1
|
Gastoldi S, Aiello S, Galbusera M, Breno M, Alberti M, Bresin E, Mele C, Piras R, Liguori L, Santarsiero D, Benigni A, Remuzzi G, Noris M. An ex vivo test to investigate genetic factors conferring susceptibility to atypical haemolytic uremic syndrome. Front Immunol 2023; 14:1112257. [PMID: 36845135 PMCID: PMC9949374 DOI: 10.3389/fimmu.2023.1112257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Comprehensive genetic analysis is essential to clinical care of patients with atypical haemolytic uremic syndrome (aHUS) to reinforce diagnosis, and to guide treatment. However, the characterization of complement gene variants remains challenging owing to the complexity of functional studies with mutant proteins. This study was designed: 1) To identify a tool for rapid functional determination of complement gene variants; 2) To uncover inherited complement dysregulation in aHUS patients who do not carry identified gene variants. Methods To address the above goals, we employed an ex-vivo assay of serum-induced C5b-9 formation on ADP-activated endothelial cells in 223 subjects from 60 aHUS pedigrees (66 patients and 157 unaffected relatives). Results Sera taken from all aHUS patients in remission induced more C5b-9 deposition than control sera, independently from the presence of complement gene abnormalities. To avoid the possible confounding effects of chronic complement dysregulation related to aHUS status, and considering the incomplete penetrance for all aHUS-associated genes, we used serum from unaffected relatives. In control studies, 92.7% of unaffected relatives with known pathogenic variants exhibited positive serum-induced C5b-9 formation test, documenting a high sensitivity of the assay to identify functional variants. The test was also specific, indeed it was negative in all non-carrier relatives and in relatives with variants non-segregating with aHUS. All but one variants in aHUS-associated genes predicted in-silico as likely pathogenic or of uncertain significance (VUS) or likely benign resulted as pathogenic in the C5b-9 assay. At variance, variants in putative candidate genes did not exhibit a functional effect, with the exception of a CFHR5 variant. The C5b-9 assay in relatives was helpful in defining the relative functional effect of rare variants in 6 pedigrees in which the proband carried more than one genetic abnormality. Finally, for 12 patients without identified rare variants, the C5b-9 test in parents unmasked a genetic liability inherited from an unaffected parent. Discussion In conclusion, the serum-induced C5b-9 formation test in unaffected relatives of aHUS patients may be a tool for rapid functional evaluation of rare complement gene variants. When combined with exome sequencing the assay might be of help in variant selection, to identify new aHUS-associated genetic factors.
Collapse
Affiliation(s)
- Sara Gastoldi
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sistiana Aiello
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Galbusera
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Alberti
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Rossella Piras
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Lucia Liguori
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Donata Santarsiero
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | |
Collapse
|
2
|
Muff-Luett M, Nester CM. The Genetics of Ultra-Rare Renal Disease. J Pediatr Genet 2016; 5:33-42. [PMID: 27617140 DOI: 10.1055/s-0036-1572515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/02/2015] [Indexed: 12/14/2022]
Abstract
The complement-mediated renal diseases are a group of ultra-rare renal diseases that disproportionately affect children and young adults and frequently lead to irreversible renal failure. Genetic mutations in alternate pathway of complement genes are pathomechanistically involved in a significant number of these unique diseases. Here, we review our current understanding of the role of genetics in the primary complement-mediated renal diseases affecting children, with a focus on atypical hemolytic uremic syndrome and C3 glomerulopathy. Also, included is a brief discussion of the related diseases whose relationship to complement abnormality has been suspected but not yet confirmed. Advances in genetics have transformed both treatment and outcomes in these historically difficult to treat, highly morbid diseases.
Collapse
Affiliation(s)
- Melissa Muff-Luett
- Division of Pediatric Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Carla M Nester
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States; Molecular Otolaryngology and Renal Research Laboratory, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Filler G, Clark WF, Huang SHS. Tandem hemodialysis and plasma exchange. Pediatr Nephrol 2014; 29:2077-82. [PMID: 24022368 DOI: 10.1007/s00467-013-2620-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/27/2013] [Accepted: 08/23/2013] [Indexed: 01/15/2023]
Abstract
The combination of hemodialysis and plasma exchange as one tandem procedure was first described in 1999 by Siami et al. (ASAIO J 45:229-233), but larger pediatric case series were not described until 2012. Even in adults, there are only limited case series. If performed in sequence, up to 8 h of treatment time may be required. With the use of the tandem procedure in stable patients, the same procedures can be completed during the same time as a routine hemodialysis, which is more convenient for patients and may reduce healthcare costs. Little is known about the utilization of the combination of hemodialysis and plasma exchange in children. The purpose of this review is to summarize the adult and scarce pediatric experience. The results of a survey carried out by the authors using the Internet listserver "PedNeph" to obtain an overview of the current practice patterns of pediatric nephrologists are also presented.
