1
|
Yuan H, Ajeje SB, Wen Y, Chio C, Hu Y, Dou S, Qin W, Zhang E, Wu Q, Sun F. Enhancement of the catalytic activity of thermostable Endo-1,4-β-glucanase B (TnCelB) from Thermotoga neapolitana by error-prone PCR. Int J Biol Macromol 2025; 308:142310. [PMID: 40122426 DOI: 10.1016/j.ijbiomac.2025.142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Endo-1,4-β-glucanase plays a crucial role in converting cellulose from lignocellulosic biomass into fermentable sugars for biofuel production. However, its commercial utility is hindered by poor catalytic performance under extreme conditions. This study enhanced the catalytic activity of the endo-1,4-β-glucanase (TnCelB) from Thermotoga neapolitana through error-prone PCR directed evolution. After screening >4000 colonies, three mutants with enhanced activity were obtained. Mutants TnCelBY88F, TnCelBA233T, and TnCelBW219R displayed 52.14 U/mg, 44.90 U/mg, and 34.70 U/mg of specific activity on CMC, respectively, which is 1.9, 1.7, and 1.3 times higher than that of the wild-type (26.74 U/mg), correspondingly. Likewise, their enzyme activity on barley β-D-glucan increased by 3.5, 2.2, and 1.8 times, respectively. Notably, TnCelBY88F maintained over 90 % activity after 60 mins at high temperatures (80-100 °C), indicating an exceptional thermostability. Protein docking revealed that TnCelBY88F had higher binding affinity, aligned with kinetic studies. TnCelB was capble of released more non-oxidized sugars from the hydrolysis of regenerated amorphous cellulose (RAC) by synergy with auxiliary action family 10 (AA10), which is potential in development of efficient lignocellulosic saccharification. This study can provide useful insights for the future engineering of other endoglucanases in the glycoside hydrolases family 12.
Collapse
Affiliation(s)
- Hang Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Samaila Boyi Ajeje
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yunzhe Wen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chonlong Chio
- Biotechnology Laboratory for Enzymes, Bioproducts, & Bioremediation, Department of Biology, Lakehead University, Ontario, Canada
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Shaohua Dou
- School of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Wensheng Qin
- Biotechnology Laboratory for Enzymes, Bioproducts, & Bioremediation, Department of Biology, Lakehead University, Ontario, Canada
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi, Academy of Agricultural Sciences, Nanning 530007, China.
| | - Qun Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wang Z, Tang H, Li Y, Yang B, Liang X, Gong H, Chen Y, Liu G, Yang Y. Characterization and synergistic activity of heterologously expressed microbial-derived endoglucanase and bifunctional cellulase on wheat straw. Int J Biol Macromol 2024; 282:137485. [PMID: 39532158 DOI: 10.1016/j.ijbiomac.2024.137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Cellulases are divided into endoglucanase, exoglucanase, and β-glucosidase based on their catalytic activity. Eight cellulases were recombinantly expressed in Escherichia coli BL21 to investigate their effects on the enzymatic hydrolysis of wheat straw. Among them, cellulase 2006 exhibited the highest endoglucanase activity (432.25 U/mg), while Bf1 displayed superior exoglucanase and β-glucosidase activities (577.46 and 1991.63 U/mg respectively). Bioinformatic and enzymatic analyses revealed that both cellulases displayed notable thermal and pH stability. The enzyme kinetics parameters revealed that Km values for cellulases 2006 and Bf1 were 15.98 and 14.19 mg/mL, respectively, with Vmax values of 20.78 and 16.38 μmol/min/mg. In a prokaryotic co-expression system, the mixed cellulase Bf2006 exhibited endoglucanase, exoglucanase, and β-glucosidase activities (130.78, 1406.36, and 1119.25 U/mg, respectively). The enzymatic hydrolysis assay revealed that these three cellulases acted on the cellulose macromolecules in wheat straw, increasing reducing sugar content and decreasing crystallinity. Endoglucanase 2006 acted on various organic compounds rich in phenols and aromatic heterocycles, while Bf1 primarily acted on compounds containing glucose units. Bf2006 significantly affected the content of lignin, neutral detergent fiber, acid detergent fiber, and the microstructure of wheat straw, with degradation products primarily consisting of disaccharides, oligosaccharides, polysaccharides, glycosides, and other carbohydrates. This study provides theoretical guidance for the production and application of mixed cellulase Bf2006, serving as a reference for the industrial use of different cellulase types.