1
|
Föller S, Regett N, Lataster L, Radziwill G, Takors R. Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2024; 108:530. [PMID: 39636393 PMCID: PMC11621146 DOI: 10.1007/s00253-024-13363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches. The knowhow of ideal light exposure to enable the optimum use of related approaches is missing so far. Consequently, the current study set out to find optimum conditions for IgG1 producing Chinese hamster ovary (CHO) cells which were exposed to blue LED light. Growth characteristics, cell-specific productivity using enzyme-linked immunosorbent assay, as well as cell cycle distribution using flow cytometry were analyzed. Whereas too harsh light exposure causes detrimental growth effects that could be compensated with antioxidants, a surprising boost of cell-specific productivity by 57% occurred at optimum high light doses. The increase coincided with an increased number of cells in the G1 phase of the cell cycle after 72 h of illumination. The results present a promising new approach to boost biopharmaceutical productivity of mammalian cells simply by proper light exposure without any further optogenetic engineering. KEY POINTS: • Blue LED light hinders growth in CHO DP-12 cells • Antioxidants protect to a certain degree from blue light effects • Illumination with blue LED light raises cell-specific productivity.
Collapse
Affiliation(s)
- Stefanie Föller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Niklas Regett
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Levin Lataster
- Institute of Biology II, University of Freiburg, 79098, Freiburg, Germany
| | - Gerald Radziwill
- Institute of Biology II, University of Freiburg, 79098, Freiburg, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
2
|
Singh R, Fatima E, Thakur L, Singh S, Ratan C, Kumar N. Advancements in CHO metabolomics: techniques, current state and evolving methodologies. Front Bioeng Biotechnol 2024; 12:1347138. [PMID: 38600943 PMCID: PMC11004234 DOI: 10.3389/fbioe.2024.1347138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Investigating the metabolic behaviour of different cellular phenotypes, i.e., good/bad grower and/or producer, in production culture is important to identify the key metabolite(s)/pathway(s) that regulate cell growth and/or recombinant protein production to improve the overall yield. Currently, LC-MS, GC-MS and NMR are the most used and advanced technologies for investigating the metabolome. Although contributed significantly in the domain, each technique has its own biasness towards specific metabolites or class of metabolites due to various reasons including variability in the concept of working, sample preparation, metabolite-extraction methods, metabolite identification tools, and databases. As a result, the application of appropriate analytical technique(s) is very critical. Purpose and scope: This review provides a state-of-the-art technological insights and overview of metabolic mechanisms involved in regulation of cell growth and/or recombinant protein production for improving yield from CHO cultures. Summary and conclusion: In this review, the advancements in CHO metabolomics over the last 10 years are traced based on a bibliometric analysis of previous publications and discussed. With the technical advancement in the domain of LC-MS, GC-MS and NMR, metabolites of glycolytic and nucleotide biosynthesis pathway (glucose, fructose, pyruvate and phenylalanine, threonine, tryptophan, arginine, valine, asparagine, and serine, etc.) were observed to be upregulated in exponential-phase thereby potentially associated with cell growth regulation, whereas metabolites/intermediates of TCA, oxidative phosphorylation (aspartate, glutamate, succinate, malate, fumarate and citrate), intracellular NAD+/NADH ratio, and glutathione metabolic pathways were observed to be upregulated in stationary-phase and hence potentially associated with increased cell-specific productivity in CHO bioprocess. Moreover, each of technique has its own bias towards metabolite identification, indicating their complementarity, along with a number of critical gaps in the CHO metabolomics pipeline and hence first time discussed here to identify their potential remedies. This knowledge may help in future study designs to improve the metabolomic coverage facilitating identification of the metabolites/pathways which might get missed otherwise and explore the full potential of metabolomics for improving the CHO bioprocess performances.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Eram Fatima
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Chandra Ratan
- Translational Health Science and Technology Institute, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
3
|
Ulmer A, Veit S, Erdemann F, Freund A, Loesch M, Teleki A, Zeidan AA, Takors R. A Two-Compartment Fermentation System to Quantify Strain-Specific Interactions in Microbial Co-Cultures. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010103. [PMID: 36671675 PMCID: PMC9854596 DOI: 10.3390/bioengineering10010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilus-L. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus' growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies.
Collapse
Affiliation(s)
- Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Veit
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maren Loesch
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ahmad A. Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
4
|
Coulet M, Kepp O, Kroemer G, Basmaciogullari S. Metabolic Profiling of CHO Cells during the Production of Biotherapeutics. Cells 2022; 11:cells11121929. [PMID: 35741058 PMCID: PMC9221972 DOI: 10.3390/cells11121929] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
As indicated by an ever-increasing number of FDA approvals, biotherapeutics constitute powerful tools for the treatment of various diseases, with monoclonal antibodies (mAbs) accounting for more than 50% of newly approved drugs between 2014 and 2018 (Walsh, 2018). The pharmaceutical industry has made great progress in developing reliable and efficient bioproduction processes to meet the demand for recombinant mAbs. Mammalian cell lines are preferred for the production of functional, complex recombinant proteins including mAbs, with Chinese hamster ovary (CHO) cells being used in most instances. Despite significant advances in cell growth control for biologics manufacturing, cellular responses to environmental changes need to be understood in order to further improve productivity. Metabolomics offers a promising approach for developing suitable strategies to unlock the full potential of cellular production. This review summarizes key findings on catabolism and anabolism for each phase of cell growth (exponential growth, the stationary phase and decline) with a focus on the principal metabolic pathways (glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle) and the families of biomolecules that impact these circuities (nucleotides, amino acids, lipids and energy-rich metabolites).
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Correspondence: (G.K.); (S.B.)
| | | |
Collapse
|
5
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|