Collapse
Affiliation(s)
- Guido Filler
- Department of Pediatrics, Division of Nephrology, Children's Hospital, London Health Science Centre-University of Western Ontario, 800 Commissioners Road East, London, ON, Canada, N6A 5W9,
| | | | | |
Collapse
|
4
|
Hunt EA, Jain NG, Somers MJ. Apheresis therapy in children: An overview of key technical aspects and a review of experience in pediatric renal disease. J Clin Apher 2013; 28:36-47. [DOI: 10.1002/jca.21260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
|
5
|
Abstract
Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.
Collapse
|
6
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH, UK.
| | | |
Collapse
|
7
|
Gorgi Y, Hbibi I, Sfar I, Gargueh T, Cherif M, Goucha Louzir R, Daghbouj R, Aouadi H, Makhlouf M, Ben Romdhane T, Jendoubi-Ayed S, Amri M, Kheder A, Lakhoua MR, Ben Abdallah T, Ayed K. Role of genetic polymorphisms in factor H and MBL genes in Tunisian patients with immunoglobulin A nephropathy. Int J Nephrol Renovasc Dis 2010; 3:27-32. [PMID: 21694925 PMCID: PMC3108773 DOI: 10.2147/ijnrd.s8442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms of IgA nephropathy (IgAN) remain poorly understood. Several different polymorphic genes have been investigated in order to demonstrate their possible association with this disease. It is evident that mainly alternative and lectin pathways complement activation and play an important role in renal injury of IgAN. This study was conducted to determine eventual deficiencies of factor H in the SCR20 gene region and to look for a possible association between the polymorphism (+54) exon 1 of the MBL gene and the predisposition in Tunisian patients with IgAN. We then evaluated the effects of these FH mutations and/or this MBL polymorphism on nephropathy susceptibility and progression. Polymorphism A/B (+54) in the exon1 of the MBL gene and analysis within the C-terminal domain of the protein SCR20 in the exon 22 of the factor H (FH) gene were conducted in 36 sporadic IgAN Tunisian patients and 117 age and gender matched healthy subjects recruited from blood donors, by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing respectively. The analysis of the Gly54Asp (+54) mutation of the MBL gene according to the criteria of gravity of the IgAN reveals that the patients with genotype AB present more frequently with end-stage renal disease (ESRD) compared with those of genotype AA [OR: 8, CI (1.74-54.49), P = 0.019]. Moreover, the variant allele B was statistically more frequent than the allele A in patients with an association with initial arterial high blood pressure, ESRD and class V of the Haas classification compared to those without this association (P = 0.009). The direct sequencing of exon 22 (SCR 20) of FH gene did not reveal any abnormal mutational deficiency for this factor in all patients and controls. The data did not support the hypothesis that FH is a susceptibility factor for the IgAN. However the data did show there was an association between AB (+54) exon1 MBL genotype and severe sporadic forms of this disease in Tunisian patients. Because of the small number of subjects studied, a much larger cohort of IgAN patients with varying severity of the disease and its progression would seem necessary to confirm these findings.
