1
|
Li Y, Liu Z, Zheng Y, Sun K, Lei P, Gu Y, Song Y, Xue J, Cai W, Wang R, Xu H, Sun L. High-throughput screening method for glycolipids based on substrate modification and their efficient biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 422:132215. [PMID: 39952617 DOI: 10.1016/j.biortech.2025.132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The development of a high-throughput screening (HTS) method is crucial for boosting microbial synthesis. However, in non-model strains, genetic editing-based HTS is often not feasible. Here, a substrate-modified HTS strategy using Starmerella bombicola PL0120, a sophorolipids (SLs)-producing strain, was designed. First, the medium was optimized to increase the SLs yield to 248 g/L. Then, 2-benzylstearic acid was synthesized, which PL0120 can use to make SLs analogs. Subsequently, by selecting dark-phenotype strains and using 254 nm absorption, a 51.1 % high-yielding SLs strain screening rate was achieved. Among these strains, strain A6 yielded a concentration of 324 g/L. Moreover, this method has been extended to rhamnolipids (RLs). By engineering a microbubble reactor, the yield of RLs was increased to 70.3 g/L. This HTS methodology is instrumental in augmenting the production output of microbial fermentation products, which in turn, facilitates cost-effective biomanufacturing.
Collapse
Affiliation(s)
- Yuanyi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhilin Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiming Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ke Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongting Song
- Research Institute of Petroleum Engineering and Technology, Sinopec Shengli Oilfield, Dongying 257000 Shandong, China
| | - Jian Xue
- Nanjing Shineking Biotech Co., Ltd, Nanjing 210061, China
| | - Weidong Cai
- Guilin Fengrunlai Biotech Corp., Guilin 541000, China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Qazi MA, Phulpoto IA, Wang Q, Dai Z. Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives. Crit Rev Biotechnol 2024; 44:1403-1421. [PMID: 38232958 DOI: 10.1080/07388551.2023.2290981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 01/19/2024]
Abstract
The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Irfan Ali Phulpoto
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
3
|
Gao Q, Gao S, Zeng W, Li J, Zhou J. Enhancing (2S)-naringenin production in Saccharomyces cerevisiae by high-throughput screening method based on ARTP mutagenesis. 3 Biotech 2024; 14:85. [PMID: 38379664 PMCID: PMC10874921 DOI: 10.1007/s13205-023-03892-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
(2S)-Naringenin, a dihydro-flavonoid, serves as a crucial precursor for flavonoid synthesis due to its extensive medicinal values and physiological functions. A pathway for the synthesis of (2S)-naringenin from glucose has previously been constructed in Saccharomyces cerevisiae through metabolic engineering. However, this synthetic pathway of (2S)-naringenin is lengthy, and the genes involved in the competitive pathway remain unknown, posing challenges in significantly enhancing (2S)-naringenin production through metabolic modification. To address this issue, a novel high-throughput screening (HTS) method based on color reaction combined with a random mutagenesis method called atmospheric room temperature plasma (ARTP), was established in this study. Through this approach, a mutant (B7-D9) with a higher titer of (2S)-naringenin was obtained from 9600 mutants. Notably, the titer was enhanced by 52.3% and 19.8% in shake flask and 5 L bioreactor respectively. This study demonstrates the successful establishment of an efficient HTS method that can be applied to screen for high-titer producers of (2S)-naringenin, thereby greatly improving screening efficiency and providing new insights and solutions for similar product screenings.
Collapse
Affiliation(s)
- Qian Gao
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Song Gao
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
4
|
Xu F, Chen Y, Zou X, Chu J, Tian X. Precise fermentation coupling with simultaneous separation strategy enables highly efficient and economical sophorolipids production. BIORESOURCE TECHNOLOGY 2023; 388:129719. [PMID: 37678650 DOI: 10.1016/j.biortech.2023.129719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Sophorolipids (SLs) represent highly promising biosurfactants. However, its widespread production and application encounter obstacles due to the significant costs involved. Here, an intelligent and precise regulation strategy was elucidated for the fermentation process coupled with in-situ separation production mode, to achieve cost-effective SLs production. Firstly, a mechanism-assisted data-driven model was constructed for "on-demand feeding of cells". Moreover, a strategy of step-wise oxygen supply regulation based on the demand for cell metabolic capacity was developed, which accomplished "on-demand oxygen supply of cells", to optimize the control of energy consumption. Finally, a systematic approach was implemented by integrating a semi-continuous fermentation mode with in-situ separation technology for SLs production. This strategy enhanced SLs productivity and yield, reaching 2.30 g/L/h and 0.57 g/g, respectively. These values represented a 40.2% and 18.7% increase compared to fed-batch fermentation. Moreover, the concentration of crude SLs after separation reached 793.12 g/L, facilitating downstream separation and purification processes.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Zhang Z, He P, Cai D, Chen S. Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects. World J Microbiol Biotechnol 2022; 38:208. [DOI: 10.1007/s11274-022-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
