1
|
Soares GM, Balbo SL, Bronczek GA, Vettorazzi JF, Marmentini C, Zangerolamo L, Velloso LA, Carneiro EM. Vertical sleeve gastrectomy improves glucose-insulin homeostasis by enhancing β-cell function and survival via FGF15/19. Am J Physiol Endocrinol Metab 2024; 326:E134-E147. [PMID: 38117265 DOI: 10.1152/ajpendo.00218.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, β-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E β-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E β-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.
Collapse
Affiliation(s)
- Gabriela M Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L Balbo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Latin-American Institute of Life and Nature Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguacu, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Zangerolamo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
3
|
Liu T, Zou X, Ruze R, Xu Q. Bariatric Surgery: Targeting pancreatic β cells to treat type II diabetes. Front Endocrinol (Lausanne) 2023; 14:1031610. [PMID: 36875493 PMCID: PMC9975540 DOI: 10.3389/fendo.2023.1031610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic β-cell function impairment and insulin resistance are central to the development of obesity-related type 2 diabetes mellitus (T2DM). Bariatric surgery (BS) is a practical treatment approach to treat morbid obesity and achieve lasting T2DM remission. Traditionally, sustained postoperative glycemic control was considered a direct result of decreased nutrient intake and weight loss. However, mounting evidence in recent years implicated a weight-independent mechanism that involves pancreatic islet reconstruction and improved β-cell function. In this article, we summarize the role of β-cell in the pathogenesis of T2DM, review recent research progress focusing on the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on pancreatic β-cell pathophysiology, and finally discuss therapeutics that have the potential to assist in the treatment effect of surgery and prevent T2D relapse.
Collapse
Affiliation(s)
- Tiantong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Abstract
The rodent pancreas is the prevalent model system for preclinical diabetes research. However, due to the compound endocrine-exocrine organization of the gland, with the endocrine islets of Langerhans scattered by the thousands throughout the much greater exocrine parenchyma, stereological assessments of endocrine cell mass, commonly insulin-producing ß-cells, are exceedingly challenging. In recent years, optical mesoscopic imaging techniques such as optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) have seen dramatic developments, enabling 3D visualization of fluorescently labeled cells in mm- to cm-sized tissues with μm resolution. Here we present a protocol for 3D visualization and "absolute" quantitative assessments of, for example, islet mass throughout the volume of rodent pancreata with maintained spatial context.
Collapse
|
5
|
Hahn M, Nord C, van Krieken PP, Berggren PO, Ilegems E, Cheddad A, Ahlgren U. Quantitative 3D OPT and LSFM datasets of pancreata from mice with streptozotocin-induced diabetes. Sci Data 2022; 9:558. [PMID: 36088402 PMCID: PMC9464185 DOI: 10.1038/s41597-022-01546-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse models for streptozotocin (STZ) induced diabetes probably represent the most widely used systems for preclinical diabetes research, owing to the compound’s toxic effect on pancreatic β-cells. However, a comprehensive view of pancreatic β-cell mass distribution subject to STZ administration is lacking. Previous assessments have largely relied on the extrapolation of stereological sections, which provide limited 3D-spatial and quantitative information. This data descriptor presents multiple ex vivo tomographic optical image datasets of the full β-cell mass distribution in mice subject to single high and multiple low doses of STZ administration, and in glycaemia recovered mice. The data further include information about structural features, such as individual islet β-cell volumes, spatial coordinates, and shape as well as signal intensities for both insulin and GLUT2. Together, they provide the most comprehensive anatomical record of the effects of STZ administration on the islet of Langerhans in mice. As such, this data descriptor may serve as reference material to facilitate the planning, use and (re)interpretation of this widely used disease model. Measurement(s) | Fluorescent antibody staining of Insulin and GLUT2 in whole mouse pancreata | Technology Type(s) | Optical Projection Tomography • Light Sheet Fluorescence Microscopy (Ultramicroscope) | Factor Type(s) | mouse genotype • Streptozotocin dosage | Sample Characteristic - Organism | Mus musculus |
Collapse
|
6
|
Oppenländer L, Palit S, Stemmer K, Greisle T, Sterr M, Salinno C, Bastidas-Ponce A, Feuchtinger A, Böttcher A, Ansarullah, Theis FJ, Lickert H. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab 2021; 54:101330. [PMID: 34500108 PMCID: PMC8487975 DOI: 10.1016/j.molmet.2021.101330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The effectiveness of bariatric surgery in restoring β-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote β-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of β-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of β-cell area and proliferation complement our findings from scRNA-seq. RESULTS We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the β-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast β-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded β-cell area by means of redifferentiation and by creating a proliferation competent β-cell state. CONCLUSION Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of β-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.