Collapse
Affiliation(s)
- Yousr Gorgi
- Immunology Research Laboratory of Kidney Transplantation and Immunopathology (Laboratoire de recherche LR03SP01), Charles Nicolle Hospital, Tunisia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Severe atypical HUS caused by CFH S1191L--case presentation and review of treatment options. Pediatr Nephrol 2010; 25:97-104. [PMID: 19856002 DOI: 10.1007/s00467-009-1306-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 02/04/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) has been associated with defective regulation of the alternative complement pathway. Although the use of plasma therapy is recommended, there is little consensus on the optimal treatment regimen. The outcome in many cases remains poor despite an improvement in our understanding of the pathology of aHUS. We have followed a female patient with aHUS associated with heterozygous complement Factor H (CFH) mutation (S1191L) over a period of 15 years. She has been plasma dependent since infancy and has subsequently progressed to end stage kidney disease (ESKD) requiring dialysis treatment. Despite ESKD she still depends on regular plasma infusions to prevent thrombocytopenia. The long-term treatment plan for this patient is challenging. Renal transplantation in patients with the S1191L mutation of the CFH gene carries a high risk of failure due to recurrence of aHUS in the renal graft. Thus, the only available curative treatment seems to be combined liver-kidney transplantation, covered by intensive plasma therapy, which comes with a high risk of morbidity and mortality. Antibodies against key activating components of the complement cascade may provide a promising alternative therapeutic strategy in the future. Eculizumab, a monoclonal humanized anti-C5 antibody, has recently been shown to be effective and well-tolerated in patients with paroxysmal nocturnal hemoglobinuria by preventing complement-mediated lysis of affected erythrocytes. Treatment of our patient with eculizumab is supported by recent reports on its successful use in two (pediatric and adult) patients with complement-based aHUS.
Collapse
|
9
|
The spectrum of phenotypes caused by variants in the CFH gene. Mol Immunol 2009; 46:1573-94. [PMID: 19297022 DOI: 10.1016/j.molimm.2009.02.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/24/2022]
|
10
|
Ariceta G, Besbas N, Johnson S, Karpman D, Landau D, Licht C, Loirat C, Pecoraro C, Taylor CM, Van de Kar N, Vandewalle J, Zimmerhackl LB. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol 2009; 24:687-96. [PMID: 18800230 DOI: 10.1007/s00467-008-0964-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
This guideline for the investigation and initial treatment of atypical hemolytic uremic syndrome (HUS) is intended to offer an approach based on opinion, as evidence is lacking. It builds on the current ability to identify the etiology of specific diagnostic sub-groups of HUS. HUS in children is mostly due to infection, enterohemorrhagic Escherichia coli (EHEC), Shigella dysenteriae type 1 in some geographic regions, and invasive Streptococcus pneumoniae. These sub-groups are relatively straightforward to diagnose. Their management, which is outside the remit of this guideline, is related to control of infection where that is necessary and supportive measures for the anemia and acute renal failure. A thorough investigation of the remainder of childhood HUS cases, commonly referred to as "atypical" HUS, will reveal a risk factor for the syndrome in approximately 60% of cases. Disorders of complement regulation are, numerically, the most important. The outcome for children with atypical HUS is poor, and, because of the rarity of these disorders, clinical experience is scanty. Some cases of complement dysfunction appear to respond to plasma therapy. The therapeutic part of this guideline is the consensus of the contributing authors and is based on limited information from uncontrolled studies. The guideline proposes urgent and empirical plasmapheresis replacement with whole plasma fraction for the first month after diagnosis. This should only be undertaken in specialized pediatric nephrology centers where appropriate medical and nursing skills are available. The guideline includes defined terminology and audit points so that the early clinical effectiveness of the strategy can be evaluated.
Collapse
|
11
|
Edey M, Strain L, Ward R, Ahmed S, Thomas T, Goodship THJ. Is complement factor H a susceptibility factor for IgA nephropathy? Mol Immunol 2009; 46:1405-8. [PMID: 19162324 DOI: 10.1016/j.molimm.2008.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022]
Abstract
There is substantial evidence to suggest that complement activation plays a pivotal role in the pathogenesis of IgA nephropathy. Mesangial C3 deposition is seen in approximately 90% of patients and polymeric IgA has been shown to activate the alternative and lectin pathways. In addition there have been reports of deficiency and mutations in the serum complement regulator factor H (CFH) in association with IgA nephropathy. In this study we have examined the hypothesis that CFH is a susceptibility factor for IgA nephropathy. In 46 IgA nephropathy patients we undertook genotyping of three CFH SNPS (rs3753394, rs3753396 and rs1065489). There was no significant difference in the allele frequency of these 3 SNPs between the patients and normal controls. In the same group of patients we undertook mutation screening of CFH exons 18-23 using direct sequencing and found no abnormalities. All the patients had a normal serum factor H concentration. In this small cohort of IgA nephropathy patients we have not found evidence to support the hypothesis that factor H is a major susceptibility factor for the disease.
