1
|
Xin X, Li L, Cheng J, Wang Y, Lu B, Yang Y, Li L, Wong JWC. Synchronous production of bioethanol and short-chain fatty acids associated with microbial mechanisms via the short-term cultivation of waste molasses inoculated with Aspergillus oryzae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124888. [PMID: 40081030 DOI: 10.1016/j.jenvman.2025.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
This study proposes a novel approach for the concurrent production of short-chain fatty acids (SCFAs) and bioethanol, during a 96 h cultivation of waste molasses (with direct air exposure) inoculated with Aspergillus oryzae using vermiculite as a carrier. Results showed that fungal-bacterial symbiotes were formed by enriching acidogens for the bioconversion of SCFAs, such as Enterococcus, Bacillus and Pseudomonas and bioethanol producers, like Klebsiella, Candida tropicalis, Aspergillus oryzae and Barnettozyma californica. The Aspergillus oryzae was found to play various diverse roles during the short-term cultivation process, secreting hydrolase (i.e. α-amylase) for the hydrolysis of waste molasses and contributing to the formation of fungal-bacterial symbiotes. Furthermore, the mechanisms of fungal-bacterial interaction related to simultaneous generation of SCFAs and bioethanol were investigated. Consequently, the cultivation liquid obtained could feasibly be used as a low-cost carbon source for enhancing total nitrogen (TN) removal in the process of low C/N ratio wastewater treatment.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Linjuan Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jian Cheng
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun, 130021, PR China
| | - Yanfang Wang
- North China Municipal Engineering Design & Research Institute CO., LTD, Tianjin, 300381, PR China
| | - Boyu Lu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yue Yang
- School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
2
|
Hou J, Cai Y, Wang J, Zan S, Li Z, Zhu T. Enhanced bioremediation of cyclohexaneacetic acid in offshore sediments with green synthetic iron oxide and Pseudoalteromonas sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38770-38780. [PMID: 36481851 DOI: 10.1007/s11356-022-24629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Naphthenic acids (NAs) have been found to exert serious threats on offshore sediment ecosystems and human health in recent years, which entails us the urgent need for NAs remediation. Bioremediation is considered an ideal method for sediment remediation due to ecological sustainability and economic feasibility. However, current bioremediation efficiency of offshore sediments suffers from relatively slow and there has never any attempts to bioremediate offshore sediment NAs contamination hitherto. In this study, the green synthetic iron oxides (gFeOx) based on Laminaria extracts was employed to enhance the biodegradation of NAs (Cyclohexylacetic acid, CHAA) in offshore sediments by Pseudoalteromonas sp. JSTW (an indigenous microorganism). The results showed that CHAA (20 mg·kg-1) in offshore sediments was removed almost 100% within 7 days at 30 mg·kg-1 gFeOx and 0.6 mg·kg-1 Strain JSTW. High-throughput sequencing results revealed that the structure and function of sediment microbial community were essentially restored to uncontaminated levels after bioremediation, highlighting the joint remediation approach is an efficient and eco-friendly method. Overall, this work has firstly provided insights into the application for NAs in situ bioremediation in offshore sediments.
Collapse
Affiliation(s)
- Jiaxiang Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China.
| | - Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| | - Tongxian Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, P.R.C., 116024, Dalian, People's Republic of China
| |
Collapse
|
3
|
Xu J, Xu L, Zong Y, Lin R, He Y, Xie L. Electrically-assisted anaerobic digestion under ammonia stress: Facilitating propionate oxidation and activating methanogenesis via direct interspecies electron transfer. BIORESOURCE TECHNOLOGY 2024; 393:130067. [PMID: 37989418 DOI: 10.1016/j.biortech.2023.130067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Electrical assistance is an effective strategy for promoting anaerobic digestion (AD) under ammonia stress. However, the underlying mechanism of electrical assistance affecting AD is insufficiently understood. Here, electrical assistance to AD under 5 g N/L ammonia stress was provided, by employing a 0.6 V voltage to the carbon electrodes. The results demonstrated remarkable enhancements in methane production (104.6 %) and the maximal methane production rate (207.7 %). The critical segment facilitated by electro-stimulation was the microbial metabolism of propionate-to-methane, rather than ammonia removal. Proteins in extracellular polymer substances were enriched, boosting microbial resilience to ammonia intrusion. Concurrently, the promoted humic/fulvic-substances amplified the microbial electron transfer capacity. Metagenomics analysis identified the upsurge of propionate oxidation at the anode (by e.g. unclassified_c__Bacteroidia), and the stimulations of acetoclastic and direct interspecies electron transfer-dependent CO2-reducing methanogenesis at the cathode (by e.g. Methanothrix). This study provides novel insights into the effect of electrical assistance on ammonia-stressed AD.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Shi J, Zhang J, Wang C, Liu Y, Li J. Research progress on the magnetite nanoparticles in the fields of water pollution control and detection. CHEMOSPHERE 2023:139220. [PMID: 37327826 DOI: 10.1016/j.chemosphere.2023.139220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (MNPs) have shown increasing application in the fields of water pollution control and detection due to their perfect combination of interfacial functionalities and physicochemical properties, such as surface interface adsorption, (synergistic) reduction, catalytic oxidation, and electrical chemistry. This review presents the research advances in the synthesis and modification methods of MNPs in recent years, systematically summarizes the performances of MNPs and their modified materials in terms of three technical systems, including single decontamination system, coupled reaction system, and electrochemical system. In addition, the progress of the key roles played by MNPs in adsorption, reduction, catalytic oxidative degradation and their coupling with zero-valent iron for the reduction of pollutants are described. Moreover, the application prospect of MNPs-based electrochemical working electrodes for detecting micro-pollutants in water were also discussed in detail. This review addresses that the construction of MNPs-based systems for water pollution control and detection should be adapted to the natures of the target pollutants in water. Finally, the following research directions of MNPs and their remaining challenges are outlooked. In general, this review will inspire MNPs researchers in different fields for effective control and detection of a variety of contaminants in water.
Collapse
Affiliation(s)
- Jianxuan Shi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Chengze Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yiwei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
5
|
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022; 10:2142. [PMID: 36363734 PMCID: PMC9695802 DOI: 10.3390/microorganisms10112142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.
Collapse
Affiliation(s)
- Ana R. Castro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Gilberto Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Andreia F. Salvador
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Ana J. Cavaleiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Chen Y, Ge J, Wang S, Su H. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140128. [PMID: 32758956 DOI: 10.1016/j.scitotenv.2020.140128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The long start-up time and facile biomass loss of aerobic granular sludge (AGS) impede its application for actual wastewater treatment. The present study investigates a novel assist-aggregation strategy based on Aspergillus tubingensis (AT) mycelium pellets to accelerate sludge granulation, and engineered Fe3O4 nanoparticles (NPs) were used to further enhance flocculent sludge (FS) aggregation. The AT mycelium pellets, modified by 0.5 g/L Fe3O4@SiO2-QC NPs (AT-V), had a more compact internal structure than the unmodified group (AT-I). The content of extracellular polymeric substances (EPS) and the zeta potential values were observed to increase from 39.86 mg/gVSS and -9.19 mv for AT-I to 69.64 mg/gVSS and 2.35 mv for AT-V, respectively. In optimized cultivation conditions, the aggregated sludge biomass of AT-V reached 1.54 g/g. An original AT-based AGS (AT-AGS) with a high biological activity (64.45 mgO2/gVSS·h as specific oxygen uptake rate) and enhanced velocity (58.22 m/h) was developed in only 9 days. The removal efficiencies of total nitrogen (TN) and total phosphorus (TP) of the AT-AGS were 12.24% and 16.29% higher than those of the inoculated FS under high feeding load. Additionally, the analysis of cyclic diguanylate (c-di-GMP) and con-focal microscope images implied that polysaccharide (PS) of EPS played an important role in maintaining the stability of the AT-AGS. Finally, the dominant functional species contributing to sludge aggregation and pollutants removal of the AT-AGS showed a larger richness and diversity than those of the inoculated FS. This study might provide a novel high-efficiency strategy for the fast formation of AGS.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Jiye Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|