Collapse
Affiliation(s)
- Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Subarna Palit
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology and Tissue Analytics, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748, Garching, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
7
|
Pérez-Arana GM, Fernández-Vivero J, Camacho-Ramírez A, Díaz Gómez A, Bancalero de los Reyes J, Ribelles-García A, Almorza-Gomar D, Carrasco-Molinillo C, Prada-Oliveira JA. Sleeve Gastrectomy and Roux-En-Y Gastric Bypass. Two Sculptors of the Pancreatic Islet. J Clin Med 2021; 10:jcm10184217. [PMID: 34575329 PMCID: PMC8465472 DOI: 10.3390/jcm10184217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Several surgical procedures are performed for the treatment of obesity. A main outcome of these procedures is the improvement of type 2 diabetes mellitus. Trying to explain this, gastrointestinal hormone levels and their effect on organs involved in carbohydrate metabolism, such as liver, gut, muscle or fat, have been studied intensively after bariatric surgery. These effects on endocrine-cell populations in the pancreas have been less well studied. We gathered the existing data on these pancreatic-cell populations after the two most common types of bariatric surgery, the sleeve gastrectomy (SG) and the roux-en-Y gastric bypass (RYGB), with the aim to explain the pathophysiological mechanisms underlying these surgeries and to improve their outcome.
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, 11003 Cadiz, Spain;
- Asociación Gaditana de Apoyo al Investigador (AGAI), 11012 Cadiz, Spain
- Correspondence: (G.-M.P.-A.); (J.-A.P.-O.)
| | - José Fernández-Vivero
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
| | - Alonso Camacho-Ramírez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
- Asociación Gaditana de Apoyo al Investigador (AGAI), 11012 Cadiz, Spain
- Surgery Unit, Puerta del Mar Universitary Hospital, University of Cadiz, 11003 Cadiz, Spain
| | | | | | - Antonio Ribelles-García
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, 11003 Cadiz, Spain;
- Operative Statistic and Research Department, University of Cadiz, 11003 Cadiz, Spain
| | - Carmen Carrasco-Molinillo
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain; (J.F.-V.); (A.C.-R.); (A.R.-G.); (C.C.-M.)
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, 11003 Cadiz, Spain;
- Asociación Gaditana de Apoyo al Investigador (AGAI), 11012 Cadiz, Spain
- Correspondence: (G.-M.P.-A.); (J.-A.P.-O.)
| |
Collapse
|
8
|
Hahn M, Nord C, Eriksson M, Morini F, Alanentalo T, Korsgren O, Ahlgren U. 3D imaging of human organs with micrometer resolution - applied to the endocrine pancreas. Commun Biol 2021; 4:1063. [PMID: 34508173 PMCID: PMC8433206 DOI: 10.1038/s42003-021-02589-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
The possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging approaches have experienced a formidable revolution, they have remained limited due to current incapacities in obtaining specific labelling within large tissue volumes. We present a simple approach enabling reconstruction of antibody labeled cells within entire human organs with preserved organ context. We demonstrate the utility of the approach by providing volumetric data and 3D distribution of hundreds of thousands of islets of Langerhans within the human pancreas. By assessments of pancreata from non-diabetic and type 2 diabetic individuals, we display previously unrecognized features of the human islet mass distribution and pathology. As such, this method may contribute not only in unraveling new information of the pancreatic anatomy/pathophysiology, but it may be translated to essentially any antibody marker or organ system.
