1
|
Venturelli G, Villa F, Petraretti M, Guagliano G, Levi M, Petrini P. Bacterial Cellulose for Scalable and Sustainable Bio-Gels in the Circular Economy. Gels 2025; 11:262. [PMID: 40277698 PMCID: PMC12026781 DOI: 10.3390/gels11040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Microbial-derived materials are emerging for applications in biomedicine, sensors, food, cosmetics, construction, and fashion. They offer considerable structural properties and process reproducibility compared to other bio-based materials. However, challenges related to efficient and sustainable large-scale production of microbial-derived materials must be addressed to exploit their potential fully. This review analyzes the synergistic contribution of circular, sustainable, and biotechnological approaches to enhance bacterial cellulose (BC) production and fine-tune its physico-chemical properties. BC was chosen as an ideal example due to its mechanical strength and chemical stability, making it promising for industrial applications. The review discusses upcycling strategies that utilize waste for microbial fermentation, simultaneously boosting BC production. Additionally, biotechnology techniques are identified as key to enhance BC yield and tailor its physico-chemical properties. Among the different areas where cellulose-based materials are employed, BC shows promise for mitigating the environmental impact of the garment industry. The review emphasizes that integrating circular and biotechnological approaches could significantly improve large-scale production and enhance the tunability of BC properties. Additionally, these approaches may simultaneously provide environmental benefits, depending on their future progresses. Future advancements should prioritize circular fermentation and biotechnological techniques to expand the potential of BC for sustainable industrial applications.
Collapse
Affiliation(s)
- Giovanni Venturelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (G.V.); (G.G.); (M.L.)
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (F.V.); (M.P.)
| | - Mariagioia Petraretti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (F.V.); (M.P.)
| | - Giuseppe Guagliano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (G.V.); (G.G.); (M.L.)
| | - Marinella Levi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (G.V.); (G.G.); (M.L.)
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (G.V.); (G.G.); (M.L.)
| |
Collapse
|
2
|
Nie W, He Z, Gu M, Zhou T, Xu J, Zhong J, Yang Y, Zhong W. Improved bacterial cellulose production by Acetobacter oryzoeni MGC-N8819 in tobacco waste extract coupled with nicotine removal by Pseudomonas sp. JY-Q/5∆. Int J Biol Macromol 2025; 293:139336. [PMID: 39740714 DOI: 10.1016/j.ijbiomac.2024.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed. In this study, BC production by Acetobacter oryzoeni MGC-N8819 was carried out in four dilutions (5 %, 10 %, 15 %, and 20 %) of TWE. 15 % TWE without nicotine removal resulting in a 3.27 g/L BC production. Considering the inhibitor effect of nicotine on BC synthesis. Pseudomonas sp. JY-Q/5∆, an efficient nicotine-degrading mutant strain without the ability of glucose consumption, was statically co-cultured with MGCN8819, and the BC production was increased to 4.61 g/L after 7 days of cultivation. To eliminate the limitation of insufficient oxygen supply, BC films were harvested on day 7 and cultured for an additional 5 days resulting in a 6.00 g/L final BC production. Remarkably, the co-culture of MGC-N8819 and JY-Q/5∆ improved BC properties in terms of fiber diameter (28 nm), mechanical properties (tensile strength to 67 MPa and elongation at break to 23 %), and thermal stability (the maximum decomposition temperature was 600 °C). This study suggests a valuable strategy for improving BC production using agricultural waste.
