1
|
Sala K, Pengthaisong S, Beagbandee C, Ketudat Cairns JR. Expression and Characterization of a Rice β-Xylosidase with Xylooligosaccharide Hydrolysis and Transglycosylation Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40249644 DOI: 10.1021/acs.jafc.4c13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Plant β-xylosidases are less well characterized for hemicellulose degradation than their microbial counterparts. To address this, a broadly expressed rice (Oryza sativa) glycoside hydrolase family 3 (GH3) β-xylosidase designated OsXyl1 was expressed in heterologous Pichia pastoris. OsXyl1 showed maximal enzyme activity at pH 4.0 and 60 °C. It was relatively stable at 30-50 °C. It hydrolyzed 4NP-β-d-xylopyranoside (4NPXyl) and β-1,4-linked xylooligosaccharides (XOS) with degrees of polymerization (DP) of 2-6. OsXyl1 hydrolylsis of 4NPXyl was much more rapid and specific than that of other 4NP glycosides with an apparent kcat/Km value of 19.0 mM-1 s-1. OsXyl1 had similar specificity toward XOS having DP values of 2-5 with apparent kcat/Km values of 2.6-4.2 mM-1 s-1. OsXyl1 was also efficient at transglycosylating short alcohols with 4NPXyl and XOS xylosyl donors. Therefore, rice OsXyl1 β-xylosidase may function in recycling of xylans in plant cell wall recycling and it may be applied for transglycosylation of alcohol acceptors.
Collapse
Affiliation(s)
- Kadsada Sala
- School of Chemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Chamaipon Beagbandee
- School of Chemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
2
|
Yue H, Ma X, Sun S, Hu H, Wu J, Xu T, Huang D, Luo Y, Wu J, Huang T. Diversity and saline-alkali resistance of Coleoptera endosymbiont bacteria in arid and semi-arid climate. Microbiol Spectr 2024; 12:e0023224. [PMID: 38912811 PMCID: PMC11302287 DOI: 10.1128/spectrum.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/21/2024] [Indexed: 06/25/2024] Open
Abstract
Soil salinization usually occurs in arid and semi-arid climate areas from 37 to 50 degrees north latitude and 73 to 123 degrees east longitude. These regions are inhabited by a large number of Coleopteran insects, which play an important role in the ecological cycle. However, little is known about the endosymbiotic microbial taxa and their biological characteristics in these insects. A study of endosymbiotic microorganisms of Coleoptera from Xinjiang, a typical arid and inland saline area, revealed that endosymbiont bacteria with salinity tolerance are common among the endosymbionts of Coleoptera. Functional prediction of the microbiota analysis indicated a higher abundance of inorganic ion transporters and metabolism in these endosymbiont strains. Screening was conducted on the tolerable 11% NaCl levels of Brevibacterium casei G20 (PRJNA754761), and differential metabolite and proteins were performed. The differential metabolites of the strain during the exponential and plateau phases were found to include benzene compounds, organic acids, and their derivatives. These results suggest that the endosymbiotic microorganisms of Coleoptera in this environment have adaptive evolution to extreme environments, and this group of microorganisms is also one of the important resources for mining saline and alkaline-tolerant chassis microorganisms and high-robustness enzymes. IMPORTANCE Coleoptera insects, as the first largest order of insect class, have the characteristics of a wide variety and wide distribution. The arid and semi-arid climate makes it more adaptable. By studying the endosymbiont bacteria of Coleoptera insects, we can systematically understand the adaptability of endosymbiont bacteria to host and special environment. Through the analysis of endosymbiont bacteria of Coleoptera insects in different saline-alkali areas in arid and semi-arid regions of Xinjiang, it was found that bacteria in different host samples were resistant to saline-alkali stress. These results suggest that bacteria and their hosts co-evolved in response to this climate. Therefore, this study is of great significance for understanding the endosymbiont bacteria of Coleoptera insects and obtaining extremophile resources (Saline-alkali-resistant chassis strains with modification potential for the production of bulk chemicals and highly robust industrial enzymes).
Collapse
Affiliation(s)
- Haitao Yue
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
- School of Future Technology, Xinjiang University, Urumqi, China
| | - Xiaoyun Ma
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shuwen Sun
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Hongying Hu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jieyi Wu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tong Xu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Danyang Huang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yiqian Luo
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Junqiang Wu
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tingting Huang
- Laboratory of Synthetic Biology, Department of Bioengineering, School of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Zhang C, Gao W, Song Z, Dong M, Lin H, Zhu G, Lian M, Xiao Y, Lu F, Wang F, Liu Y. Computation-Aided Phylogeny-Oriented Engineering of β-Xylosidase: Modification of "Blades" to Enhance Stability and Activity for the Bioconversion of Hemicellulose to Produce Xylose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2678-2688. [PMID: 38273455 DOI: 10.1021/acs.jafc.3c08518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hemicellulose is a highly abundant, ubiquitous, and renewable natural polysaccharide, widely present in agricultural and forestry residues. The enzymatic hydrolysis of hemicellulose has generally been accomplished using β-xylosidases, but concomitantly increasing the stability and activity of these enzymes remains challenging. Here, we rationally engineered a β-xylosidase from Bacillus clausii to enhance its stability by computation-aided design combining ancestral sequence reconstruction and structural analysis. The resulting combinatorial mutant rXYLOM25I/S51L/S79E exhibited highly improved robustness, with a 6.9-fold increase of the half-life at 60 °C, while also exhibiting improved pH stability, catalytic efficiency, and hydrolytic activity. Structural analysis demonstrated that additional interactions among the propeller blades in the catalytic module resulted in a much more compact protein structure and induced the rearrangement of the opposing catalytic pocket to mediate the observed improvement of activity. Our work provides a robust biocatalyst for the hydrolysis of agricultural waste to produce various high-value-added chemicals and biofuels.
Collapse
Affiliation(s)
- Chenchen Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjing Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhaolin Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengjun Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huixin Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Gang Zhu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mengka Lian
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Dong CD, Tsai ML, Nargotra P, Kour B, Chen CW, Sun PP, Sharma V. Bioprocess development for the production of xylooligosaccharide prebiotics from agro-industrial lignocellulosic waste. Heliyon 2023; 9:e18316. [PMID: 37519746 PMCID: PMC10372396 DOI: 10.1016/j.heliyon.2023.e18316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- School of Biotechnology, University of Jammu, India
| |
Collapse
|