Collapse
Affiliation(s)
- Max Hahn
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Nord
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Federico Morini
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Tomas Alanentalo
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
9
|
Alanentalo T, Hahn M, Willekens SMA, Ahlgren U. Mesoscopic Optical Imaging of the Pancreas-Revisiting Pancreatic Anatomy and Pathophysiology. Front Endocrinol (Lausanne) 2021; 12:633063. [PMID: 33746904 PMCID: PMC7969990 DOI: 10.3389/fendo.2021.633063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/24/2022] Open
Abstract
The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly challenging organ to analyze, quantitatively and spatially. Both in rodents and humans, estimates of the pancreatic cellular composition, including beta-cell mass, has been largely relying on the extrapolation of 2D stereological data originating from limited sample volumes. Alternatively, they have been obtained by low resolution non-invasive imaging techniques providing little detail regarding the anatomical organization of the pancreas and its cellular and/or molecular make up. In this mini-review, the state of the art and the future potential of currently existing and emerging high-resolution optical imaging techniques working in the mm-cm range with μm resolution, here referred to as mesoscopic imaging approaches, will be discussed regarding their contribution toward a better understanding of pancreatic anatomy both in normal conditions and in the diabetic setting. In particular, optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) imaging of the pancreas and their associated tissue processing and computational analysis protocols will be discussed in the light of their current capabilities and future potential to obtain more detailed 3D-spatial, quantitative, and molecular information of the pancreas.
Collapse
|
10
|
Topologically selective islet vulnerability and self-sustained downregulation of markers for β-cell maturity in streptozotocin-induced diabetes. Commun Biol 2020; 3:541. [PMID: 32999405 PMCID: PMC7527346 DOI: 10.1038/s42003-020-01243-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Mouse models of Streptozotocin (STZ) induced diabetes represent the most widely used preclinical diabetes research systems. We applied state of the art optical imaging schemes, spanning from single islet resolution to the whole organ, providing a first longitudinal, 3D-spatial and quantitative account of β-cell mass (BCM) dynamics and islet longevity in STZ-treated mice. We demonstrate that STZ-induced β-cell destruction predominantly affects large islets in the pancreatic core. Further, we show that hyperglycemic STZ-treated mice still harbor a large pool of remaining β-cells but display pancreas-wide downregulation of glucose transporter type 2 (GLUT2). Islet gene expression studies confirmed this downregulation and revealed impaired β-cell maturity. Reversing hyperglycemia by islet transplantation partially restored the expression of markers for islet function, but not BCM. Jointly our results indicate that STZ-induced hyperglycemia results from β-cell dysfunction rather than β-cell ablation and that hyperglycemia in itself sustains a negative feedback loop restraining islet function recovery. Hahn, van Krieken et al. provide a quantitative account of β-cell mass dynamics and islet longevity in mice treated with Streptozotocin (STZ). They find that STZ-induced hyperglycemia primarily results from β-cell dysfunction rather than its ablation. This study provides insights into how the most widely used preclinical diabetes model works.
Collapse
|
11
|
Camacho-Ramírez A, Almorza-Gomar D, Díaz-Gómez A, Mateo-Gavira I, Macias-Rodriguez M, Pérez-Arana GM, Prada-Oliveira JA. The histomorphometric parameters of endocrine pancreas after bariatric surgery in healthy animal models. Tissue Cell 2019; 57:78-83. [PMID: 30947967 DOI: 10.1016/j.tice.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The aim of this study is to describe in depth how different bariatric surgeries affect to the cellularity of β-cells in the pancreatic islet. There are much data regarding the possible physiological mechanisms involved in resolution of type 2 diabetes after bariatric surgery. But these data usually are controversial. We reported a direct influence of bariatric surgical technique on endocrine pancreas cellular turnover. Some surgeries increase proliferation processes of the β-cells. Our objective is to report the histomorphometric mechanism that these techniques stimulate over the cellularity of pancreatic islet. METHOD To this purpose, we used adult male Wistar rats to undergo the different techniques. We developed three surgical techniques (Sleeve gastrectomy and Y-Roux Gastric bypass as the most usual bariatric techniques, and a purely malabsorptive technique); moreover two control groups were performed (Sham and fasting controls). RESULTS We completed a sequence of morphometric studies to conclude the behaviour of endocrine pancreatic β-cell islet, correlating several histomorphometry parameters. CONCLUSION Our purpose was to show a comprehensive interpretation to the consequences that bariatric surgeries had on the pancreatic islets cellularity. Moreover, we included the main tests to report the cellularity in histological samples.
