across North Africa, Middle East Asia, and South-East Asia. At present, it is being extensively explored for its potential pharmacological applications. Several reports also suggest its prospects in the food, textile, and paper industries. Besides, C. procera has also been acknowledged as an ornamental species. High pharmacological potential and socio-economic value have led to the pantropical introduction of the plant. Morpho-physiological adaptations and the ability to tolerate various abiotic stresses enabled its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious environmental weed in several parts of the world. Its unnatural expansion has been witnessed in the regions of South America, the Caribbean Islands, Australia, the Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly 3.7 million hectares of drier areas, including rangelands and Savannahs, have been invaded by the plant. In this review, multiple aspects of C. procera have been discussed including its general characteristics, current and potential uses, and invasive tendencies. The objectives of this review are a) to compile the information available in the literature on C. procera, to make it accessible for future research, b) to enlist together its potential applications being investigated in different fields, and c) to acknowledge C. procera as an emerging invasive species of arid and semi-arid regions.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Bhagirath S. Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, QLD, Australia
- *Correspondence: Bhagirath S. Chauhan,
| |
Collapse
|
10
|
Silveira SR, Coelho RA, Sousa BFE, Oliveira JSD, Lopez LMI, Lima-Filho JVM, Rocha Júnior PAV, Souza DPD, Freitas CDTD, Ramos MV. Standardized production of a homogeneous latex enzyme source overcoming seasonality and microenvironmental variables. Prep Biochem Biotechnol 2020; 51:375-385. [PMID: 32940546 DOI: 10.1080/10826068.2020.1818258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Calotropis procera produces a milky sap containing proteolytic enzymes. At low concentrations, they induce milk-clotting (60 µg/ml) and to dehair hides (0.05 and 0.1%). A protocol for obtaining the enzymes is reported. The latex was mixed with distilled water and the mixture was cleaned through centrifugation. It was dialyzed with distilled water and centrifuged again to recover the soluble fraction [EP]. The dialyze is a key feature of the process. EP was characterized in terms of protein profile, chemical stability, among other criteria. Wild plants belonging to ten geographic regions and grown in different ecological conditions were used as latex source. Collections were carried out, spaced at three-month, according to the seasons at the site of the study. Proteolytic activity was measured as an internal marker and for determining stability of the samples. EP was also analyzed for metal content and microbiology. EP showed similar magnitude of proteolysis, chromatographic and electrophoretic profiles of proteins. Samples stored at 25 °C exhibited reduced solubility (11%) and proteolytic capacity (11%) after six months. Enzyme autolysis was negligible. Microbiological and metal analyses revealed standard quality of all the samples tested. EP induced milk clotting and hide dehairing after storage for up to six months.
Collapse
Affiliation(s)
- Sandro Rios Silveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Raphael Alves Coelho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Brandon Ferraz E Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Jefferson Soares de Oliveira
- Laboratório de Bioquímica de Plantas laticíferas (LABPL), Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Laura Maria Isabel Lopez
- Centro de Investigación y Tecnología del Cuero, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires & INTI-Cueros, Gonnet, Buenos Aires, Argentina
| | | | | | - Diego Pereira de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | | | - Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| |
Collapse
|
11
|
Errasti ME, Torres MJ, Mercerat JR, Caffini NO, López LMI. Plant proteases from Carica papaya and Vasconcellea quercifolia with potential application for a cleaner processing in tanneries. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1751131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- María Eugenia Errasti
- Centro de Investigación de Tecnología del Cuero, CICPBA-INTI, Manuel B. Gonnet, Argentina
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata-CICPBA, La Plata, Argentina
| | - María José Torres
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, UNNOBA-CONICET, Junín, Argentina
| | - Julio Ricardo Mercerat
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata-CICPBA, La Plata, Argentina
| | - Néstor Oscar Caffini
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata-CICPBA, La Plata, Argentina
| | - Laura María Isabel López
- Centro de Investigación de Tecnología del Cuero, CICPBA-INTI, Manuel B. Gonnet, Argentina
- Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| |
Collapse
|
12
|
Jayanthi D, Victor JS, Chellan R, Chellappa M. Influence of galactosidases on glycosaminoglycan removal Vis-à-Vis opening up of skin matrix to enable complete rehydration. Bioprocess Biosyst Eng 2020; 43:1061-1070. [PMID: 32025809 DOI: 10.1007/s00449-020-02304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022]
Abstract
Enzymatic interventions in animal skin processing are increasingly being considered as safe and benign technology options due to the reduction and replacement of potential harmful chemicals. In this study, galactosidases have been employed for rehydration of preserved skins and hides to improve the process efficiency and minimize hazardous sodium sulfide. The purpose of rehydration is to ensure the skin is hydrated uniformly to facilitate subsequent physico-chemical processes of leather making. Improper rehydration leads to reduction in the quality and value of the leather. The efficacy of the enzymatic process was studied using histological images and scanning electron microscopic analysis. Pollution load changes and the extent of carbohydrate removal were also quantified. The study indicates possibility for substantial reduction in process duration and water input (up to 30%) during rehydration of preserved animal skins when galactosidases are used as rehydration aid without affecting the quality of the leather. Thus use of galactosidases in rehydration ensures uniform accelerated rehydration and provides significant environmental benefits to tanning industry, by reducing harmful substances in subsequent operations.
