1
|
Siddique A, Al Disi Z, AlGhouti M, Zouari N. Diversity of hydrocarbon-degrading bacteria in mangroves rhizosphere as an indicator of oil-pollution bioremediation in mangrove forests. MARINE POLLUTION BULLETIN 2024; 205:116620. [PMID: 38955089 DOI: 10.1016/j.marpolbul.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Mangrove ecosystems, characterized by high levels of productivity, are susceptible to anthropogenic activities, notably oil pollution arising from diverse origins including spills, transportation, and industrial effluents. Owing to their role in climate regulation and economic significance, there is a growing interest in developing mangrove conservation strategies. In the Arabian Gulf, mangroves stand as the sole naturally occurring green vegetation due to the region's hot and arid climate. However, they have faced persistent oil pollution for decades. This review focuses on global mangrove distribution, with a specific emphasis on Qatar's mangroves. It highlights the ongoing challenges faced by mangroves, particularly in relation to the oil industry, and the impact of oil pollution on these vital ecosystems. It outlines major oil spill incidents worldwide and the diverse hydrocarbon-degrading bacterial communities within polluted areas, elucidating their potential for bioremediation. The use of symbiotic interactions between mangrove plants and bacteria offers a more sustainable, cost-effective and environmentally friendly alternative. However, the success of these bioremediation strategies depends on a deep understanding of the dynamics of bacterial communities, environmental factors and specific nature of the pollutants.
Collapse
Affiliation(s)
- Afrah Siddique
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar; Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad AlGhouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar.
| |
Collapse
|
2
|
Pang C, Wang S, He C, Zheng M, Wang W. Anaerobic membrane bioreactor coupled with polyaluminum chloride for high-strength phenolic wastewater treatment: Robust performance and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118777. [PMID: 38527723 DOI: 10.1016/j.envres.2024.118777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Anaerobic digestion of phenolic wastewater by anaerobic membrane bioreactor (AnMBR) has revealed increasing attractiveness, but the application of AnMBRs for treating high-strength phenolic wastewater faces challenges related to elevated phenol stress and membrane fouling. In this study, the coupling of AnMBR and polyaluminum chloride (PAC) was developed for efficient treatment of high-strength phenolic wastewater. The system achieved robust removal efficiencies of phenol (99%) and quinoline (98%) at a gradual increase of phenol concentration from 1000 to 5000 mg/L and a constant quinoline concentration of 100 mg/L. The dosing of PAC could effectively control the membrane fouling rate with the transmembrane pressure (TMP) increasing rate as low as 0.17 kPa/d. The robust performances were mainly attributed to the favorable retention of functional microbes through membrane interception, while pulse cross flow buffered against phenol stress and facilitated cake layer removal. Meanwhile, the enriched core functional microbes, such as Syntrophorhabdus, Syntrophus, Mesotoga and Methanolinea, played a crucial role in further reduction of phenol stress. Notably, the significant presence of biomacromolecule degrader, such as Levilinea, contributed to membrane fouling mitigation through extracellular polymer degradation. Moreover, the enlargement of particle size distribution (PSD) by PAC was expected to mitigate membrane fouling. This study provided a promising avenue for sustainable treatment of high-strength phenolic wastewater.
Collapse
Affiliation(s)
- Chao Pang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Shun Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, 610213, China
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Mengqi Zheng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China; Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, Anhui Province, China.
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China; Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, Anhui Province, China.
| |
Collapse
|
3
|
Li J, Liu K, Dong Y, Chen L, Wang Z, Chen J, Zhang X. Potential effects of soil petroleum contamination on decomposition of Artemisia annua plant litter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1022-1030. [PMID: 38747329 DOI: 10.1039/d4em00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The accumulation of petroleum contaminants in phytoremediating plants can significantly impact the decomposition of their litter. However, the mechanisms underlying these effects and the potential influence of the contaminant concentration remain unclear. In this study, litter from Artemisia annua plants grown in soil with varying concentrations of petroleum (0, 15, 30, and 45 g kg-1) was collected. The litter samples were then inoculated with soil microorganisms and subjected to an indoor simulation of decomposition under controlled temperature and humidity conditions. Changes in the chemical properties, activities of decomposition-related enzymes in the litter, and decomposition rates were measured. Additionally, structural equation modeling was employed to analyze the mechanism through which soil petroleum contamination affects litter decomposition. The findings revealed several key points: (1) increasing soil petroleum contamination tended to reduce the concentration of carbon and nitrogen in litter while increasing those of lignin and total petroleum hydrocarbons (TPH). (2) Soil petroleum contamination tended to increase the activities of both total lignocellulases and total nutrient cycling-related enzymes in litter. (3) Soil petroleum contamination might indirectly inhibit the activity of lignocellulases by increasing the concentration of lignin and TPH in litter. However, it might also directly accelerate the activity of these enzymes, resulting in contradictory effects on litter decomposition. (4) Finally, A. annua litter produced in soil contaminated with 15 and 30 g kg-1 of petroleum exhibited significantly lower decomposition rates than that from uncontaminated soil.
