1
|
Yan F, Zhang Q, Mutembei BM, Wang C, Alhajeri ZA, Pandit K, Zhang F, Zhang K, Yu Z, Fung KM, Elgenaid SN, Parrack P, Ali W, Hostetler CA, Milam AN, Nave B, Squires R, Martins PN, Battula NR, Potter S, Pan C, Chen Y, Tang Q. Comprehensive Evaluation of Human Donor Liver Viability with Polarization-Sensitive Optical Coherence Tomography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25321497. [PMID: 40236439 PMCID: PMC11998830 DOI: 10.1101/2025.03.31.25321497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Human liver transplantation is severely constrained by a critical shortage of donor livers, with approximately one quarter of patients on the waiting list dying due to the scarcity of viable organs. Current liver viability assessments, which rely on invasive pathological methods, are hampered by limited sampling from biopsies, particularly in marginal livers from extended criteria donors (ECD) intended to expand the donor pool. Consequently, there is a pressing need for more comprehensive and non-invasive evaluation techniques to meet the escalating demand for liver transplants. In this study, we propose the use of polarization-sensitive optical coherence tomography (PS-OCT) to perform a thorough viability evaluation across the entire surface of donor livers. PS-OCT imaging was conducted on multiple regions, achieving near-complete coverage of the liver surface, and the findings were cross-validated with histopathological evaluations. The analysis of hepatic parameters derived from pathology highlighted tissue heterogeneity. Leveraging machine learning and texture analysis, we quantified hepatic steatosis, fibrosis, inflammation, and necrosis, and established strong correlations (≥ 80%) between PS-OCT quantifications and pathological assessments. PS-OCT offers a non-invasive assessment of liver viability by quantifying hepatic parenchymal parameters across the entire donor liver, significantly complementing current pathological analysis. These results suggest that PS-OCT provides a robust, non-invasive approach to assessing donor liver viability, which could potentially decrease the discard rate of higher risk livers, thereby expanding the donor pool and reducing the inadvertent use of those livers unsuitable for transplantation.
Collapse
|
2
|
Pérez Compte D, Etourneau L, Hesse AM, Kraut A, Barthelon J, Sturm N, Borges H, Biennier S, Courçon M, de Saint Loup M, Mignot V, Costentin C, Burger T, Couté Y, Bruley C, Decaens T, Jaquinod M, Boursier J, Brun V. Plasma ALS and Gal-3BP differentiate early from advanced liver fibrosis in MASLD patients. Biomark Res 2024; 12:44. [PMID: 38679739 PMCID: PMC11057169 DOI: 10.1186/s40364-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated to affect 30% of the world's population, and its prevalence is increasing in line with obesity. Liver fibrosis is closely related to mortality, making it the most important clinical parameter for MASLD. It is currently assessed by liver biopsy - an invasive procedure that has some limitations. There is thus an urgent need for a reliable non-invasive means to diagnose earlier MASLD stages. METHODS A discovery study was performed on 158 plasma samples from histologically-characterised MASLD patients using mass spectrometry (MS)-based quantitative proteomics. Differentially abundant proteins were selected for verification by ELISA in the same cohort. They were subsequently validated in an independent MASLD cohort (n = 200). RESULTS From the 72 proteins differentially abundant between patients with early (F0-2) and advanced fibrosis (F3-4), we selected Insulin-like growth factor-binding protein complex acid labile subunit (ALS) and Galectin-3-binding protein (Gal-3BP) for further study. In our validation cohort, AUROCs with 95% CIs of 0.744 [0.673 - 0.816] and 0.735 [0.661 - 0.81] were obtained for ALS and Gal-3BP, respectively. Combining ALS and Gal-3BP improved the assessment of advanced liver fibrosis, giving an AUROC of 0.796 [0.731. 0.862]. The {ALS; Gal-3BP} model surpassed classic fibrosis panels in predicting advanced liver fibrosis. CONCLUSIONS Further investigations with complementary cohorts will be needed to confirm the usefulness of ALS and Gal-3BP individually and in combination with other biomarkers for diagnosis of liver fibrosis. With the availability of ELISA assays, these findings could be rapidly clinically translated, providing direct benefits for patients.
Collapse
Affiliation(s)
- David Pérez Compte
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Lucas Etourneau
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Alexandra Kraut
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Justine Barthelon
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Nathalie Sturm
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Hélène Borges
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Salomé Biennier
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Marie Courçon
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Marc de Saint Loup
- Hepato-Gastroenterology Department, University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Victoria Mignot
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Charlotte Costentin
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Thomas Burger
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Thomas Decaens
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Michel Jaquinod
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France.
