1
|
Sang Y, Jiang Q, Guan F, Wang N, Etim IIN, Fan K, Duan J. WS 2/WO 3 modified carbon anode as efficient electrocatalysts for enhancing electricity generation and pollution removal. Front Microbiol 2025; 16:1589441. [PMID: 40356645 PMCID: PMC12066612 DOI: 10.3389/fmicb.2025.1589441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Microbial fuel cells (MFCs) have emerged as a new energy technology to solve severe energy and environmental issues. As a bridge connecting the internal and external circuits and a habitat for microorganisms, the anode is a key component influencing the performance output of MFCs. Recently, tungsten trioxide (WO3) and tungsten disulfide (WS2) can be used for the MFC setup. In this study, a direct hydrothermal synthesis method was employed to prepare WS2/WO3 nanomaterials. It was subsequently integrated with carbon paper (CP) to develop WS2/WO3-CP and WO3-CP anodes for MFCs. Contact angle tests showed that the hydrophilicity of the WS2/WO3-CP electrode was significantly improved. In electrochemical tests, the MFCs with WS2/WO3-CP anode exhibited lower charge transfer resistance and higher electron transfer efficiency than the original ones. The MFC with the WS2/WO3-CP anode had a maximum power density reaching 2.32 W·m-2, which was 1.34 and 3.09 times higher than that of the WO3-CP and bare CP anodes, respectively. Meanwhile, this MFC with the WS2/WO3-CP anode showed higher removal rates of chemical oxygen demand and SO4 2- than the WO3-CP and CP anodes. The modified WS2/WO3 nanomaterials are promising materials that can be adopted for MFCs industrial use.
Collapse
Affiliation(s)
- Yugang Sang
- Department of Materials Science and Engineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Quantong Jiang
- Department of Materials Science and Engineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning, China
| | - Fang Guan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning, China
| | - Nan Wang
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning, China
| | - Ini-Ibehe Nabuk Etim
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning, China
| | - Keliang Fan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Bioengineering, Qilu University of Technology, Jinan, China
| | - Jizhou Duan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
2
|
Sonbhadra S, Pandey LM. Bioelectrochemical Remediation and Valorization of Oily Wastewaters: A Review. JOURNAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE 2025; 29. [DOI: 10.1061/jhtrbp.hzeng-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 05/15/2025]
Affiliation(s)
- Smrity Sonbhadra
- Bio-Interface and Environmental Engineering Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M. Pandey
- Bio-Interface and Environmental Engineering Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India (corresponding author). ORCID:
| |
Collapse
|
3
|
Askari MB, Tourchi Moghadam MT, Salarizadeh P. Three-component NiO/Fe 3O 4/rGO nanostructure as an electrode material towards supercapacitor and alcohol electrooxidation. Heliyon 2024; 10:e39399. [PMID: 39502255 PMCID: PMC11535972 DOI: 10.1016/j.heliyon.2024.e39399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
A nanocomposite made of nickel oxide and iron oxide (NiO/Fe3O4) and its hybrid with reduced graphene oxide (rGO) as a conductive substrate with a highly functional surface (NiO/Fe3O4/rGO) was synthesized using a simple hydrothermal approach. This study addresses the challenge of developing efficient materials for energy storage and alcohol fuel cells. After confirming the synthesis through structural analysis, the potential of these nanocomposites as supercapacitor electrodes and catalysts for methanol and ethanol oxidation in alcohol fuel cells were evaluated. The synergy of combining the two metal oxides and adding rGO to the composite structure led to excellent electrocatalytic activity in alcohol oxidation. For the modified NiO/Fe3O4/rGO electrode in the methanol oxidation reaction (MOR), a current density of 450 mA/cm2 at 0.67 V and excellent catalyst stability of 98.7 % over 20 h in chronoamperometric analysis were observed. In the ethanol oxidation reaction (EOR), an oxidative current of 235 mA/cm2 at a peak potential of 0.76 V was seen, with catalyst stability of 96.4 % after 20 h. As a supercapacitor electrode, the NiO/Fe3O4 composite demonstrated a specific capacitance of 946 F/g, while NiO/Fe3O4/rGO showed 1155 F/g. The stability of these electrodes after 10000 GCD cycles was 83.6 % and 90.6 %, respectively. These findings suggest that the proposed structures are cost-effective and reliable alternatives for energy storage and production, suitable for alcohol fuel cells and supercapacitors.
Collapse
Affiliation(s)
- Mohammad Bagher Askari
- Department of Semiconductor, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Taghi Tourchi Moghadam
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Centre, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-223, Gdansk, Poland
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan, 7718897111, Iran
| |
Collapse
|
4
|
Fang Z, Hu J, Xu MY, Li SW, Li C, Zhou X, Wei J. A biocompatible electrode/exoelectrogens interface augments bidirectional electron transfer and bioelectrochemical reactions. Bioelectrochemistry 2024; 158:108723. [PMID: 38733720 DOI: 10.1016/j.bioelechem.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.