Collapse
Affiliation(s)
- Matthew Edey
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
About 60% of non-Stx-associated aHUS are due to the defect of protection of endothelial cells from complement activation, secondary to mutations in the genes of CFH, MCP, IF, BF, or C3. In addition, 10% of patients have anti-CFH antibodies. While the risk of post-transplant recurrence is less than 1% in Stx-HUS patients, it is approximately 80% in CFH or IF-mutated patients, 20% in MCP-mutated patients, and 30% in patients with no mutation. Patients with anti-CFH antibodies probably also are at risk of recurrence. While MCP-mutated patients can reasonably go to transplantation, recent reports suggest that plasmatherapy started before surgery and maintained life-long may prevent recurrence in CFH-mutated patients. Four successful liver-kidney transplantation utilizing plasmatherapy in CFH-mutated children have been reported recently. In summary, the risk of post-transplant recurrence can now be approached according to genotype. Therefore, aHUS patients should undergo complement determination, screening for anti-CFH antibodies, and genotyping before transplantation. Kidney or kidney + liver transplantation with concomitant plasmatherapy need to be evaluated by prospective trials in patients with hereditary complement abnormalities.
Collapse
Affiliation(s)
- Chantal Loirat
- Assistance Publique, Hôpitaux de Paris, Hôpital Robert Debré, Université Paris, Faculté de Médecine Denis Diderot, Service de Néphrologie, Paris, France.
| | | |
Collapse
|
14
|
Lapeyraque AL, Wagner E, Phan V, Clermont MJ, Merouani A, Frémeaux-Bacchi V, Goodship THJ, Robitaille P. Efficacy of plasma therapy in atypical hemolytic uremic syndrome with complement factor H mutations. Pediatr Nephrol 2008; 23:1363-6. [PMID: 18425537 DOI: 10.1007/s00467-008-0803-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 01/16/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) frequently results in end-stage renal failure and can be lethal. Several studies have established an association between quantitative or qualitative abnormalities in complement factor H and aHUS. Although plasma infusion and exchange are often advocated, guidelines have yet to be established. Long-term outcome for patients under treatment is still unknown. We describe a patient who, at 7 months of age, presented with aHUS associated with combined de novo complement factor H mutations (S1191L and V1197A) on the same allele. Laboratory investigations showed normal levels of complements C4, C3 and factor H. Plasma exchanges and large-dose infusion therapy resulted in a resolution of hemolysis and recovery of renal function. Three recurrences were successfully treated by intensification of the plasma infusion treatment to intervals of 2 or 3 days. This patient showed good response to large doses of plasma infusions and her condition remained stable for 30 months with weekly plasma infusions (30 ml/kg). Long-term tolerance and efficacy of such intensive plasma therapy are still unknown. Reported secondary failure of plasma therapy in factor H deficiency warrants the search for alternative therapeutic approaches.
Collapse
Affiliation(s)
- Anne-Laure Lapeyraque
- Department of Pediatrics, Division of Nephrology, CHU Sainte-Justine, Montreal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kamioka I, Yoshiya K, Satomura K, Kaito H, Fujita T, Iijima K, Nakanishi K, Yoshikawa N, Nozu K, Matsuo M. Risk factors for developing severe clinical course in HUS patients: a national survey in Japan. Pediatr Int 2008; 50:441-6. [PMID: 19143964 DOI: 10.1111/j.1442-200x.2008.02605.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is characterized by acute renal failure, thrombocytopenia and hemolytic anemia. Cases accompanied by prodromal gastrointestinal tract symptoms are referred to as typical HUS. Some severe HUS patients require dialysis or develop central nervous system (CNS) disorders after the onset of HUS. METHODS Patients who developed typical HUS in 2001 and 2002 in Japan, 127 in all, were the study subjects. To identify the risk factors for the development of a severe clinical course, clinical and laboratory data were analyzed on logistic regression. RESULTS Two of the 127 patients died (1.6%): one from acute cardiac failure and the other from a CNS disorder. Thirty-five patients required dialysis (28%) and 30 had CNS symptoms (24%). Multivariate analysis indicated that the risk factors for need for dialysis were serum sodium and alanine aminotransferase (ALT) levels of </=130 mEq/L and >/=70 IU/L, respectively, at the onset of HUS and those for developing CNS disorders were dialysis and C-reactive protein (CRP) >/=5.0 mg/dL at the onset of HUS. CONCLUSIONS Because patients with these risk factors, such as low serum sodium, high ALT or high CRP levels, may require dialysis or develop CNS disorders, they should be treated carefully in the early stage of HUS.