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haoran Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangguang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bohua Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuhui Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hanxuan Gong
- Microbial research institute of Liaoning Province, Chaoyang, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gongwei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
3
|
Leszczuk A, Kutyrieva-Nowak N, Nowak A, Nosalewicz A, Zdunek A. Low oxygen environment effect on the tomato cell wall composition during the fruit ripening process. BMC PLANT BIOLOGY 2024; 24:503. [PMID: 38840061 PMCID: PMC11155102 DOI: 10.1186/s12870-024-05226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Oxygen concentration is a key characteristic of the fruit storage environment determining shelf life and fruit quality. The aim of the work was to identify cell wall components that are related to the response to low oxygen conditions in fruit and to determine the effects of such conditions on the ripening process. Tomato (Solanum lycopersicum) fruits at different stages of the ripening process were stored in an anoxic and hypoxic environment, at 0% and 5% oxygen concentrations, respectively. We used comprehensive and comparative methods: from microscopic immunolabelling and estimation of enzymatic activities to detailed molecular approaches. Changes in the composition of extensin, arabinogalactan proteins, rhamnogalacturonan-I, low methyl-esterified homogalacturonan, and high methyl-esterified homogalacturonan were analysed. RESULTS In-depth molecular analyses showed that low oxygen stress affected the cell wall composition, i.e. changes in protein content, a significantly modified in situ distribution of low methyl-esterified homogalacturonan, appearance of callose deposits, disturbed native activities of β-1,3-glucanase, endo-β-1,4-glucanase, and guaiacol peroxidase (GPX), and disruptions in molecular parameters of single cell wall components. Taken together, the data obtained indicate that less significant changes were observed in fruit in the breaker stage than in the case of the red ripe stage. The first symptoms of changes were noted after 24 h, but only after 72 h, more crucial deviations were visible. The 5% oxygen concentration slows down the ripening process and 0% oxygen accelerates the changes taking place during ripening. CONCLUSIONS The observed molecular reset occurring in tomato cell walls in hypoxic and anoxic conditions seems to be a result of regulatory and protective mechanisms modulating ripening processes.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
| | | | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie- Skłodowska University, Akademicka 19, Lublin, 20-033, Poland
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
4
|
Liu X, Wang Y, Zhang R, Gao Y, Chen H, Dong S, Hu X. Insights into the transcriptomic mechanism and characterization of endoglucanases from Aspergillus terreus in cellulose degradation. Int J Biol Macromol 2024; 263:130340. [PMID: 38387642 DOI: 10.1016/j.ijbiomac.2024.130340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Filamentous fungi are the main industrial source of cellulases which are important in the process of converting cellulose to fermentable sugars. In this study, transcriptome analysis was conducted on Aspergillus terreus NEAU-7 cultivated using corn stover and glucose as carbon sources. Four putative endoglucanases (EG5A, EG7A, EG12A, and EG12C) from A. terreus NEAU-7 were efficiently expressed in Pichia pastoris. Among them, EG7A exhibited the highest enzyme activity (75.17 U/mg) with an optimal temperature of 40 °C and pH 5.0. EG5A and EG12A displayed specific activities of 19.92 U/mg and 14.62 U/mg, respectively, at 