Collapse
Affiliation(s)
- Wenxia Nie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Menjie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Tong Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China
| | - Jian Xu
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China
| | - Jiajun Zhong
- International Division, Hangzhou High School, Hangzhou 310021, Zhejiang Province, PR China
| | - Yang Yang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, Zhejiang Province, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Thongsuk K, Tippayasak U, Sukkasem T, Naloka K, Puangsin B, Chonudomkul D, Yakushi T, Theeragool G. Production of probiotic bacterial cellulose with improved yield, mechanical properties, and antibacterial activity from cost-effective coculture and mixed-culture fermentation in coconut water by Komagataeibacter xylinus MSKU 12. Int J Biol Macromol 2025; 291:139083. [PMID: 39716716 DOI: 10.1016/j.ijbiomac.2024.139083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
We successfully enhanced bacterial cellulose (BC) production in low-cost coconut water (CW) at 37 °C by low-nutrient adaptation of Komagataeibacter xylinus MSKU 12. In this study, the BC yield was significantly increased by simultaneous coculture fermentation of MSKU 12 with Saccharomyces bayanus in Hestrin-Schramm (HS) and CW media. Coculture fermentation at 30 °C produced BC yields of 13.44 and 12.13 g/L dry weight in HS containing 0.5 % acetic acid, 3 % sucrose, and 0.5 % ammonium sulfate (HS0.5A3S0.5N) after 9 days of incubation and in CW containing 0.5 % acetic acid, 3 % sucrose, and 0.5 % ammonium sulfate (CW0.5A3S0.5N) after 12 days of incubation. Moreover, at 37 °C, relatively high amounts of BC (8.64 and 7.89 g/L dry weight) were obtained from coculture in HS0.5A3S0.5N and CW0.5A3S0.5N, respectively, after 12 days of cultivation. Coculture fermentation not only increased the BC yield but also altered the properties of BC, resulting in finer microfibrils, higher mechanical strength, and stronger antibacterial activities. Both fresh and freeze-dried probiotic BC from the simultaneous mixed-culture fermentation of MSKU 12, S. bayanus, and Pediococcus pentosaceus DMKU 14-7 exhibited strong inhibitory effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results provided insights into the development of biopreservatives against foodborne pathogens.
Collapse
Affiliation(s)
- Karnpitcha Thongsuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Uraiwan Tippayasak
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Tanawan Sukkasem
- Biology Program, Faculty of Science and Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand.
| | - Kallayanee Naloka
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Buapan Puangsin
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand.
| | - Duenrut Chonudomkul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Toshiharu Yakushi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | - Gunjana Theeragool
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Amorim J, Liao K, Mandal A, Costa AFDS, Roumeli E, Sarubbo LA. Impact of Carbon Source on Bacterial Cellulose Network Architecture and Prolonged Lidocaine Release. Polymers (Basel) 2024; 16:3021. [PMID: 39518230 PMCID: PMC11548197 DOI: 10.3390/polym16213021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The biosynthesis of bacterial cellulose (BC) is significantly influenced by the type of carbon source available in the growth medium, which in turn dictates the material's final properties. This study systematically investigates the effects of five carbon sources-raffinose (C18H32O16), sucrose (C12H22O11), glucose (C6H12O6), arabinose (C5H10O5), and glycerol (C3H8O3)-on BC production by Komagataeibacter hansenii. The varying molecular weights and structural characteristics of these carbon sources provide a framework for examining their influence on BC yield, fiber morphology, and network properties. BC production was monitored through daily measurements of optical density and pH levels in the fermentation media from day 1 to day 14, providing valuable insights into bacterial growth kinetics and cellulose synthesis rates. Scanning electron microscopy (SEM) was used to elucidate fibril diameter and pore size distribution. Wide-angle X-ray scattering (WAXS) provided a detailed assessment of crystallinity. Selected BC pellicles were further processed via freeze-drying to produce a foam-like material that maximally preserves the natural three-dimensional structure of BC, facilitating the incorporation and release of lidocaine hydrochloride (5%), a widely used local anesthetic. The lidocaine-loaded BC foams exhibited a sustained and controlled release profile over 14 days in simulated body fluid, highlighting the importance of the role of carbon source selection in shaping the BC network architecture and its impact on drug release profile. These results highlight the versatility and sustainability of BC as a platform for wound healing and drug delivery applications. The tunable properties of BC networks provide opportunities for optimizing therapeutic delivery and improving wound care outcomes, positioning BC as an effective material for enhanced wound management strategies.