Collapse
Affiliation(s)
- Jiahao Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Kaixuan Liu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Yuxin Dong
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Lingsu Chen
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Ziquan Wang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Jinqiang Chen
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Xiaoxi Zhang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
4
|
Hu X, Zhao S, Li H, Pan Y, Fan Z, Lu J, Li Y, Song G, Zhang H, Liu Q, Bao M. N-alkane shape distinctive microbial patterns in Kuroshio Extension. ENVIRONMENT INTERNATIONAL 2024; 188:108757. [PMID: 38795659 DOI: 10.1016/j.envint.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Marine microorganisms are primary drivers of the elemental cycling. The interaction between heterotrophic prokaryotes and biomarker (n-alkane) in Kuroshio Extension (KE) remains unclear. Here, we categorize KE into three characteristic areas based on ocean temperatures and nutrient conditions: Cold Water Area (CWA), Mixed Area (MA), and Warm Water Area (WWA). A total of 49 samples were collected during two-year voyage to identify the source of n-alkane and associated degrading microorganisms. Total n-alkane concentrations (Σn-Alk) in surface water (SW) spanned from 1,308 ng L-1 to 1,890 ng L-1, it was significantly higher (Tukey-Kramer test, p < 0.05) in MA than CWA and WWA. The Σn-Alk in surface sediments (SS) gradually increased from north to south, ranging from 5,982 ng g-1 to 37,857 ng g-1. Bacteria and algae were the primary sources of n-alkane in both SW and SS. Proteobacteria was the most widely distributed among three areas. The presence of Rhodobacteraceae with alkB was the primary reason affecting n-alkane concentrations in SW. The Gammaproteobacteria with alkB and alkR chiefly affected n-alkane concentrations in SS. In summary, n-alkane s serve as an energy source for particular microorganisms, shaping the unique oceanographic patterns.
Collapse
Affiliation(s)
- Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Yaping Pan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Zhongxiang Fan
- Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jinren Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Qian Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
5
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Oladi M, Leontidou K, Stoeck T, Shokri MR. Environmental DNA-based profiling of benthic bacterial and eukaryote communities along a crude oil spill gradient in a coral reef in the Persian Gulf. MARINE POLLUTION BULLETIN 2022; 184:114143. [PMID: 36182786 DOI: 10.1016/j.marpolbul.2022.114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Coral reef ecosystems in the Persian Gulf are frequently exposed to crude oil spills. We investigated benthic bacterial and eukaryote community structures at such coral reef sites subjected to different degrees of polycyclic aromatic hydrocarbon (PAH) pollution using environmental DNA (eDNA) metabarcoding. Both bacterial and eukaryote communities responded with pronounced shifts to crude oil pollution and distinguished control sites, moderately and heavily impacted sites with significant confidentiality. The observed community patterns were predominantly driven by Alphaproteobacteria and metazoans. Among these, we identified individual genera that were previously linked to oil spill stress, but also taxa, for which a link to hydrocarbon still remains to be established. Considering the lack of an early-warning system for the environmental status of coral reef ecosystems exposed to frequent crude-oil spills, our results encourage further research towards the development of an eDNA-based biomonitoring tool that exploits benthic bacterial and eukaryote communities as bioindicators.