Collapse
Affiliation(s)
- Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Hu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng-Yuan Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Wei Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Jing Wei
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
5
|
Naaz T, Sharma K, Roy A, Singh Mathuriya A, Yadav V, Pandit S, Hasan M, Anand J, Joshi S, Sharma R. Simultaneous microbial electrochemical degradation of methyl orange and bioelectricity generation using coculture as anode inoculum in a microbial fuel cell. Food Chem Toxicol 2023; 181:114058. [PMID: 37788762 DOI: 10.1016/j.fct.2023.114058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
Methyl Orange, an azo dye, is a widely used colouring agent in the textile industry. The study aimed to investigate the efficiency of bioremediating bacteria in degrading methyl orange. Escherichia coli (E. coli), a Methyl Orange-degrading bacterium, was isolated from cow dung and its biochemical properties were analysed using 16S rRNA sequencing, and MALDI-TOF MS. A pre-cultured strain of Pseudomonas aeruginosa was co-cultured with E. coli in 1:1 ration in a microbial fuel cell (MFC) for simultaneous electricity production and methyl orange degradation. The degradation was combined with biological wastewater treatment at varying Methyl Orange concentrations, and the electrochemical characteristics were analysed through polarisation study, cyclic voltammetry, and electrochemical impedance spectroscopy. The impact of parameters such as anolyte pH, dye concentration, incubation time, and substrate concentrations were also studied. This study confirmed E. coli as an effective methyl orange degrading bacteria with a maximum % degradation efficiency of 98% after 48 h incubation at pH 7.0. The co-culture of isolated microorganisms at 250 mg/L of methyl orange concentration showed a maximum power density 6.5 W/m3. Further, anode modification with Fe2O3 nanoparticles on the anode surface enhanced power production to 11.2 W/m3, an increase of 4.7 W/m3.
Collapse
Affiliation(s)
- Tahseena Naaz
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India
| | - Kalpana Sharma
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh, New Delhi, 110003, India
| | - Vineeta Yadav
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, 201306, India.
| | - Mudassir Hasan
- Department of Chemical Engineering King Khalid University, Saudi Arabia
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sanket Joshi
- Oil & Gas Research Centre, Sultan Qaboos University, Muscat, Oman
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Yang FA, Hou YN, Cao C, Ren N, Wang AJ, Guo J, Liu Z, Huang C. Mechanistic insights into the response of electroactive biofilms to Cd 2+ shock: bacterial viability and electron transfer behavior at the cellular and community levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132183. [PMID: 37531766 DOI: 10.1016/j.jhazmat.2023.132183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
7
|
Harada T, Hasegawa Y, Jomori S, Inohana M, Uno Y, Kouzuma A, Watanabe K. Improved electrochemical properties of graphite electrodes incubated with iron powders in rice-paddy fields boost power outputs from microbial fuel cells. Biosci Biotechnol Biochem 2023; 87:1229-1235. [PMID: 37475694 DOI: 10.1093/bbb/zbad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Studies have shown that the supplementation of anode-surrounding soil with zero-valent iron (ZVI) boosts power outputs from rice paddy-field microbial fuel cells (RP-MFCs). In order to understand mechanisms by which ZVI boosts outputs from RP-MFCs, the present study operated RP-MFCs with and without ZVI, and compositions of anode-associated bacteria and electrochemical properties of graphite anodes were analyzed after 3-month operation. Metabarcoding using 16S rRNA gene fragments showed that bacterial compositions did not largely differ among these RP-MFCs. Cyclic voltammetry showed improved electrochemical properties of anodes recovered from ZVI-supplemented RP-MFCs, and this was attributed to the adhesion of iron-oxide films onto graphite surfaces. Bioelectrochemical devices equipped with graphite anodes recovered from ZVI-supplemented RP-MFCs generated higher currents than those with fresh graphite anodes. These results suggest that ZVI is oxidized to iron oxides in paddy-field soil and adheres onto graphite anodes, resulting in the boost of power outputs from RP-MFCs.