|
6
|
Zhu X, Du C, Mohsin A, Yin Q, Xu F, Liu Z, Wang Z, Zhuang Y, Chu J, Guo M, Tian X. An Efficient High-Throughput Screening of High Gentamicin-Producing Mutants Based on Titer Determination Using an Integrated Computer-Aided Vision Technology and Machine Learning. Anal Chem 2022; 94:11659-11669. [PMID: 35942642 DOI: 10.1021/acs.analchem.2c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "design-build-test-learn" (DBTL) cycle has been adopted in rational high-throughput screening to obtain high-yield industrial strains. However, the mismatch between build and test slows the DBTL cycle due to the lack of high-throughput analytical technologies. In this study, a highly efficient, accurate, and noninvasive detection method of gentamicin (GM) was developed, which can provide timely feedback for the high-throughput screening of high-yield strains. First, a self-made tool was established to obtain data sets in 24-well plates based on the color of the cells. Subsequently, the random forest (RF) algorithm was found to have the highest prediction accuracy with an R2 value of 0.98430 for the same batch. Finally, a stable genetically high-yield strain (998 U/mL) was successfully screened out from 3005 mutants, which was verified to improve the titer by 72.7% in a 5 L bioreactor. Moreover, the verified new data sets were updated on the model database in order to improve the learning ability of the DBTL cycle.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Congcong Du
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Qian Yin
- College of Biological & Medical Engineering, South-Central University for Nationalities, Minzu Road 182, Wuhan, Hubei 430070, China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| |
Collapse
|
7
|
Hua E, Zhang Y, Yun K, Pan W, Liu Y, Li S, Wang Y, Tu R, Wang M. Whole-Cell Biosensor and Producer Co-cultivation-Based Microfludic Platform for Screening Saccharopolyspora erythraea with Hyper Erythromycin Production. ACS Synth Biol 2022; 11:2697-2708. [PMID: 35561342 DOI: 10.1021/acssynbio.2c00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinomycetes are versatile secondary metabolite producers with great application potential in industries. However, industrial strain engineering has long been limited by the inefficient and labor-consuming plate/flask-based screening process, resulting in an urgent need for product-driven high-throughput screening methods for actinomycetes. Here, we combine a whole-cell biosensor and microfluidic platform to establish the whole-cell biosensor and producer co-cultivation-based microfluidic platform for screening actinomycetes (WELCOME). In WELCOME, we develop an MphR-based Escherichia coli whole-cell biosensor sensitive to erythromycin and co-cultivate it with Saccharopolyspora erythraea in droplets for high-throughput screening. Using WELCOME, we successfully screen out six erythromycin hyper-producing S. erythraea strains starting from an already high-producing industrial strain within 3 months, and the best one represents a 50% improved yield. WELCOME completely circumvents a major problem of industrial actinomycetes, which is usually genetic-intractable, and this method will revolutionize the field of industrial actinomycete engineering.
Collapse
Affiliation(s)
- Erbing Hua
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaiyue Yun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenjia Pan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ye Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shixin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
8
|
Qazi MA, Wang Q, Dai Z. Sophorolipids bioproduction in the yeast Starmerella bombicola: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2022; 346:126593. [PMID: 34942344 DOI: 10.1016/j.biortech.2021.126593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Sophorolipids are highly active green surfactants (glycolipid biosurfactants) getting tremendous appreciation worldwide due to their low toxicity, biodegradability, broad spectrum of applications, and significant biotechnological potential. Sophorolipids are mainly produced by an oleaginous budding yeast Starmerella bombicola using low-cost substrates. Therefore, the recent state-of-art literature information about S. bombicola yeast is hereby provided, especially the underlying production pathways, biosynthetic gene cluster, and regulatory enzymes. Moreover, the S. bombicola offers flexibility for regulating the structural diversity of sophorolipids, either genetically or by varying fermentative conditions. The emergence of advanced technologies like 'Omics and CRISPR/Cas have certainly boosted rational engineering research for designing high-performing platform strains. Therefore, currently available genetic engineering tools in S. bombicola were reviewed, thereby opening up exciting new possibilities for improving the overall bioproduction titers, structural variability, and stability of sophorolipids. Finally, some technical perspectives to address the current challenges were discussed.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020 Sindh, Pakistan
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China.