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Virginie Brun
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France.
- Univ. Grenoble Alpes, CEA, Leti, 38000, Grenoble, France.
| |
Collapse
|
3
|
Sierra T, Achour B. In Vitro to In Vivo Scalars for Drug Clearance in Nonalcoholic Fatty Liver and Steatohepatitis. Drug Metab Dispos 2024; 52:390-398. [PMID: 38423789 DOI: 10.1124/dmd.123.001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
In vitro-in vivo extrapolation (IVIVE) allows prediction of clinical outcomes across populations from in vitro data using specific scalars tailored to the biologic characteristics of each population. This study experimentally determined scalars for patients with varying degrees of nonalcoholic fatty liver disease (NAFLD), ranging from fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. Microsomal, S9, and cytosol fractions were extracted from 36 histologically normal and 66 NAFLD livers (27 nonalcoholic fatty liver [NAFL], 13 NASH, and 26 NASH with cirrhosis). Corrected microsomal protein per gram liver (MPPGL) progressively decreased with disease severity (26.8, 27.4, and 24.3 mg/g in NAFL, NASH, and NASH/cirrhosis, respectively, compared with 35.6 mg/g in normal livers; ANOVA, P < 0.001). Homogenate, S9, and cytosolic protein showed a consistent trend of decline in NASH/cirrhosis relative to normal control (post-hoc t test, P < 0.05). No differences across the groups were observed in homogenate, S9, cytosolic, and microsomal protein content in matched kidney samples. MPPGL-based scalars that combine protein content with liver size revealed that the reduction in MPPGL in NAFL and NASH was compensated by the reported increase in liver size (relative scalar ratios of 0.96 and 0.99, respectively), which was not the case with NASH/cirrhosis (ratio of 0.63), compared with healthy control. Physiologically based pharmacokinetics-informed global sensitivity analysis of the relative contribution of IVIVE scalars (hepatic CYP3A4 abundance, MPPGL, and liver size) to variability in exposure (area under the curve) to three CYP3A substrates (alprazolam, midazolam, and ibrutinib) revealed enzyme abundance as the most significant parameter, followed by MPPGL, whereas liver volume was the least impactful factor. SIGNIFICANCE STATEMENT: Nonalcoholic fatty liver disease-specific scalars necessary for extrapolation from in vitro systems to liver tissue are lacking. These are required in clearance prediction and dose selection in nonalcoholic fatty liver and steatohepatitis populations. Previously reported disease-driven changes have focused on cirrhosis, with no data on the initial stages of liver disease. The authors obtained experimental values for microsomal, cytosolic, and S9 fractions and assessed the relative impact of microsomal scalars on predicted exposure to substrate drugs using physiologically based pharmacokinetics.
Collapse
Affiliation(s)
- Teresa Sierra
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
4
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Zhan H, Chen S, Gao F, Wang G, Chen SD, Xi G, Yuan HY, Li X, Liu WY, Byrne CD, Targher G, Chen MY, Yang YF, Chen J, Fan Z, Sun X, Cai G, Zheng MH, Zhuo S. AutoFibroNet: A deep learning and multi-photon microscopy-derived automated network for liver fibrosis quantification in MAFLD. Aliment Pharmacol Ther 2023; 58:573-584. [PMID: 37403450 DOI: 10.1111/apt.17635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Liver fibrosis is the strongest histological risk factor for liver-related complications and mortality in metabolic dysfunction-associated fatty liver disease (MAFLD). Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) is a powerful tool for label-free two-dimensional and three-dimensional tissue visualisation that shows promise in liver fibrosis assessment. AIM To investigate combining multi-photon microscopy (MPM) and deep learning techniques to develop and validate a new automated quantitative histological classification tool, named AutoFibroNet (Automated Liver Fibrosis Grading Network), for accurately staging liver fibrosis in MAFLD. METHODS AutoFibroNet was developed in a training cohort that consisted of 203 Chinese adults with biopsy-confirmed MAFLD. Three deep learning models (VGG16, ResNet34, and MobileNet V3) were used to train pre-processed images and test data sets. Multi-layer perceptrons were used to fuse data (deep learning features, clinical features, and manual features) to build a joint model. This model was then validated in two further independent cohorts. RESULTS AutoFibroNet showed good discrimination in the training set. For F0, F1, F2 and F3-4 fibrosis stages, the area under the receiver operating characteristic curves (AUROC) of AutoFibroNet were 1.00, 0.99, 0.98 and 0.98. The AUROCs of F0, F1, F2 and F3-4 fibrosis stages for AutoFibroNet in the two validation cohorts were 0.99, 0.83, 0.80 and 0.90 and 1.00, 0.83, 0.80 and 0.94, respectively, showing a good discriminatory ability in different cohorts. CONCLUSION AutoFibroNet is an automated quantitative tool that accurately identifies histological stages of liver fibrosis in Chinese individuals with MAFLD.