50 °C. EG12C showed acidophilic characteristics with an optimal pH of 3.0 and a specific activity of 12.21 U/mg at 40 °C. With CMC-Na as the substrate, the Km value of EG5A, EG7A, EG12A or, EG12C was, 11.08 ± 0.87 mg/mL, 6.82 ± 0.74 mg/mL, 7.26 ± 0.64 mg/mL, and 9.88 ± 0.86 mg/mL, with Vmax values of 1258.23 ± 51.62 μmol∙min-1∙mg-1, 842.65 ± 41.53 μmol∙min-1∙mg-1, 499.38 ± 20.42 μmol∙min-1∙mg-1, and 681.41 ± 30.08 μmol∙min-1∙mg-1, respectively. The co-treatment of EG7A with the commercial cellulase increased the yield of reducing sugar by 155.77 % (filter paper) and 130.49 % (corn stover). Molecular docking assay showed the interaction energy of EG7A with cellotetraose at -10.50 kcal/mol, surpassing EG12A (-10.43 kcal/mol), EG12C (-10.28 kcal/mol), and EG5A (-9.00 kcal/mol). Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA) values revealed that the presence of cellotetraose stabilized the molecular dynamics simulation of the cellotetraose-protein complex over a 100 ns time scale. This study provides valuable insights for developing recombinant enzymes and biomass degradation technologies.
Collapse
Affiliation(s)
- Xin Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanbo Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | | | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Waghmare P, Xu N, Waghmare P, Liu G, Qu Y, Li X, Zhao J. Production and Characterization of Cellulose Nanocrystals from Eucalyptus Dissolving Pulp Using Endoglucanases from Myceliophthora thermophila. Int J Mol Sci 2023; 24:10676. [PMID: 37445866 DOI: 10.3390/ijms241310676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Endoglucanase (EG) is a key enzyme during enzymatic preparation of cellulose nanocrystals (CNCs). Myceliophthora thermophila is a thermophilic fungus that has thermal properties and a high secretion of endoglucanases (EGs), and could serve as potential sources of EGs for the preparation of CNCs. In this work, four different GH families (GH5, GH7, GH12, and GH45) of EGs from M. thermophila were expressed and purified, and their enzymatic characteristics and feasibility of application in CNC preparation were investigated. It was shown that the MtEG5A from M. thermophila has good potential in the enzymatic preparation of CNCs using eucalyptus dissolving pulp as feedstock. It was also observed that there was a synergistic effect between the MtEG5A and other MtEGs in the preparation of CNCs, which improved the yield and properties of CNCs obtained by enzymatic hydrolysis. This study provides a reference for understanding the enzymatic characteristics of different families of EGs from M. thermophile and their potential application in nanocellulose production.
Collapse
Affiliation(s)
- Pratima Waghmare
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nuo Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Pankajkumar Waghmare
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Kumar Saini J, Himanshu, Hemansi, Kaur A, Mathur A. Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review. BIORESOURCE TECHNOLOGY 2022; 360:127517. [PMID: 35772718 DOI: 10.1016/j.biortech.2022.127517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Global interest in lignocellulosic biorefineries has increased in the recent past due to technological advancements in sustainable and cost-effective production of numerous commodity and speciality chemicals and fuels from renewable lignocellulosic biomass (LCB). As a result, the market value of biorefinery products has also increased over the time, with an estimated worth of USD 867.7 billion by 2025. However, biorefinery operations, especially enzymatic hydrolysis, suffer from many challenges that limits the cost-effectiveness of conversion of LCB. Therefore, it is essential to understand and address these challenges in future biorefineries. The paper focuses on recent trends and challenges in enzymatic hydrolysis of LCB during lignocellulosic biorefinery operation for greener synthesis of energy, fuels, chemicals and other high-value products. Insights into the gaps in knowledge and technological challenges have also been addressed together with focus on future research needs and perspectives of enzymatic hydrolysis of LCB for biorefinery applications.