Collapse
Affiliation(s)
- Mahshid Oladi
- Technische Universität Kaiserslautern, Ecology Group, Kaiserslautern, Germany; Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Kleopatra Leontidou
- Technische Universität Kaiserslautern, Ecology Group, Kaiserslautern, Germany
| | - Thorsten Stoeck
- Technische Universität Kaiserslautern, Ecology Group, Kaiserslautern, Germany
| | - Mohammad Reza Shokri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| |
Collapse
|
7
|
Guo G, Liu C, Tian F, Ding K, Wang H, Zhang C, Yang F, Xu J. Bioaugmentation treatment of polycyclic aromatic hydrocarbon-polluted soil in a slurry bioreactor with a bacterial consortium and hydroxypropyl-β-cyclodextrin. ENVIRONMENTAL TECHNOLOGY 2022; 43:3231-3238. [PMID: 33945429 DOI: 10.1080/09593330.2021.1921042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The aim of the study was to verify the effect of bioaugmentation by the bacterial consortium YS with hydroxypropyl-β-cyclodextrin (HPCD) in a soil slurry. The bacterial consortium YS was enriched from a petroleum-polluted soil using pyrene as sole carbon resource. After 3 weeks, the degradation rate of phenanthrene in CK increased from 22.58% to 55.23 and 78.21% in bioaugmentation (B) and HPCD + bioaugmentation (MB) respectively. The degradation rate of pyrene in CK increased from 17.33% to 51.10% and 60.32% in B and MB respectively in the slurry. The augmented YS persisted in the slurry as monitored by 16S rRNA gene high-throughput sequencing and outcompeted some indigenous bacteria. Enhanced polycyclic aromatic hydrocarbon (PAH) degradation was observed in the addition of HPCD due to the enhanced bioavailability of phenanthrene and pyrene. Additionally, the amount of PAH-degrading bacteria and enzymatic activity in bioaugmentation with HPCD were higher than that in the CK group. The results indicated that bioaugmentation with a bacterial consortium and HPCD is an environmentally friendly method for the bioremediation of PAH-polluted soil.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing, People's Republic of China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing, People's Republic of China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Rahmeh R, Akbar A, Kumar V, Al-Mansour H, Kishk M, Ahmed N, Al-Shamali M, Boota A, Al-Ballam Z, Shajan A, Al-Okla N. Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evol Bioinform Online 2021; 17:11769343211016887. [PMID: 34163126 PMCID: PMC8191072 DOI: 10.1177/11769343211016887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Abrar Akbar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Vinod Kumar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Hamad Al-Mansour
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Nisar Ahmed
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mustafa Al-Shamali
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anwar Boota
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Zainab Al-Ballam
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Naser Al-Okla
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
9
|
Song B, Li Z, Li S, Zhang Z, Fu Q, Wang S, Li L, Qi S. Functional metagenomic and enrichment metatranscriptomic analysis of marine microbial activities within a marine oil spill area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116555. [PMID: 33549842 DOI: 10.1016/j.envpol.2021.116555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Microorganisms can degrade petroleum hydrocarbons, providing the advantages of low cost and few side effects towards ecosystems. Here, we evaluated the mechanisms of microbial degradation of marine petroleum hydrocarbon using metagenomics and metatranscriptomics approaches in order to provide new insight into microbial degradation of petroleum hydrocarbon. Seawater samples were collected at a depth of ∼8 m from an area near a drilling platform in the Bohai Bay and metagenomic sequencing was used to evaluate the functional potential of these marine microbial communities. Metatranscriptomic sequencing, fluorescence in-situ hybridization experiments, and flow cytometry were also performed on the microbial communities of samples subjected to 12 different culture conditions. The data were also subjected to Weighted Gene Co-expression Network Analysis (WGCNA) and co-transcription data visualization to evaluate co-transcription of gene functions. Metagenomic sequencing indicated the presence of numerous genes that were related to petroleum hydrocarbon metabolism. Further, the high co-transcription of genes in multiple pathways, indicated that groups of genes were synergistically transcribed to metabolize petroleum hydrocarbons. Metatranscriptomics also showed that microbial metabolism was highly active in the enrichments and that the transcription of a large number of prokaryotic replication and repair genes were significantly up-regulated including those encoding for the type VI secretion system (T6SS) protein, DNA polymerase I, thymidine phosphorylase, mevalonate kinase, and two-component systems. Concomitantly, the transcription of ribosomal genes involved in translation and photosynthetic genes involved in energy metabolism were down-regulated. Overall, oil and oxygen presence can increase the oil-degradation rates and related genes' transcription. Lot different metabolisms are co-regulated to exploit nutrients derived from the metabolism of petroleum hydrocarbons. Our analysis of metagenomic, metatranscriptomic and degradation data in this study show that a widespread gene spectrum involved in oil-degradation and the cooperation among genes is of great importance.