Collapse
Affiliation(s)
- Huiling Zhan
- School of Science, Jimei University, Xiamen, China
| | - Siyu Chen
- College of Computer Engineering, Jimei University, Xiamen, China
| | - Feng Gao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gangqin Xi
- School of Science, Jimei University, Xiamen, China
| | - Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Li
- School of Science, Jimei University, Xiamen, China
| | - Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research, Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Miao-Yang Chen
- Department of Liver Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong-Feng Yang
- Department of Liver Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Chen
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Xitai Sun
- Department of Metabolic and Bariatric Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Medical School, Nanjing, China
| | - Guorong Cai
- College of Computer Engineering, Jimei University, Xiamen, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | | |
Collapse
|
6
|
Understanding NAFLD: From Case Identification to Interventions, Outcomes, and Future Perspectives. Nutrients 2023; 15:nu15030687. [PMID: 36771394 PMCID: PMC9921401 DOI: 10.3390/nu15030687] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
While non-alcoholic fatty liver disease (NAFLD) is a prevalent and frequent cause of liver-related morbidity and mortality, it is also strongly associated with cardiovascular disease-related morbidity and mortality, likely driven by its associations with insulin resistance and other manifestations of metabolic dysregulation. However, few satisfactory pharmacological treatments are available for NAFLD due in part to its complex pathophysiology, and challenges remain in stratifying individual patient's risk for liver and cardiovascular disease related outcomes. In this review, we describe the development and progression of NAFLD, including its pathophysiology and outcomes. We also describe different tools for identifying patients with NAFLD who are most at risk of liver-related and cardiovascular-related complications, as well as current and emerging treatment options, and future directions for research.
Collapse
|
7
|
Roeb E, Canbay A, Bantel H, Bojunga J, de Laffolie J, Demir M, Denzer UW, Geier A, Hofmann WP, Hudert C, Karlas T, Krawczyk M, Longerich T, Luedde T, Roden M, Schattenberg J, Sterneck M, Tannapfel A, Lorenz P, Tacke F. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1346-1421. [PMID: 36100202 DOI: 10.1055/a-1880-2283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E Roeb
- Gastroenterologie, Medizinische Klinik II, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - A Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - H Bantel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - J Bojunga
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin., Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - J de Laffolie
- Allgemeinpädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - M Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| | - U W Denzer
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Marburg, Deutschland
| | - A Geier
- Medizinische Klinik und Poliklinik II, Schwerpunkt Hepatologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - W P Hofmann
- Gastroenterologie am Bayerischen Platz - Medizinisches Versorgungszentrum, Berlin, Deutschland
| | - C Hudert
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - T Karlas
- Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie, Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M Krawczyk
- Klinik für Innere Medizin II, Gastroent., Hepat., Endokrin., Diabet., Ern.med., Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - T Luedde
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - M Roden
- Klinik für Endokrinologie und Diabetologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - J Schattenberg
- I. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Sterneck
- Klinik für Hepatobiliäre Chirurgie und Transplantationschirurgie, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - A Tannapfel
- Institut für Pathologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - P Lorenz
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - F Tacke
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| |
Collapse
|
8
|
Authors, Collaborators:. Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS) - April 2022 - AWMF Registration No.: 021-025. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e733-e801. [PMID: 36100201 DOI: 10.1055/a-1880-2388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
9
|
Wang C, Pai AK, Putra J. Paediatric non-alcoholic fatty liver disease: an approach to pathological evaluation. J Clin Pathol 2022; 75:443-451. [PMID: 35414523 DOI: 10.1136/jclinpath-2022-208246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming an increasingly important healthcare issue along with the rising rates of obesity worldwide. It is the most common chronic liver disease in the paediatric population and the fastest growing indication for liver transplant in young adults. The pathogenesis is complex with contributions from multiple factors and genetic predisposition. While non-invasive laboratory tests and imaging modalities are being increasingly used, the liver biopsy continues to play a crucial role in the diagnosis and prognosis of NAFLD. Histologically, the assessment of paediatric fatty liver disease requires special considerations with respect to a periportal predominant pattern seen in prepubertal patients, as well as a different set of disease processes in the differential diagnosis. In this review, we provide a summary of current knowledge on the epidemiology, pathogenesis and clinical course of paediatric NAFLD as well as the clinical guidelines on diagnosis and management. We discuss the indications and limitations of liver biopsy, histological patterns seen in paediatric NAFLD, other entities to be considered in the differential diagnosis, and conclude with appropriate triaging of liver biopsies and essential elements of pathology reporting.