Collapse
Affiliation(s)
- Tomoka Harada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuki Hasegawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shinji Jomori
- Advanced Material Engineering Division, Toyota Motor Corporation, Susono, Shizuoka, Japan
| | - Masachika Inohana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuki Uno
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
8
|
Li Z, Qiu Y, Yu Y, Ji Y, Li H, Liao M, Li D, Liang D, Liu G, Feng Y. Long-term operation of cathode-enhanced ecological floating bed coupled with microbial electrochemical system for urban surface water remediation: From lab-scale research to engineering application. WATER RESEARCH 2023; 237:119967. [PMID: 37104934 DOI: 10.1016/j.watres.2023.119967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Ecological floating bed coupled with microbial electrochemical system (ECOFB-MES) has great application potential in micro-polluted water remediation yet limited by low electron transfer efficiency on the microbial/electrode interface. Here, an innovative cathode-enhanced EOCFB-MES was constructed with nano-Fe3O4 modification and applied for in-situ remediation both at lab scale (6 L, 62-day operation) and demonstration scale (2300 m2, 1-year operation). The cathode-enhanced ECOFB-MES exhibited superior removal in TOC (81.43 ± 2.05%), TN (85.12% ± 1.46%) and TP (59.80 ± 2.27%), much better than those of original ECOFB-MES and anode-enhanced ECOFB-MES in the laboratory test. Meanwhile, cathode-enhanced ECOFB-MES boosted current output by 33% than that of original ECOFB-MES, which made a great contribution to the improvement of ectopic electronic compensation for pollutant decontamination. Notably, cathode-enhanced ECOFB-MES presented high efficiency, stability and durability in the demonstration test, and fulfilled the average concentration of COD (9.5 ± 2.81 mg/L), TN (1.00 ± 0.21 mg/L) and TP (0.10 ± 0.04 mg/L) of effluent water to meet the Grade III (GB 3838-2002) with stable operation stage. Based on the KOSIM calculation, the removal loads of cathode-enhanced ECOFB-MES in carbon, nitrogen and phosphorus could reach 37.14 g COD/(d·m2), 2.62 g TN/(d·m2) and 0.55 g TP/(d·m2), respectively. According to the analysis of microbial communities and functional genes, the cathode modified by Fe3O4 made a sensible enrichment in electroactive bacteria (EAB) and nitrogen-converting bacteria (NCB) as well as facilitated the functional genes expression in electron transfer and nitrogen metabolism, resulting in the synergistic removal of carbon in sediment and nitrite in water. This study provided a brandnew technique reference for in-situ remediation of surface water in practical application.
Collapse
Affiliation(s)
- Zeng Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Ye Qiu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yanling Yu
- School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yunlong Ji
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Henan Li
- North China Municipal Engineering Design & Research Institute Co., Ltd., No. 99 Qixiangtai Road, Hexi District, Tianjin 300000, PR China
| | - Menglong Liao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Da Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
9
|
Amanze C, Anaman R, Wu X, Alhassan SI, Yang K, Fosua BA, Yunhui T, Yu R, Wu X, Shen L, Dolgor E, Zeng W. Heterotrophic anodic denitrification coupled with cathodic metals recovery from on-site smelting wastewater with a bioelectrochemical system inoculated with mixed Castellaniella species. WATER RESEARCH 2023; 231:119655. [PMID: 36706471 DOI: 10.1016/j.watres.2023.119655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- College of Engineering, Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Erdenechimeg Dolgor
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, 14200, Mongolia
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
10
|
Nosek D, Mikołajczyk T, Cydzik-Kwiatkowska A. Anode Modification with Fe 2O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2580. [PMID: 36767954 PMCID: PMC9916399 DOI: 10.3390/ijerph20032580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how anode electrode modification with iron affects the microbiome and electricity generation of microbial fuel cells (MFCs) fed with municipal wastewater. Doses of 0.0 (control), 0.05, 0.1, 0.2, and 0.4 g Fe2O3 per the total anode electrode area were tested. Fe2O3 doses from 0.05 to 0.2 g improved electricity generation; with a dose of 0.10 g Fe2O3, the cell power was highest (1.39 mW/m2), and the internal resistance was lowest (184.9 Ω). Although acetate was the main source of organics in the municipal wastewater, propionic and valeric acids predominated in the outflows from all MFCs. In addition, Fe-modification stimulated the growth of the extracellular polymer producers Zoogloea sp. and Acidovorax sp., which favored biofilm formation. Electrogenic Geobacter sp. had the highest percent abundance in the anode of the control MFC, which generated the least electricity. However, with 0.05 and 0.10 g Fe2O3 doses, Pseudomonas sp., Oscillochloris sp., and Rhizobium sp. predominated in the anode microbiomes, and with 0.2 and 0.4 g doses, the electrogens Dechloromonas sp. and Desulfobacter sp. predominated. This is the first study to holistically examine how different amounts of Fe on the anode affect electricity generation, the microbiome, and metabolic products in the outflow of MFCs fed with synthetic municipal wastewater.
Collapse
Affiliation(s)
- Dawid Nosek
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| | - Tomasz Mikołajczyk
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, plac Łódzki 4, 10-721 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| |
Collapse
|