Collapse
Affiliation(s)
- Julia Amorim
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n—Dois Irmãos, Recife 52171-900, PE, Brazil;
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Kuotian Liao
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Aban Mandal
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, PE, Brazil;
- Centro de Design Comunicação, Campus Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), Av Marielle Franco, s/n—Nova Caruaru, Caruaru 50670-900, PE, Brazil
| | - Eleftheria Roumeli
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, PE, Brazil;
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| |
Collapse
|
5
|
Bai R, Chen J, Hao Y, Dong Y, Ren K, Gao T, Zhang S, Xu F, Zhao H. ARTP mutagenesis of Aureobasidium pullulans RM1603 for high pullulan production and transcriptome analysis of mutants. Arch Microbiol 2024; 206:375. [PMID: 39141138 DOI: 10.1007/s00203-024-04094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/β-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.
Collapse
Affiliation(s)
- Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaqiao Hao
- Anshan Health School, Anshan, 114013, China
| | - Yiheng Dong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Keyao Ren
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Wünsche J, Schmid J. Acetobacteraceae as exopolysaccharide producers: Current state of knowledge and further perspectives. Front Bioeng Biotechnol 2023; 11:1166618. [PMID: 37064223 PMCID: PMC10097950 DOI: 10.3389/fbioe.2023.1166618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Exopolysaccharides formation against harmful biotic and abiotic environmental influences is common among bacteria. By using renewable resources as a substrate, exopolysaccharides represent a sustainable alternative to fossil-based polymers as rheological modifiers in food, cosmetics, and pharmaceutical applications. The family of Acetobacteraceae, traditionally associated with fermented food products, has demonstrated their ability to produce a wide range of structural and functional different polymers with interesting physicochemical properties. Several strains are well known for their production of homopolysaccharides of high industrial importance, such as levan and bacterial cellulose. Moreover, some Acetobacteraceae are able to form acetan-like heteropolysaccharides with a high structural resemblance to xanthan. This mini review summarizes the current knowledge and recent trends in both homo- and heteropolysaccharide production by Acetobacteraceae.
Collapse
|
7
|
Biocatalysts in Synthesis of Microbial Polysaccharides: Properties and Development Trends. Catalysts 2022. [DOI: 10.3390/catal12111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Polysaccharides synthesized by microorganisms (bacterial cellulose, dextran, pullulan, xanthan, etc.) have a set of valuable properties, such as being antioxidants, detoxifying, structuring, being biodegradable, etc., which makes them suitable for a variety of applications. Biocatalysts are the key substances used in producing such polysaccharides; therefore, modern research is focused on the composition and properties of biocatalysts. Biocatalysts determine the possible range of renewable raw materials which can be used as substrates for such synthesis, as well as the biochemistry of the process and the rate of molecular transformations. New biocatalysts are being developed for participating in a widening range of stages of raw material processing. The functioning of biocatalysts can be optimized using the following main approaches of synthetic biology: the use of recombinant biocatalysts, the creation of artificial consortia, the combination of nano- and microbiocatalysts, and their immobilization. New biocatalysts can help expand the variety of the polysaccharides’ useful properties. This review presents recent results and achievements in this field of biocatalysis.
Collapse
|
8
|
Zhantlessova S, Savitskaya I, Kistaubayeva A, Ignatova L, Talipova A, Pogrebnjak A, Digel I. Advanced "Green" Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy. Polymers (Basel) 2022; 14:3224. [PMID: 35956737 PMCID: PMC9371109 DOI: 10.3390/polym14153224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.
Collapse
Affiliation(s)
- Sirina Zhantlessova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Irina Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aida Kistaubayeva
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Ludmila Ignatova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Aizhan Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Alexander Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, Ryms’koho-Korsakova St. 2, 40000 Sumy, Ukraine
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mußmann-Straße 1, 52428 Jülich, Germany
| |
Collapse
|