Collapse
Affiliation(s)
- Chiyun Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Anita K Pai
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan Putra
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Soon GST, Liu F, Leow WQ, Wee A, Wei L, Sanyal AJ. Artificial Intelligence Improves Pathologist Agreement for Fibrosis Scores in Nonalcoholic Steatohepatitis Patients. Clin Gastroenterol Hepatol 2022:S1542-3565(22)00555-9. [PMID: 35697267 DOI: 10.1016/j.cgh.2022.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Gwyneth S T Soon
- Department of Pathology, National University Hospital, Singapore
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Wei-Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore and Duke-NUS Medical School, Singapore
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital, Singapore
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China, and, Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
11
|
Cao D, Li M, Liu Y, Jin H, Yang D, Xu H, Lv H, Liu JI, Zhang P, Zhang Z, Yang Z. Comparison of reader agreement, correlation with liver biopsy, and time-burden sampling strategies for liver proton density fat fraction measured using magnetic resonance imaging in patients with obesity: a secondary cross-sectional study. BMC Med Imaging 2022; 22:92. [PMID: 35581577 PMCID: PMC9112589 DOI: 10.1186/s12880-022-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background The magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF) has become popular for quantifying liver fat content. However, the variability of the region-of-interest (ROI) sampling strategy may result in a lack of standardisation of this technology. In an effort to establish an accurate and effective PDFF measurement scheme, this study assessed the pathological correlation, the reader agreement, and time-burden of different sampling strategies with variable ROI size, location, and number. Methods Six-echo spoiled gradient-recalled-echo magnitude-based fat quantification was performed for 50 patients with obesity, using a 3.0-T MRI scanner. Two readers used different ROI sampling strategies to measure liver PDFF, three times. Intra-reader and inter-reader agreement was evaluated using intra-class correlation coefficients and Bland‒Altman analysis. Pearson correlations were used to assess the correlation between PDFFs and liver biopsy. Time-burden was recorded. Results For pathological correlations, the correlations for the strategy of using three large ROIs in Couinaud segment 3 (S3 3L-ROI) were significantly greater than those for all sampling strategies at the whole-liver level (P < 0.05). For inter-reader agreement, the sampling strategies at the segmental level for S3 3L-ROI and using three large ROIs in Couinaud segment 6 (S6 3L-ROI) and the sampling strategies at the whole-liver level for three small ROIs per Couinaud segment (27S-ROI), one large ROI per Couinaud segment (9L-ROI), and three large ROIs per Couinaud segment (27S-ROI) had limits of agreement (LOA) < 1.5%. For intra-reader agreement, the sampling strategies at the whole-liver level for 27S-ROI, 9L-ROI, and 27L-ROI had both intraclass coefficients > 0.995 and LOAs < 1.5%. The change in the time-burden was the largest (100.80 s) when 9L-ROI was changed to 27L-ROI. Conclusions For hepatic PDFF measurement without liver puncture biopsy as the gold standard, and for general hepatic PDFF assessment, 9L-ROI sampling strategy at the whole-liver level should be used preferentially. For hepatic PDFF with liver puncture biopsy as the gold standard, 3L-ROI sampling strategy at the puncture site segment is recommended.
Collapse
Affiliation(s)
- Di Cao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Mengyi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - He Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - JIa Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Peng Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
12
|
Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun 2022; 13:1259. [PMID: 35273160 PMCID: PMC8913628 DOI: 10.1038/s41467-022-28889-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.