Collapse
Affiliation(s)
- Durga Jayanthi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, CSIR - Central Leather Research Institute, Adyar, Chennai, 600020, India.,Leather Processing Division, CSIR - Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - John Sundar Victor
- Leather Processing Division, CSIR - Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Rose Chellan
- Department of Biotechnology, CSIR-CLRI, Chennai, India
| | - Muralidharan Chellappa
- Leather Processing Division, CSIR - Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
13
|
Freitas CDT, Silva RO, Ramos MV, Porfírio CTMN, Farias DF, Sousa JS, Oliveira JPB, Souza PFN, Dias LP, Grangeiro TB. Identification, characterization, and antifungal activity of cysteine peptidases from Calotropis procera latex. PHYTOCHEMISTRY 2020; 169:112163. [PMID: 31605904 DOI: 10.1016/j.phytochem.2019.112163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 05/07/2023]
Abstract
Cysteine peptidases (EC 3.4.22) are the most abundant enzymes in latex fluids. However, their physiological functions are still poorly understood, mainly related to defense against phytopathogens. The present study reports the cDNA cloning and sequencing of five undescribed cysteine peptidases from Calotropis procera (Aiton) Dryand (Apocynaceae) as well as some in silico analyses. Of these, three cysteine peptidases (CpCP1, CpCP2, and CpCP3) were purified. Their enzymatic kinetics were determined and they were assayed for their efficacy in inhibiting the hyphal growth of phytopathogenic fungi. The mechanism of action was investigated by fluorescence and atomic force microscopy as well as by induction of reactive oxygen species (ROS). The deduced amino acid sequences showed similar biochemical characteristics and high sequence homology with several other papain-like cysteine peptidases. Three-dimensional models showed two typical cysteine peptidase domains (L and R domains), forming a "V-shaped" active site containing the catalytic triad (Cys, His, and Asn). Proteolysis of CpCP1 was higher at pH 7.0, whereas for CpCP2 and CpCP3 it was higher at 7.5. All peptidases exhibited optimum activity at 35 °C and followed Michaelis-Menten kinetics. However, the major difference among them was that CpCP1 exhibited highest Vmax, Km, Kcat and catalytic efficiency. All peptidases were deleterious to the two fungi tested, with IC50 of around 50 μg/mL. The peptidases promoted membrane permeabilization, morphological changes with leakage of cellular content, and induction of ROS in F. oxysporum spores. These results corroborate the hypothesis that latex cysteine peptidases play a role in defense against fungi.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil.
| | - Rafaela O Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Camila T M N Porfírio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Davi F Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, CEP, 58051-900, João Pessoa, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - João P B Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Pedro F N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Lucas P Dias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | | |
Collapse
|
14
|
A novel unhairing enzyme produced by heterologous expression of keratinase gene (kerT) in Bacillus subtilis. World J Microbiol Biotechnol 2019; 35:122. [DOI: 10.1007/s11274-019-2701-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 01/24/2023]
|
15
|
Allergenicity reduction of cow’s milk proteins using latex peptidases. Food Chem 2019; 284:245-253. [DOI: 10.1016/j.foodchem.2019.01.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 01/09/2023]
|
16
|
Errasti ME, Caffini NO, López LMI. Proteolytic extracts of three Bromeliaceae species as eco-compatible tools for leather industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21459-21466. [PMID: 29297161 DOI: 10.1007/s11356-017-1096-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Most tanneries use high proportions of Na2S and CaO during the dehairing step, resulting in effluents of high alkalinity and large amounts of suspended solid, besides the risk of liberating the toxic H2S. Solid waste rich in protein is another environmental problem of tanneries. Enzymes are an interesting technological tool for industry due to their biodegradability, nontoxic nature, and nonpolluting effluent generation. In the leather industry, proteases have been chosen as a promising eco-friendly alternative to Na2S/CaO dehairing. Extracts with high proteolytic activity have been obtained from fruits of Bromeliaceae species: Bromelia balansae Mez (Bb), Bromelia hieronymi Mez (Bh), and Pseudananas macrodontes (Morr.) Harms (Pm). In this work, Bb, Bh, and Pm have been studied for application in the leather industry, focusing in their dehairing properties. Enzymatic activities were measured against collagen, keratin, elastin, and epidermis while a dehairing assay was performed by employing cowhide. All extracts showed similar activity on collagen and epidermis, while Bh and Pm were the most active against keratin at the same caseinolytic unit (CU) values; Bh was the only extract active against elastin. Bb (1 CU/ml), Bh (1.5 CU/ml), and Pm (0.5 CU/ml) were able to depilate cowhide. Desirable characteristics of dehairing were observed for all extracts since hair pores did not show residual hair, grain surface was clean and intact, and collagen fiber bundles of dermis were not damaged. In conclusion, results here presented show that proteolytic extracts of Bromeliaceae species are promising eco-compatible tools for leather industry.
Collapse
Affiliation(s)
- María Eugenia Errasti
- Centro de Investigaciones de Tecnología del Cuero, CIC-INTI, Camino Parque Centenario e/505 y 508, Manuel B. Gonnet, Argentina.
| | - Néstor Oscar Caffini
- Centro de Investigación de Proteínas Vegetales, UNLP-CIC, Calle 47 y 115, La Plata, Argentina
| | - Laura María Isabel López
- Centro de Investigaciones de Tecnología del Cuero, CIC-INTI, Camino Parque Centenario e/505 y 508, Manuel B. Gonnet, Argentina
| |
Collapse
|