Collapse
Affiliation(s)
- Bingkui Song
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China; Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Zhihao Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Si Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhongzhen Zhang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Qitong Fu
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shijie Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Liang Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shuting Qi
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
10
|
Zhang X, Wang L, Zhou W, Feng L, Hu M, Hu J, Liu Z. Mixing of plant litters strengthens their remediation effects on crude oil-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12753-12765. [PMID: 33094455 DOI: 10.1007/s11356-020-11299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
To investigate the effects of the mixing of litters on their remediation efficiency in petroleum-contaminated soil, litters from two common plants in the petroleum-contaminated region of Northern Shaanxi, China, Bothriochloa ischaemum (L.) Keng and Sophora davidii Kom. ex Pavol., and their mixture were mixed with 45 g/kg petroleum-contaminated soil. Based on these, a 150-day simulated remediation experiment was conducted at 25 °C and consistent moisture conditions. The effects on the degradation of petroleum components and the restoration of nutrient contents, pH, and enzymatic activity in the disturbed soil were detected. The effects of the litter treatments on the community structure and carbon source utilization characteristics of soil microorganisms were also studied. The results indicated that all litter treatments significantly accelerated the degradation of petroleum components, while the mixing of litter exhibited significant synergistic effects, leading to significantly higher degradation rates of saturated hydrocarbons, aromatic hydrocarbons, and nonhydrocarbon substances than the observed rates in the single-litter treatments and the predicted rates based on the single-litter treatments. Litter treatment significantly increased the N and P contents and enzymatic activity of contaminated soil. The effects of mixed litter on soil chemical and biological properties fell between the effects of the 2 types of single-litter treatments. However, the mixing of litters exhibited significant synergistic effects in supplementing available P and increasing sucrase, dehydrogenase, lignin peroxidase, and laccase activity, while it exhibited significant antagonistic effects in supplementing nitrate nitrogen and increasing urease, phosphatase, polyphenol oxidase, and manganese peroxidase activity. Litter treatment significantly altered the community structure of soil microorganisms. The relative abundances of some petroleum-degrading microbial phyla or genera in mixed litter-treated soil were significantly different from those in single litter-treated soils, which might contribute to the strengthened remediation effects of mixed litter treatment. The results might provide a theoretical basis for the more effect utilization of biomass resources in the remediation of petroleum-contaminated soil.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lijie Wang
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Wenxing Zhou
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Liaoliao Feng
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Man Hu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Jiawei Hu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Zengwen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Exploring the effect of plant substrates on bacterial community structure in termite fungus-combs. PLoS One 2020; 15:e0232329. [PMID: 32357167 PMCID: PMC7194444 DOI: 10.1371/journal.pone.0232329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/14/2020] [Indexed: 11/19/2022] Open
Abstract
Fungus-cultivating termites are successful herbivores largely rely on the external symbiotic fungus-combs to decompose plant polysaccharides. The comb harbors both fungi and bacteria. However, the complementary roles and functions of the bacteria are out of the box. To this purpose, we look into different decomposition stages of fungus-combs using high-throughput sequencing of the 16S rRNA gene to examine bacterial community structure. We also explored the bacterial response to physicochemical indexes (such as moisture, ash content and organic matter) and plant substrates (leaves or branches or mix food). Some specific families such as Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae may be involved in lignocellulose degradation, whereas Burkholderiaceae may be associated with aromatic compounds degradation. We observed that as the comb mature there is a shift of community composition which may be an adjustment of specific bacteria to deal with different lignocellulosic material. Our results indicated that threshold amount of physicochemical indexes are beneficial for bacterial diversity but too high moisture, low organic matter and high ash content may reduce their diversity. Furthermore, the average highest bacterial diversity was recorded from the comb built by branches followed by mix food and leaves. Besides, this study could help in the use of bacteria from the comb of fungus-cultivating termites in forestry and agricultural residues making them easier to digest as fodder.
Collapse
|