Collapse
|
13
|
CONCON MM, GESTIC MA, UTRINI MP, CHAIM FDM, CHAIM EA, CAZZO E. SHOULD ROUTINE LIVER BIOPSY BE CONSIDERED IN BARIATRIC SURGICAL PRACTICE? AN ANALYSIS OF THE LIMITATIONS OF NON-INVASIVE NAFLD MARKERS. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:110-116. [DOI: 10.1590/s0004-2803.202200001-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT Background Non-invasive markers are useful and practical tools for assessing non-alcoholic fatty liver disease (NAFLD), but liver biopsy remains the gold-standard method. Liver biopsy can be easily obtained on individuals undergoing bariatric surgery, but there is no ultimate evidence on the relationship between costs, risks and benefits of its systematic performance. Objective To compare the diagnostic accuracy of non-invasive methods with liver biopsy for detection and staging of NAFLD in obese individuals undergoing bariatric surgery. Methods This is a cross-sectional, observational and descriptive study which enrolled individuals who underwent bariatric surgery from 2018 through 2019 at a public tertiary university hospital. Ultrasound scan, hepatic steatosis index, Clinical Non-Alcoholic Steatohepatitis Score (C-NASH), hypertension, alanine aminotransferase (ALT) and insulin resistance (HAIR), aspartate aminotransferase (AST) to Platelet Ratio Index (APRI), NAFLD Fibrosis Score (NFS) and body mass index, AST/ALT ratio, and diabetes (BARD) were the methods compared with the histopathological examination of wedge liver biopsies collected during surgery. Results Of 104 individuals analyzed, 91 (87.5%) were female. The mean age was 34.9±9.7 years. There was no biopsy-related morbidity. The respective overall accuracies of each marker analyzed were: ultrasound scan (79.81% for steatosis), hepatic steatosis index (79.81% for steatosis), HAIR (40.23% for steatohepatitis), C-NASH (22.99% for steatohepatitis), APRI (94.23% for advanced fibrosis), NFS (94.23% for advanced fibrosis), and BARD (16.35% for advanced fibrosis). Discussion Given the high prevalence of liver disease within this population, even the most accurate markers did not present enough discretionary power to detect and/or rule out the NAFLD aspects they were designed to assess in comparison with liver biopsy, which is safe and easy to obtain in these patients. Conclusion Wedge liver biopsy during bariatric surgery helps to diagnose and stage NAFLD, presents low risks and acceptable costs; given the limitations of non-invasive methods, it is justifiable and should be considered in bariatric routine.
Collapse
|
14
|
A comparative study of cirrhosis sub-staging using the Laennec system, Beijing classification, and morphometry. Mod Pathol 2021; 34:2175-2182. [PMID: 34381188 DOI: 10.1038/s41379-021-00881-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023]
Abstract
There is constant remodeling in a cirrhotic liver resulting in cirrhosis being spatially heterogeneous. The Laennec system, and, more recently the Beijing classification, have been used to sub-classify various degrees of cirrhosis. It is unknown how these two schemes compare with each other, how they are impacted by geographic variation, and how they correlate with clinical outcomes. Five needle biopsies were obtained from 20 explanted cirrhotic HCV livers at the time of transplantation. Collagen proportionate area (CPA) was measured by computerized quantitative morphometry. The Laennec system (4A-4C indicating increasing degrees of cirrhosis) and Beijing classification (P-progressive, R-regressive, I-indeterminate) were assessed and then correlated with CPA. Geographical variation using CPAs was calculated by the coefficient of variation (CoV). CPA of Laennec 4C cirrhosis was higher than 4A (p = 0.00008) or 4B (p = 0.0002). The CPA of the P pattern was greater than the R (p = 0.002) or I patterns (p = 0.037). The mean CoV of the five CPAs was 47.3 ± 4.5%, suggesting a significant degree of geographic variation. There was 100% overlap between the Beijing R pattern and Laennec 4A, and 80% overlap between the P pattern and Laennec 4C. Patients' platelet counts of P pattern were lower than R pattern (p = 0.008) or I pattern (p = 0.024), while Laennec 4C was lower than 4A (p = 0.036) and 4B patients (p = 0.7). There was no correlation between CPA, Laennec stage, or Beijing classification and MELD score, liver weights, total bilirubin, or albumin levels. The Laennec system and the Beijing classification are highly correlated with CPA in cirrhosis. This study confirms that there is a significant degree of geographic variation in terms of fibrosis content and cirrhosis morphology throughout the liver.