Collapse
Affiliation(s)
| | | | - Alfredo Díaz-Gómez
- Instituto para Investigación en Biomedicina (INIBICA). University of Cádiz, Avda. Ana de Viya, 21. Cádiz, 11009
| | - Isabel Mateo-Gavira
- Endocrinology and Nutrition Service, Universitary Hospital Puerta del Mar, Cádiz, 11010
| | | | - Gonzalo M Pérez-Arana
- Instituto para Investigación en Biomedicina (INIBICA). University of Cádiz, Avda. Ana de Viya, 21. Cádiz, 11009
| | - J Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Cádiz, Plaza Fragela s/n, Cádiz, 11003.
| |
Collapse
|
12
|
Grong E, Nord C, Arbo IB, Eriksson M, Kulseng BE, Ahlgren U, Mårvik R. The effect of hypergastrinemia following sleeve gastrectomy and pantoprazole on type 2 diabetes mellitus and beta-cell mass in Goto-Kakizaki rats. J Endocrinol Invest 2018; 41:691-701. [PMID: 29168078 DOI: 10.1007/s40618-017-0793-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/12/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE Metabolic surgery alters the secretion of gastrointestinal hormones that influence glycemic control. Elevated gastrin has been suggested to benefit patients with type 2 diabetes and has been reported following sleeve gastrectomy in rats. The present study compares the effect of hypergastrinemia following sleeve gastrectomy with proton-pump inhibitor therapy on glycemic control and beta-cell mass in lean, diabetic animals. METHODS Thirty-three diabetic Goto-Kakizaki rats were randomized into pantoprazole + sham operation (GK-PPI), sleeve gastrectomy (GK-SG) and vehicle + sham operation (GK-V). Body weight, glucose parameters, HbA1c, glucagon-like peptide 1, gastrin, insulin and lipids were evaluated for eighteen postoperative weeks. Total beta-cell mass was quantified by optical projection tomography. RESULTS After surgery, body weight development was equal among groups (P g = 0.75). Fasting and stimulated gastrin increased for GK-PPI and GK-SG vs. GK-V (p < 0.05 for all). Fasting blood glucose was decreased for GK-PPI and GK-SG vs. GK-V (p < 0.05 and p = 0.052). HbA1c was lower for GK-SG vs. GK-V at 6 weeks and for GK-PPI vs. GK-V at twelve- and eighteen weeks postoperative (p < 0.05 for all); a borderline difference was observed for GK-SG vs. GK-V at 18 weeks (p = 0.054). Total- and LDL cholesterol was elevated for GK-PPI compared to the other two groups (p < 0.05 for all). Beta-cell mass did not differ among groups (p = 0.35). CONCLUSIONS Hypergastrinemia following sleeve gastrectomy and pantoprazole has a similar, modest effect on glycemic control in Goto-Kakizaki rats but does not enhance beta-cell mass after 18 weeks. Hypergastrinemia in the setting of T2DM might be of clinical relevance.
Collapse
Affiliation(s)
- E Grong
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Post Box 8905, 7491, Trondheim, Norway.
- Department of Gastrointestinal Surgery and Norwegian National Advisory Unit on Advanced Laparoscopic Surgery (NSALK), St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - C Nord
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - I B Arbo
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Post Box 8905, 7491, Trondheim, Norway
| | - M Eriksson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - B E Kulseng
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Post Box 8905, 7491, Trondheim, Norway
- Centre for Obesity Research and Innovation (ObeCe), St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - U Ahlgren
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - R Mårvik
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Post Box 8905, 7491, Trondheim, Norway
- Centre for Obesity Research and Innovation (ObeCe), St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Gastrointestinal Surgery and Norwegian National Advisory Unit on Advanced Laparoscopic Surgery (NSALK), St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
13
|
Li F, Sheng C, Song K, Zhang M, Bu L, Yang P, Sheng H, Li H, Qu S. Preventative Sleeve Gastrectomy Contributes to Maintaining β Cell Function in db/db Diabetic Mouse. Obes Surg 2017; 26:2402-10. [PMID: 26916639 DOI: 10.1007/s11695-016-2112-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND We used the leptin-receptor (LPR)-deficient mice model (db/db), a spontaneous model of type 2 diabetes with early β cell dysfunction to determine whether a preventative sleeve gastrectomy (SG) is an effective technique for the treatment of β cell failure. METHODS The animals operated at an early stage of life, prior to metabolic alterations, were used to study the molecular mechanisms of β cell function improvement after a SG. RESULTS β cell function was significantly increased, and islet morphology remained normal, after the SG. The expression of Glut2, Pdx1, MafA, and Nkx6.1 were significantly increased after the SG. The expression of GLP-1 in the colonic tissue, as well as GLP-1R and PKC in islets, was significantly increased after the SG. CONCLUSIONS β cell dysfunction can be ameliorated by a preventative SG for db/db mice. Maintaining the GLP-1 pathway and key transcript factor (TF) activation contributes to the improvement of β cell function after a preventative SG.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China.
