1
|
Anderson CT, Pelloux J. The Dynamics, Degradation, and Afterlives of Pectins: Influences on Cell Wall Assembly and Structure, Plant Development and Physiology, Agronomy, and Biotechnology. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:85-113. [PMID: 39841930 DOI: 10.1146/annurev-arplant-083023-034055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants. We highlight recent advances in understanding the structure-function relationships of pectin-modifying enzymes and their products and how these advances point toward new approaches to bridging key knowledge gaps and manipulating pectin dynamics to control plant development. Finally, we discuss how a deeper understanding of pectin dynamics might enable innovations in agronomy and biotechnology, unlocking new benefits from these ubiquitous but complex polysaccharides.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France;
| |
Collapse
|
2
|
Srivastava S, Dafale NA. Tailored microbial consortium producing hydrolytic enzyme cocktail for maximum saccharification of wheat straw. BIORESOURCE TECHNOLOGY 2024; 399:130560. [PMID: 38460563 DOI: 10.1016/j.biortech.2024.130560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The potential of hydrolytic enzyme cocktail obtained from designed bacterial consortium WSh-1 comprising Bacillus subtilis CRN 16, Paenibacillus dendritiformis CRN 18, Niallia circulans CRN 24, Serratia marscens CRN 29, and Streptomyces sp. CRN 30, was investigated for maximum saccharification. Activity was further enhanced to 1.01 U/ml from 0.82 U/ml by supplementing growth medium with biotin and cellobiose as a cofactor and inducer. Through kinetic analysis, the enzyme cocktail showed a high wheat straw affinity with Michaelis-Menten constant (Km) of 0.68 µmol/L and a deconstruction rate (Vmax) of 4.5 U/ml/min. The statistical optimization of critical parameters increased saccharification to 89 %. The optimized process in a 5-L lab-scale bioreactor yielded 501 mg/g of reducing sugar from NaOH-pretreated wheat straw. Lastly, genomic insights revealed unique abundant oligosaccharide deconstruction enzymes with the most diverse CAZyme profile. The consortium-mediated enzyme cocktails offer broader versatility with efficiency for the economical and sustainable valorization of lignocellulosic waste.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Louhasakul Y, Wado H, Lateh R, Cheirsilp B. Solid-state fermentation of Saba banana peel for pigment production by Monascus purpureus. Braz J Microbiol 2023; 54:93-102. [PMID: 36348258 PMCID: PMC9943817 DOI: 10.1007/s42770-022-00866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Eco-friendly natural pigment demand has ever-increasing popularity due to health and environmental concerns. In this context, the aim of this study was to evaluate the feasibility use of Saba banana peel as low-cost fermentable substrate for the production of pigments, xylanase and cellulase enzymes by Monascus purpureus. Among the strains tested, M. purpureus TISTR 3385 produced pigments better and had higher enzyme activities. Under the optimal pigment-producing conditions at the initial moisture content of 40% and initial pH of 6.0, the pigments comprising yellow, orange, and red produced by the fungi were achieved in the range of 0.40-0.93 UA/g/day. The maximum xylanase and cellulase activities of 8.92 ± 0.46 U/g and 4.72 ± 0.04 U/g were also obtained, respectively. More importantly, solid-state fermentation of non-sterile peel could be achieved without sacrificing the production of the pigments and both enzymes. These indicated the potential use of the peel as fermentable feedstock for pigment production by the fungi and an environmental-friendly approach for sustainable waste management and industrial pigment and enzyme application.
Collapse
Affiliation(s)
- Yasmi Louhasakul
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand.