Collapse
|
15
|
Routine Versus Selective Liver Biopsy During Bariatric Surgery: Postoperative Outcomes and Preoperative Predictors of NASH. Obes Surg 2021; 32:463-471. [PMID: 34816355 DOI: 10.1007/s11695-021-05797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is common in patients with obesity. Liver biopsy (LB) can be routinely or selectively performed during bariatric surgery to identify patients with NASH. METHODS Patients undergoing bariatric surgery between 2016 and 2020 at our institution were identified. Chart review identified patients undergoing concurrent LB. LB results were compared between patients undergoing routine LB and selective LB. Patient demographics and postoperative outcomes were compared between those who received LB and those who did not (non-LB). In the LB cohort, preoperative characteristics of patients with NASH were compared to those without NASH, and multivariable regression was used to identify predictors of NASH. RESULTS Two thousand three hundred ninety-three patients were identified, of which 400 (16.7%) had liver biopsies (LB) and 1,993 (83.3%) did not (non-LB). Three hundred thirty LB were performed routinely, and 70 were selective. Compared to selective LB, routine LB identified significantly higher rates of steatosis (83.6% vs. 4.5%, p < 0.01), periportal inflammation (67.0% vs. 3.2%, p < 0.01), fibrosis (65.8% vs. 2.1%, p < 0.01), and NASH (10.9% vs. 1.5%, p < 0.01). There were no differences in postoperative complications, blood transfusions, readmissions, or reoperations between LB and non-LB. On multivariable regression, highest BMI > 40 (OR 2.85, 95% CI 1.43-5.67) and insulin-dependent diabetes (OR 4.83, 95% CI 1.70-13.69) were associated with a higher odds of NASH, while Black race was associated with lower odds (OR 0.25, 95% CI 0.09-0.65). CONCLUSIONS Routine liver biopsies during bariatric surgery identify higher rates of advanced NAFLD compared to selective biopsies, and can be safely performed without an increased risk of postoperative complications.
Collapse
|
16
|
Shimada S, Kamiyama T, Kakisaka T, Orimo T, Nagatsu A, Asahi Y, Sakamoto Y, Kamachi H, Kudo Y, Nishida M, Taketomi A. The impact of elastography with virtual touch quantification of future remnant liver before major hepatectomy. Quant Imaging Med Surg 2021; 11:2572-2585. [PMID: 34079724 DOI: 10.21037/qims-20-1073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Liver elastography with virtual touch quantification (VTQ) measures the velocity of the shear wave generated by a short-duration acoustic force impulse, with values expressed in units of velocity (m/s). VTQ can evaluate right or left hepatic lobes separately. VTQ might be appropriate for the evaluation of future remnant liver after hepatectomy. Methods We analyzed 95 patients underwent liver elastography with VTQ and both future remnant liver and resected side before hepatectomy of more than two sections, except for central bisectionectomy. We divided the patients into a high VTQ group (≥1.52 m/s, n=37, 39%) and a low VTQ group (<1.52 m/s, n=58, 61%) according to the VTQ of future remnant liver. Transient elastography could not be performed in 22 cases due to tumor size. We defined the group with liver stiffness measurement (LSM) ≥7.9 kPa as the high LSM group (n=29, 40%) and those with LSM <7.9 kPa as the low LSM group (n=44, 60%). We investigated the outcome after hepatectomy and the correlations between the VTQ of future remnant liver and other indicators for hepatic fibrosis. Results The high VTQ group showed significantly higher postoperative ascites (19% vs. 3%; P=0.01), pathological fibrosis (19% vs. 5%; P=0.03), and rates of patients with postoperative T-bil ≥2.0 mg/dL (70% vs. 40%; P<0.01). The high LSM group showed no significant postoperative outcomes compared to the low LSM group. The high VTQ group showed a higher frequency of male gender (78% vs. 57%; P=0.03), higher indocyanine green retention rate at 15 min (ICGR15) (10.5% vs. 6.3%; P<0.01), hyaluronic acid (100 vs. 67 ng/mL; P=0.02), type IV collagen 7S (7.6 vs. 5.1 ng/mL; P<0.01), Mac-2 binding protein glycan isomer (M2BPGi) (1.19 vs. 1.00; P=0.01), Fibrosis-4 (FIB-4) index (2.25 vs. 1.76; P=0.01), and aspartate aminotransferase to platelet ratio index (APRI) score (0.64 vs. 0.41; P<0.01). We also observed an especially strong positive correlation between the high VTQ and hyaluronic acid or type IV collagen 7S. Conclusions Elastography with VTQ for future remnant liver before major hepatectomy is an accurate and useful method as a preoperative evaluation.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoh Asahi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yuzuru Sakamoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yusuke Kudo
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Mutsumi Nishida