| | - Chunjun Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Kexiu Song
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Peng Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Hui Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Hong Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, ShangHai, 200072, China.
| |
Collapse
|
14
|
Li F, Peng Y, Zhang M, Yang P, Qu S. Sleeve gastrectomy activates the GLP-1 pathway in pancreatic β cells and promotes GLP-1-expressing cells differentiation in the intestinal tract. Mol Cell Endocrinol 2016; 436:33-40. [PMID: 27436347 DOI: 10.1016/j.mce.2016.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/25/2016] [Accepted: 07/16/2016] [Indexed: 01/19/2023]
Abstract
Db/db mouse was used to study the underlying mechanisms by which Sleeve gastrectomy (SG) improves β-cell function. We investigated β-cell function, plasma active GLP-1 levels, the GLP-1R pathway in β cells and L cell differentiation. After SG, β-cell function was significantly increased, and the GLP-1R-PKCζ-PDX-1 pathway was active in β cells. Plasma active GLP-1 levels, as well as the number of L cells in the jejunum, were significantly increased after SG. The expression of early transcription factors (TF), including Ngn3, FoxA1 and Nkx2.2, was not compromised by chronic hyperglycemia. In contrast, the expression of the downstream TF PAX6 was affected, and this down-regulation could be reversed by SG. So, SG can maintain L cell differentiation, increase plasma active GLP-1 level, sustain the activation of the GLP-1R pathway and improve β cell function in Db/db mice. Our results show that SG can overall improve the function of the entero-insular axis.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China.
| | - Ying Peng
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases and Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai, 200025, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China
| | - Peng Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, 301 Middle Yan-Chang Road, Shanghai, 200072, China.
| |
Collapse
|
15
|
Parween S, Kostromina E, Nord C, Eriksson M, Lindström P, Ahlgren U. Intra-islet lesions and lobular variations in β-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep 2016; 6:34885. [PMID: 27713548 PMCID: PMC5054357 DOI: 10.1038/srep34885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
The leptin deficient ob/ob mouse is a widely used model for studies on initial aspects of metabolic disturbances leading to type 2 diabetes, including insulin resistance and obesity. Although it is generally accepted that ob/ob mice display a dramatic increase in β-cell mass to compensate for increased insulin demand, the spatial and quantitative dynamics of β-cell mass distribution in this model has not been assessed by modern optical 3D imaging techniques. We applied optical projection tomography and ultramicroscopy imaging to extract information about individual islet β-cell volumes throughout the volume of ob/ob pancreas between 4 and 52 weeks of age. Our data show that cystic lesions constitute a significant volume of the hyperplastic ob/ob islets. We propose that these lesions are formed by a mechanism involving extravasation of red blood cells/plasma due to increased islet vessel blood flow and vessel instability. Further, our data indicate that the primary lobular compartments of the ob/ob pancreas have different potentials for expanding their β-cell population. Unawareness of the characteristics of β-cell expansion in ob/ob mice presented in this report may significantly influence ex vivo and in vivo assessments of this model in studies of β-cell adaptation and function.
Collapse
Affiliation(s)
- Saba Parween
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Elena Kostromina
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Christoffer Nord
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Per Lindström
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Upregulated Pdx1 and MafA Contribute to β-Cell Function Improvement by Sleeve Gastrectomy. Obes Surg 2016; 26:904-9. [DOI: 10.1007/s11695-016-2068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|