1
|
Chhetri G, Jeon JM, Kim HJ, Choi TR, Yang YH, Yoon JJ. Characterization of Streptomyces species with poly(3-hydroxybutyrate) degradation capabilities isolated from rice field soil. Int J Biol Macromol 2025; 307:141795. [PMID: 40054796 DOI: 10.1016/j.ijbiomac.2025.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025]
Abstract
The shift towards sustainable alternatives to petroleum-based polymers has become essential for addressing environmental challenges. Among these alternatives, bio-plastics such as poly(3-hydroxybutyrate) (PHB) have gained considerable attention due to their biodegradability into water and carbon dioxide through microbial activity. PHB is one of the most widely commercialized bio-plastics. However, its excessive accumulation in the environment due to insufficient degradation remains a significant ecological concern. This study focused on isolating and characterizing PHB-degrading bacteria from soil samples collected from rice fields. Screening led to the identification of five PHB-degrading bacterial strains belonging to different genera. Among these, Streptomyces sp. AG7 and Streptomyces sp. RG41 were identified as the most effective PHB degraders. Their PHB-degrading abilities were evaluated in shake-flask cultures using PHB films as substrates. After 20 days of incubation at 37 °C, Streptomyces sp. AG7 and Streptomyces sp. RG41 achieved PHB degradation rates of approximately 74.7 % and 68.5 %, respectively. Additionally, both strains demonstrated the ability to produce indole-3-acetic acid (IAA), a key phytohormone that promotes plant growth, and exhibited phosphate-solubilizing activity, which enhances nutrient availability. Further analysis using scanning electron microscopy (SEM) revealed structural changes in the PHB films, while gel permeation chromatography (GPC) confirmed significant alterations in the polymer's molecular properties. These findings highlight the potential of utilizing soil-derived Streptomyces species for sustainable PHB waste management, in order to promote plant growth, improve soil fertility through phosphate solubilization, and contribute to agricultural sustainability.
Collapse
Affiliation(s)
- Geeta Chhetri
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jong-Min Jeon
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Hyun-Joong Kim
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Tae-Rim Choi
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong-Jun Yoon
- Green Circulation R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
| |
Collapse
|
2
|
Arai T, Aikawa S, Sudesh K, Arai W, Mohammad Rawi NF, Leh CPP, Mohamad Kassim MH, Tay GS, Kosugi A. Efficient production of polyhydroxybutyrate using lignocellulosic biomass derived from oil palm trunks by the inhibitor-tolerant strain Burkholderia ambifaria E5-3. World J Microbiol Biotechnol 2024; 40:242. [PMID: 38869634 DOI: 10.1007/s11274-024-04041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
Collapse
Affiliation(s)
- Takamitsu Arai
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan.
| | - Shimpei Aikawa
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Wichittra Arai
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
- The National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8560, Japan
| | | | - Cheu Peng Peng Leh
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | | | - Guan Seng Tay
- School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Akihiko Kosugi
- Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| |
Collapse
|
3
|
Wang J, Huang J, Liu S. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Biotechnol Adv 2024; 72:108340. [PMID: 38537879 DOI: 10.1016/j.biotechadv.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
4
|
Blunt W, Shah P, Vasquez V, Ye M, Doyle C, Liu Y, Saeidlou S, Monteil-Rivera F. Biosynthesis and properties of polyhydroxyalkanoates synthesized from mixed C 5 and C 6 sugars obtained from hardwood hydrolysis. N Biotechnol 2023; 77:40-49. [PMID: 37390901 DOI: 10.1016/j.nbt.