Collapse
Affiliation(s)
- Ichiro Kamioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abarrategui-Garrido C, Melgosa M, Peña-Carrión A, de Jorge EG, de Córdoba SR, López-Trascasa M, Sánchez-Corral P. Mutations in proteins of the alternative pathway of complement and the pathogenesis of atypical hemolytic uremic syndrome. Am J Kidney Dis 2008; 52:171-80. [PMID: 18423815 DOI: 10.1053/j.ajkd.2008.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 01/02/2008] [Indexed: 11/11/2022]
Abstract
Atypical hemolytic uremic syndrome is associated with mutations in the complement proteins factor H, factor I, factor B, C3, or membrane cofactor protein in about 50% of patients. The evolution and prognosis of the disease in patients carrying mutations in factor H is particularly poor, and renal transplantation most often fails because of recurrence of the disease in the graft. The risk of rapid loss of renal function in patients with functional mutations in factor H requires that effective treatment be initiated as soon as possible, but identification of these patients relies on genetic studies that are time consuming. We describe a case in which an in vitro hemolytic assay proved useful for rapidly assessing factor H dysfunction and for testing whether this dysfunction could be corrected with fresh frozen plasma. In the context of this case, we summarize recent advances in understanding the molecular mechanisms contributing to atypical hemolytic uremic syndrome, including descriptions of DNA- and protein-based analysis. We conclude that functional analysis of factor H should help rationalize the plasma treatment of patients with atypical hemolytic uremic syndrome.
Collapse
|
17
|
Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol 2008; 23:1957-72. [PMID: 18594873 PMCID: PMC6904381 DOI: 10.1007/s00467-008-0872-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022]
Abstract
Over the past decade, atypical hemolytic uremic syndrome (aHUS) has been demonstrated to be a disorder of the regulation of the complement alternative pathway. Among approximately 200 children with the disease, reported in the literature, 50% had mutations of the complement regulatory proteins factor H, membrane cofactor protein (MCP) or factor I. Mutations in factor B and C3 have also been reported recently. In addition, 10% of children have factor H dysfunction due to anti-factor H antibodies. Early age at onset appears as characteristic of factor H and factor I mutated patients, while MCP-associated HUS is not observed before age 1 year. Low C3 level may occur in patients with factor H and factor I mutation, while C3 level is generally normal in MCP-mutated patients. Normal plasma factor H and factor I levels do not preclude the presence of a mutation in these genes. The worst prognosis is for factor H-mutated patients, as 60% die or reach end-stage renal disease (ESRD) within the first year after onset of the disease. Patients with mutations in MCP have a relapsing course, but no patient has ever reached ESRD in the first year of the disease. Half of the patients with factor I mutations have a rapid evolution to ESRD, but half recover. Early intensive plasmatherapy appears to have a beneficial effect, except in MCP-mutated patients. There is a high risk of graft loss for HUS recurrence or thrombosis in all groups except the MCP-mutated group. Recent success of liver-kidney transplantation combined with plasmatherapy opens this option for patients with mutations of factors synthesized in the liver. New therapies such as factor H concentrate or complement inhibitors offer hope for the future.
Collapse
Affiliation(s)
- Chantal Loirat
- Hôpitaux de Paris, Université Paris 7, Hôpital Robert Debré, Pediatric Nephrology, Paris, France.
| | | | | |
Collapse
|
18
|
Noris M, Remuzzi G. Translational mini-review series on complement factor H: therapies of renal diseases associated with complement factor H abnormalities: atypical haemolytic uraemic syndrome and membranoproliferative glomerulonephritis. Clin Exp Immunol 2007; 151:199-209. [PMID: 18070148 DOI: 10.1111/j.1365-2249.2007.03558.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic and acquired abnormalities in complement factor H (CFH) have been associated with two different human renal diseases: haemolytic uraemic syndrome and membrano proliferative glomerulonephritis. The new genetic and pathogenetic findings in these diseases and their clinical implications for the management and cure of patients are reviewed in this paper.