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Styczynski G, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz‐Wróblewska B, Zieniewicz K, Tataj E, Rabczenko D, Szmigielski CA, Sinski M. Cardiac Morphology, Function, and Hemodynamics in Patients With Morbid Obesity and Nonalcoholic Steatohepatitis. J Am Heart Assoc 2021; 10:e017371. [PMID: 33847141 PMCID: PMC8174163 DOI: 10.1161/jaha.120.017371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Background The patients with nonalcoholic fatty liver disease demonstrate an increased cardiovascular risk. The adverse influence of liver abnormalities on cardiac function are among many postulated mechanisms behind this association. The aim of the study was to evaluate cardiac morphology and function in patients with morbid obesity referred for bariatric surgery with liver biopsy. Methods and Results We evaluated with echocardiography 171 consecutive patients without known cardiac disease (median age 42 [interquartile range, 37-48] years, median body mass index 43.7 [interquartile range, 41.0-47.5], 67% female patients. Based on the liver biopsy results, there were 44 patients with nonalcoholic steatohepatitis (NASH), 69 patients with isolated steatosis, and 58 patients without steatosis. Patients with NASH demonstrated signs of left ventricular concentric remodeling and hyperdynamic circulation, including indexed left ventricular end-diastolic diameter [cm/m2]: NASH 1.87 [0.22]; isolated steatosis 2.03 [0.33]; without steatosis 2.01 [0.19], P=0.001; relative wall thickness: NASH 0.49±0.05, isolated steatosis 0.47±0.06, without steatosis 0.46±0.06, P=0.011; cardiac index [L/m2]: NASH 3.05±0.54, isolated steatosis 2.80±0.44, without steatosis 2.79±0.50, P=0.013. After adjustment for sex, age, blood pressure, and heart rate, most of the measures of the left ventricular systolic and diastolic function, left atrial size, right ventricular function, and right ventricular size did not differ between groups. Conclusions In a group of patients with extreme obesity, NASH was associated with left ventricular concentric remodeling and hyperdynamic circulation. Increased cardiac output in NASH may represent an additional risk factor for incident cardiovascular events in this population.
Collapse
Affiliation(s)
- Grzegorz Styczynski
- Department of Internal Medicine, Hypertension and AngiologyMedical University of WarsawPoland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver SurgeryMedical University of WarsawPoland
| | - Łukasz Michałowski
- Department of PathologyCentre for Biostructure ResearchMedical University of WarsawPoland
| | - Rafał Paluszkiewicz
- Department of Internal Medicine, Hypertension and AngiologyMedical University of WarsawPoland
| | | | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver SurgeryMedical University of WarsawPoland
| | - Emanuel Tataj
- Department of Medical Informatics and TelemedicineMedical University of WarsawPoland
| | - Daniel Rabczenko
- Department of Monitoring and Analysis of Population Health StatusNational Institute of Public Health ‐ National Institute of HygieneWarsawPoland
| | - Cezary A. Szmigielski
- Department of Internal Medicine, Hypertension and AngiologyMedical University of WarsawPoland
| | - Maciej Sinski
- Department of Internal Medicine, Hypertension and AngiologyMedical University of WarsawPoland
| |
Collapse
|
18
|
Soon G, Wee A. Updates in the quantitative assessment of liver fibrosis for nonalcoholic fatty liver disease: Histological perspective. Clin Mol Hepatol 2020; 27:44-57. [PMID: 33207115 PMCID: PMC7820194 DOI: 10.3350/cmh.2020.0181] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) is a major cause of liver fibrosis and cirrhosis. Accurate assessment of liver fibrosis is important for predicting disease outcomes and assessing therapeutic response in clinical practice and clinical trials. Although noninvasive tests such as transient elastography and magnetic resonance elastography are preferred where possible, histological assessment of liver fibrosis via semiquantitative scoring systems remains the current gold standard. Collagen proportionate area provides more granularity by measuring the percentage of fibrosis on a continuous scale, but is limited by the absence of architectural input. Although not yet used in routine clinical practice, advances in second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy imaging show great promise in characterising architectural features of fibrosis at the individual collagen fiber level. Quantification and calculation of different detailed variables of collagen fibers can be used to establish algorithm-based quantitative fibrosis scores (e.g., qFibrosis, q-FPs), which have been validated against fibrosis stage in NAFLD. Artificial intelligence is being explored to further refine and develop quantitative fibrosis scoring methods. SHG-microscopy shows promise as the new gold standard for the quantitative measurement of liver fibrosis. This has reaffirmed the pivotal role of the liver biopsy in fibrosis assessment in NAFLD, at least for the near-future. The ability of SHG-derived algorithms to intuitively detect subtle nuances in liver fibrosis changes over a continuous scale should be employed to redress the efficacy endpoint for fibrosis in NASH clinical trials; this approach may improve the outcomes of the trials evaluating therapeutic response to antifibrotic drugs.