| | - Hindol Wado
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Rohana Lateh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, 95000, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Program of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
4
|
Kuthiala T, Thakur K, Sharma D, Singh G, Khatri M, Arya SK. The eco-friendly approach of cocktail enzyme in agricultural waste treatment: A comprehensive review. Int J Biol Macromol 2022; 209:1956-1974. [PMID: 35500773 DOI: 10.1016/j.ijbiomac.2022.04.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 12/26/2022]
Abstract
Agricultural development over the past decade has majorly contributed to the world's bioeconomy, but is the rise in agricultural activities just resulting in the best? Farming, food processing, livestock handling and other agro-based actions show an incremental rise in environmental deterioration by generating millions of tonnes of organic and inorganic solid waste across the globe. Incautious waste handling practices (incineration and landfilling) is resulting in greenhouse gas emissions, land pollution, groundwater contamination, soil erosion and chronic health hazards. Lately the concept of bioconversion has gained importance in valorising agro-waste (lignocellulosic biomasses) into value added products like biofuels, biogas, single cell proteins and biochar to effectively control waste and reduce the dependency on non-renewable feedstocks (fossil fuels). Biomass hydrolysis via enzymes is improved in terms of cost, efficiency, catalysis, stability and specificity by enrolling the use of enzyme cocktails to synergistically degrade lignocellulose into monomeric sugars and further into valued products. Enzyme blends like that of Xylanase + Pectinase + Cellulase shows 76.5% fermentation within 30 h by using banana peel as substrate for biofuel production. Other sectors like paper industries have also explored the use of enzyme blends of Xylanase + Pectinase + α-amylase + Protease+ lipase for bio-bleaching showing reduction in 50% chemical usage and 19.5% kappa number with adjacent increase in tensile strength by 23.55%. The scope of the present review is to highlight the technicalities of the concepts mentioned above, include qualitative data from different relatable studies and prove how the use of enzyme cocktails is an eco-friendly approach towards agro-waste management.
Collapse
Affiliation(s)
- Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Dharini Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA.
| |
Collapse
|
5
|
Cádiz-Gurrea MDLL, Villegas-Aguilar MDC, Leyva-Jiménez FJ, Pimentel-Moral S, Fernández-Ochoa Á, Alañón ME, Segura-Carretero A. Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Res Int 2020; 138:109786. [PMID: 33288172 DOI: 10.1016/j.foodres.2020.109786] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Tropical fruits trade is on the rise due to the claimed health benefits related with their consumption. Functional activities are exerted by the presence of bioactive compounds which could be used for prevention or amelioration diseases. However, the occurrence of bioactive compounds is found mainly in non-edible fraction of tropical fruits which are usually discarded. Therefore, the revalorization of tropical fruits by-products as source of functional compounds is on the cutting-edge research. The implementation of this challenge not only allows the enhancement of the tropical fruits by-products management, but also the production of value-added products. This review compiles the latest comprehensive information about the revalorization of bioactive compounds from tropical fruits by-products. A revision of the sustainable green technologies used for the isolation of valuable compounds has been carried out as well as the current food, functional, cosmeceutical and bioenergetics industrial applications of bioactive compounds extracted from tropical fruits by-products.
Collapse
Affiliation(s)
- María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - María Del Carmen Villegas-Aguilar
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | | | - Sandra Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - María Elena Alañón
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Spain; Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| |
Collapse
|
6
|
Bajaj P, Mahajan R. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 2019; 103:8711-8724. [DOI: 10.1007/s00253-019-10146-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
|
7
|
Amini Khoozani A, Birch J, Bekhit AEDA. Production, application and health effects of banana pulp and peel flour in the food industry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:548-559. [PMID: 30906012 PMCID: PMC6400781 DOI: 10.1007/s13197-018-03562-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
The past 20 years has seen rapid development of value-added food products. Using largely wasted fruit by-products has created a potential for sustainable use of these edible materials. The high levels of antioxidant activity, phenolic compounds, dietary fibres and resistant starch in banana pulp and peel have made this tropical fruit an outstanding source of nutritive ingredient for enrichment of foodstuffs. Accordingly, processing of separate banana parts into flour has been of interest by many researchers using different methods (oven drying, spouted bed drier, ultrasound, pulsed vacuum oven, microwave, spray drying and lyophilization). Regarding the high level of bioactive compounds, especially resistant starch in banana flour, the application of its flour in starchy foods provides a great opportunity for product development, even in gluten free foods. This review aims to provide concise evaluation of the health benefits of banana bioactive components and covers a wide range of literature conducted on the application of different parts of banana and the flour produced at various ripeness stages in the food industry. Of particular interest, the impact of drying methods on banana flour properties are discussed.
Collapse
Affiliation(s)
- Amir Amini Khoozani
- Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - John Birch
- Department of Food Science, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | | |
Collapse
|
8
|
Gupta A, Jana AK. Production of laccase by repeated batch semi-solid fermentation using wheat straw as substrate and support for fungal growth. Bioprocess Biosyst Eng 2018; 42:499-512. [DOI: 10.1007/s00449-018-2053-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|