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Glucose and xylose are fermentable sugars readily available from lignocellulosic biomass, and are a sustainable carbon substrate supporting industrial biotechnology. Three strains were assessed in this work - Paraburkholderia sacchari, Hydrogenophaga pseudoflava, and Bacillus megaterium - for their ability to uptake both C5 and C6 sugars contained in a hardwood hydrolysate produced via a thermomechanical pulping-based process with concomitant production of poly(3-hydroxyalkanoate) (PHA) biopolymers. In batch conditions, B. megaterium showed poor growth after 12 h, minimal uptake of xylose throughout the cultivation, and accumulated a maximum of only 25 % of the dry biomass as PHA. The other strains simultaneously utilized both sugars, although glucose uptake was faster than xylose. From hardwood hydrolysate, P. sacchari accumulated 57 % of its biomass as PHA within 24 h, whereas H. pseudoflava achieved an intracellular PHA content of 84 % by 72 h. The molecular weight of the PHA synthesized by H. pseudoflava (520.2 kDa) was higher than that of P. sacchari (265.5 kDa). When the medium was supplemented with propionic acid, the latter was rapidly consumed by both strains and incorporated as 3-hydroxyvalerate subunits into the polymer, demonstrating the potential for production of polymers with improved properties and value. H. pseudoflava incorporated 3-hydroxyvalerate subunits with at least a 3-fold higher yield, and produced polymers with higher 3-hydroxyvalerate content than P. sacchari. Overall, this work has shown that H. pseudoflava can be an excellent candidate for bioconversion of lignocellulosic sugars to PHA polymers or copolymers as part of an integrated biorefinery.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2; Department of Biosystems Engineering, University of Manitoba (Fort Garry Campus), 75 Chancellors Circle, Winnipeg, MB, Canada R3T 5V6.
| | - Purnank Shah
- FPInnovations, 570 Boulevard Saint-Jean, Pointe-Claire, Québec, Canada H9R 3J9
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2
| | - Sajjad Saeidlou
- Automotive and Surface Transportation Research Centre, National Research Council Canada, 75 de Mortagne Boulevard, Boucherville, Québec, Canada J4B 6Y4
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Québec, Canada H4P 2R2.
| |
Collapse
|
5
|
Blunt W, Blanchard C, Doyle C, Vasquez V, Ye M, Adewale P, Liu Y, Morley K, Monteil-Rivera F. The potential of Burkholderia thailandensis E264 for co-valorization of C 5 and C 6 sugars into multiple value-added bio-products. BIORESOURCE TECHNOLOGY 2023; 387:129595. [PMID: 37541546 DOI: 10.1016/j.biortech.2023.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Catherine Blanchard
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Peter Adewale
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
6
|
Production and optimization of polyhydroxyalkanoates (PHAs) from paraburkholderia sp. PFN 29 under submerged fermentation. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Arias-Roblero M, Mora-Villalobos V, Velazquez-Carrillo C. Evaluation of Fed-Batch Fermentation for Production of Polyhydroxybutyrate With a Banana Pulp Juice Substrate From an Agro Industrial By-Product. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pollution resulting from the persistence of plastics in the environment has driven the development of substitutes for these materials through fermentation processes using agro-industrial wastes. Polyhydroxybutyrate (PHB) is a rapidly biodegradable material with chemical and mechanical properties comparable to those of some petroleum-derived plastics. PHB accumulates intracellularly as an energy reserve in a wide variety of microorganisms exposed to nutritionally imbalanced media. The objective of this study was to evaluate the use of a banana waste product as a carbon source for PHB production. PHB was extracted by acid methanolysis and detected by gas chromatography-mass spectrometry. Eleven bacterial strains with potential for PHB production were evaluated by in vitro fermentation in a culture broth containing fructose as the carbon source and limited nitrogen. A 22 central composite rotational design was applied to optimize the concentrations of banana juice and ammonium chloride needed to maximize the PHB-producing biomass concentration. The process was then carried out in a 3 L fed-batch fermentation system that included an initial stage of biomass growth. Banana juice was used as the carbon source and fructose pulses were added to maintain the test sugar concentrations of 30, 40, and 50 g/L. The control strain, Cupriavidus necator (ATCC 17699), produced 2.816 g/L of PHB, while productivity of the most promising isolate, C. necator (CR-12), was 0.495 g/L. Maximum biomass production was obtained using 5% banana juice and 2 g/L ammonium chloride. PHB production was not detected in fed-batch fermentations supplemented with 30 or 40 g/L of fructose, while the mean PHB production in fermentations with 50 g/L of fructose was 1.3 g/L.
Collapse
|