Collapse
Affiliation(s)
- Gwyneth Soon
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Sousa-Filho PHF, Jimenez LS, Callejas GH, Concon MM, Braga JGR, Marques RA, Chaim FDM, Gestic MA, Utrini MP, Ramos AC, Chaim EA, Cazzo E. Bilobar Hepatic Histological Variability in Obese Individuals Undergoing Bariatric Surgery: an Analysis of Paired Wedge Biopsies. Obes Surg 2020; 30:5125-5128. [PMID: 32949000 DOI: 10.1007/s11695-020-04991-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Pedro H F Sousa-Filho
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Laísa S Jimenez
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Guilherme H Callejas
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Matheus M Concon
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - João G R Braga
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Rodolfo A Marques
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Felipe D M Chaim
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Martinho A Gestic
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Murillo P Utrini
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Almino C Ramos
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Elinton A Chaim
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Everton Cazzo
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas (UNICAMP), R. Alexander Fleming, s/n; Cidade Universitaria Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil.
| |
Collapse
|
20
|
Kaul A, Singla V, Baksi A, Aggarwal S, Bhambri A, Shalimar D, Yadav R. Safety and Efficacy of Bariatric Surgery in Advanced Liver Fibrosis. Obes Surg 2020; 30:4359-4365. [PMID: 33900587 DOI: 10.1007/s11695-020-04827-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is limited data on the safety and efficacy of metabolic and bariatric (MBS) surgery in patients with advanced liver fibrosis. METHODS This is a retrospective analysis of data of patients with advanced liver fibrosis undergoing MBS at a tertiary care centre. Weight loss and complications were analysed. Transient elastography and liver biopsy findings 1 year after surgery were compared with baseline. RESULTS Twenty-two patients had cirrhosis and 16 had stage 3 fibrosis; all were Child Pugh A. Majority (76%) underwent sleeve gastrectomy. Mean excess BMI loss was 65.8 ± 18.9%. There were no leaks or 30-day mortality. One patient with cirrhosis had late mortality due to liver decompensation. Preoperative and postoperative median LSM were 15.5 kPa (interquartile range IQR = 24.4-11.6) and 10.9 kPa (IQR 19.3-7.6), respectively. Preoperative and postoperative median CAP were 352.5 dB/m (IQR = 372-315.5) and 303 dB/m (IQR 331-269.5), respectively. On follow-up biopsy, nine of twelve patients had improvement in fibrosis, while three had no change. Four out of five patients in the cirrhotic cohort had improvement in fibrosis stage and LSM improved in all of them. Five out of seven patients with stage 3 fibrosis had an improvement in fibrosis stage and none progressed to cirrhosis. LSM improved in three of these five patients. CONCLUSION MBS has the potential to ameliorate advanced liver fibrosis, including cirrhosis. Transient elastography can be used as an effective tool for screening and follow-up of liver disease in patients undergoing MBS.
Collapse
Affiliation(s)
- Aashir Kaul
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Vitish Singla
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Baksi
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Aggarwal
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India.
| | - Amit Bhambri
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India
| | - Dr Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Lew M, Hissong EM, Westerhoff MA, Lamps LW. Optimizing small liver biopsy specimens: a combined cytopathology and surgical pathology perspective. J Am Soc Cytopathol 2020; 9:405-421. [PMID: 32641246 DOI: 10.1016/j.jasc.2020.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Both fine-needle aspiration (FNA) and core needle biopsy (CNB) are widely used to obtain liver biopsy specimens, particularly from mass lesions. However, the advantages and disadvantages of FNA versus CNB in terms of appropriate use, diagnostic yield, complications, and whether or not specimens should be handled by cytopathologists, surgical pathologists, or both remain subjects of controversy. This review addresses the issues of sample adequacy, appropriate use of each technique and complications, and challenges regarding the diagnosis of both hepatic tumors and non-neoplastic liver disease.
Collapse
Affiliation(s)
- Madelyn Lew
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Erika M Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell College of Medicine, New York, New York
| | | | - Laura W Lamps
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|