Collapse
Affiliation(s)
- Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India.
| | - Himanshu
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Hemansi
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Research & Development Office, Ashoka University, Sonipat, Haryana PIN- 131029, India
| | - Amanjot Kaur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Aayush Mathur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| |
Collapse
|
7
|
Mohammadi S, Tarrahimofrad H, Arjmand S, Zamani J, Haghbeen K, Aminzadeh S. Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Rep 2022; 12:10301. [PMID: 35717508 PMCID: PMC9206686 DOI: 10.1038/s41598-022-14651-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Shima Mohammadi
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
8
|
Heterologous expression and characterization of two novel glucanases derived from sheep rumen microbiota. World J Microbiol Biotechnol 2022; 38:87. [DOI: 10.1007/s11274-022-03269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
|
9
|
Batista BN, Matias RR, Oliveira RLE, Albuquerque PM. Hydrolytic enzyme production from açai palm (Euterpe precatoria) endophytic fungi and characterization of the amylolytic and cellulolytic extracts. World J Microbiol Biotechnol 2022; 38:30. [PMID: 34989888 DOI: 10.1007/s11274-021-03217-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023]
Abstract
Enzymes are biocatalysts that are widely used in different industries and generate billions of dollars annually. With the advancement of biotechnology, new enzymatic sources are being evaluated, especially microbial ones, in order to find efficient producers. Endophytic fungi are promising sources of biomolecules; however, Amazonian species are still poorly studied as to their enzymatic production potential. In this sense, the production of hydrolases (amylases, lipases, cellulases and pectinases) was evaluated in endophytic fungi isolated from the leaves, roots and stems of açai palms (Euterpe precatoria). A qualitative test was carried out to detect the enzymatic synthesis in each isolate, and the most promising ones were cultivated using submerged fermentation. The enzyme extracts were quantified to determine those with the greatest activity. Cellulolytic and amylolytic extracts showed the highest enzymatic activities and were partially characterized. Among 50 isolates, 82.9% produced pectinase, 58.5% produced cellulase, 31.7% produced amylase, and 12.2% produced lipase. Penicillium sp. L3 was the best producer of amylase and Colletotrichum sp. S1 was the best producer of cellulase in liquid medium cultivation. The amylolytic extract showed the highest enzymatic activity at pH 8.0 and 45 °C, and the cellulolytic extract at pH 5.0 and 35 °C. The cellulase and amylase produced by the endophytes had their molecular masses estimated between 38 and 76 kDa. These results indicate that endophytic fungi from the açai palm can be used as a new source of hydrolytic enzymes, which can be applied in numerous biotechnological processes.
Collapse
Affiliation(s)
- Bárbara Nunes Batista
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69050-020, Brazil.,Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil
| | - Rosiane Rodrigues Matias
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69050-020, Brazil.,Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil
| | - Rafael Lopes E Oliveira
- Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil
| | - Patrícia Melchionna Albuquerque
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69050-020, Brazil. .,Laboratório de Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil. .,Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, 69065-001, Brazil.
| |
Collapse
|
10
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
11
|
Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 2021; 6:110-119. [PMID: 33997361 PMCID: PMC8113645 DOI: 10.1016/j.synbio.2021.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris (a.k.a. Komagataella phaffii) is one of the most commonly used hosts for industrial production of recombinant proteins. As a non-conventional yeast, P. pastoris has unique biological characteristics and its expression system has been well developed. With the advances in synthetic biology, more efforts have been devoted to developing P. pastoris into a chassis for the production of various high-value compounds, such as natural products. This review begins with the introduction of synthetic biology tools for the engineering of P. pastoris, including vectors, promoters, and terminators for heterologous gene expression as well as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated System (CRISPR/Cas) for genome editing. This review is then followed by examples of the production of value-added natural products in metabolically engineered P. pastoris strains. Finally, challenges and outlooks in developing P. pastoris as a synthetic biology chassis are prospected.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|