| |
Collapse
|
9
|
Chen Y, Tang X, Li Y, Liu C, Zhuang Y, Tian X, Chu J. Ultrasound assisted in situ separation of sophorolipids in multi-phase fermentation system to achieve efficient production by Candida bombicola. Biotechnol J 2021; 17:e2100478. [PMID: 34792852 DOI: 10.1002/biot.202100478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sophorolipids (SLs) are regarded as one of the most promising biosurfactants. However, high production costs are the main obstacle to extended SLs application. Semi-continuous fermentation, which is based on in situ separation, is a promising technology for achieving high SLs productivity. METHODS AND RESULTS In this study, the sedimentation mechanism of SLs was analyzed. The formation of a hydrophobic mixture of SLs and rapeseed oil was a key factor in sedimentation. And the hydrophobicity and density of the mixture determined SLs sedimentation rate. On this basis, ultrasonic enhanced sedimentation technology (UEST) was introduced, by which the sedimentation rates were increased by 46.9%-485.4% with different ratio of rapeseed oil to SLs. UEST-assisted real-time in situ separation and semi-continuous fermentation were performed. SLs productivity and yield were 2.15 g L-1 h-1 and 0.58 g g-1 , respectively, simultaneously the loss ratio of cells, glucose, and rapeseed oil were significantly reduced. CONCLUSIONS This study provides a new horizon for optimization of the SLs fermentation process.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xu Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ya Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
10
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
11
|
Chen Y, Tian X, Li Q, Li Y, Chu J, Hang H, Zhuang Y. Target-site directed rational high-throughput screening system for high sophorolipids production by Candida bombicola. BIORESOURCE TECHNOLOGY 2020; 315:123856. [PMID: 32707507 DOI: 10.1016/j.biortech.2020.123856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
In this study we have established a rational and high performance high-throughput screening system to select for a sophorolipids (SLs) high-producing strain of Candida bombicola. Introduction of mutagen combination, relaxation culture and multi-stress significantly improved both mutation and positive mutation rates. A high-performing strain, Ncbio 5, was selected out of 6212 mutants. Final SLs titer, productivity and yield of this strain in 5 L bioreactors were 26.9%, 27.0% and 35.0% higher than in the original strain, respectively. The improved fermentation performance in Ncbio 5 is contributed by the longer production period, higher SLs productivity and more efficient oil utilization. The strategy adopted herein to optimize the high-throughput screening system should be readily extendable to other similar systems.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qianhui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ya Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Li Y, Chen Y, Tian X, Chu J. Advances in sophorolipid-producing strain performance improvement and fermentation optimization technology. Appl Microbiol Biotechnol 2020; 104:10325-10337. [PMID: 33097965 DOI: 10.1007/s00253-020-10964-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
Sophorolipids (SLs), currently one of the most promising biosurfactants, are secondary metabolites produced by many non-pathogenic yeasts, among which Candida bombicola ATCC 22214 is the main sophorolipid-producing strain. SLs have gained much attention since they exhibit anti-tumor, anti-bacterial, anti-inflammatory, and other beneficial biological activities. In addition, as biosurfactants, SLs have a low toxicity level and are easily degradable without polluting the environment. However, the production cost of SLs remains high, which hinders the industrialization process of SL production. This paper describes SL structure and the metabolic pathway of SL synthesis firstly. Furthermore, we analyze factors that contribute to the higher production cost of SLs and summarize current research status on the advancement of SL production based on two aspects: (1) the improvement of strain performance and (2) the optimization of fermentation process. Further prospects of lowering the cost of SL production are also discussed in order to achieve larger-scale SL production with a high yield at a low cost. KEY POINTS: • Review of advances in strain performance improvement and fermentation optimization. • High-throughput screening and metabolic engineering for high-performance strains. • Low-cost substrates and semi-continuous strategies for efficient SL production.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. Box 329, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
13
|
Shu L, Si X, Yang X, Ma W, Sun J, Zhang J, Xue X, Wang D, Gao Q. Enhancement of Acid Protease Activity of Aspergillus oryzae Using Atmospheric and Room Temperature Plasma. Front Microbiol 2020; 11:1418. [PMID: 32670249 PMCID: PMC7332548 DOI: 10.3389/fmicb.2020.01418] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Atmospheric and room temperature plasma (ARTP) system is a novel and efficient mutagenesis protocol for microbial breeding. In this study, ARTP was employed to treat spores of Aspergillus oryzae strain 3.042 for selection of high acid protease producers. With an irradiation time of 150 s at the lethal rate of 90%, 19 mutants with higher acid protease activity were initially selected based on different mutant colony morphology and ratio of the clarification halo of protease activity to the colony diameter. Measurements of the acid protease activity revealed that mutant strain B-2 is characterized by a steady hereditary stability with increased acid protease, neutral protease and total protease activities of 54.7, 17.3, and 8.5%, respectively, and decreased alkaline protease activity of 8.1%. In summary, the identified mutant strain B-2 exhibits great potential for the enhancement of the insufficient acid protease activity during the middle and later stages of soy sauce fermentation.
Collapse
Affiliation(s)
- Liang Shu
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaoguang Si
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources, Tianjin, China
| | - Xinda Yang
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wenyan Ma
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jinglan Sun
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jian Zhang
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Xianli Xue
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Depei Wang
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Qiang Gao
- Key Laboratory of Industrial Microbiology and Engineering Research Center of Food Biotechnology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| |
Collapse
|
14
|
Lin Y, Chen Y, Li Q, Tian X, Chu J. Rational high-throughput screening system for high sophorolipids production in Candida bombicola by co-utilizing glycerol and glucose capacity. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0252-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|