Collapse
Affiliation(s)
- M Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Villa Camozzi - Ranica (BG), Italy.
| | | |
Collapse
|
19
|
Recurrence of haemolytic uraemic syndrome after renal transplantation. Curr Opin Organ Transplant 2007. [DOI: 10.1097/mot.0b013e3282ef3d64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Córdoba SR, Botto M. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. ACTA ACUST UNITED AC 2007; 204:1249-56. [PMID: 17517971 PMCID: PMC2118613 DOI: 10.1084/jem.20070301] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor H (FH) is an abundant serum glycoprotein that regulates the alternative pathway of complement-preventing uncontrolled plasma C3 activation and nonspecific damage to host tissues. Age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and membranoproliferative glomerulonephritis type II (MPGN2) are associated with polymorphisms or mutations in the FH gene (Cfh), suggesting the existence of a genotype–phenotype relationship. Although AMD and MPGN2 share pathological similarities with the accumulation of complement-containing debris within the eye and kidney, respectively, aHUS is characterized by renal endothelial injury. This pathological distinction was reflected in our Cfh association analysis, which demonstrated that although AMD and MPGN2 share a Cfh at-risk haplotype, the haplotype for aHUS was unique. FH-deficient mice have uncontrolled plasma C3 activation and spontaneously develop MPGN2 but not aHUS. We show that these mice, transgenically expressing a mouse FH protein functionally equivalent to aHUS-associated human FH mutants, regulate C3 activation in plasma and spontaneously develop aHUS but not MPGN2. These animals represent the first model of aHUS and provide in vivo evidence that effective plasma C3 regulation and the defective control of complement activation on renal endothelium are the critical events in the molecular pathogenesis of FH-associated aHUS.
Collapse
Affiliation(s)
- Matthew C Pickering
- Molecular Genetics and Rheumatology Section, Faculty of Medicine, Imperial College, London W12 0NN, England, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Saunders RE, Abarrategui-Garrido C, Frémeaux-Bacchi V, Goicoechea de Jorge E, Goodship THJ, López Trascasa M, Noris M, Ponce Castro IM, Remuzzi G, Rodríguez de Córdoba S, Sánchez-Corral P, Skerka C, Zipfel PF, Perkins SJ. The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. Hum Mutat 2007; 28:222-34. [PMID: 17089378 DOI: 10.1002/humu.20435] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a disease of hemolytic anemia, thrombocytopenia, and renal failure associated with defective alternative pathway (AP) complement control. Previously, we presented a database (www.FH-HUS.org) focusing on aHUS mutations in the Factor H gene (CFH). Here, new aHUS mutations are reported for the complement regulatory proteins Factor H (FH), Factor I (FI), and membrane cofactor protein (MCP). Additional mutations or polymorphisms within CFH have been associated with membranoproliferative glomerulonephritis (MPGN) and age-related macular degeneration (AMD). Accordingly, the database now includes substitutions that predispose to aHUS, MPGN, and AMD. For this, structural models for the domains in MCP and FI were developed using homology modeling. With this new database, patients with mutations in more than one gene can be displayed and interpreted in a coherent manner. The database also includes SNP polymorphisms in CFH, MCP, and IF. There are now a total of 167 genetic alterations, including 100 in CFH, 43 in MCP, and 24 in IF. The mutations characterize clinical outcomes that vary from several AMD-associated polymorphisms to those associated with aHUS, MPGN, or FI deficiency. A consensus short complement regulator (SCR) domain structure facilitated the interpretations of aHUS mutations. Specific locations within this consensus domain often correlate with the occurrence of clinical phenotypes. The AMD Tyr402His polymorphism is structurally located at a hotspot for several aHUS mutations. The database emphasizes the causative role of the alternative pathway of complement in disease and provides a repository of knowledge to assist future diagnosis and novel therapeutic approaches.
Collapse
Affiliation(s)
- Rebecca E Saunders
- Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Olaciregui Echenique I, Areses Trapote R, Ubetagoyena Arrieta M, Sota Busselo I, García Pardos C, Echaniz Aizpuru P. [Incomplete hemolytic uremic syndrome associated with partial factor H deficiency]. An Pediatr (Barc) 2007; 66:188-90. [PMID: 17306107 DOI: 10.1157/13098939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) consists of the association of hemolytic anemia, thrombocytopenia and renal failure. Most cases are related to toxins (verotoxins) produced by Escherichia coli 0157:H7 and generally have good renal prognosis. Atypical forms can occur, with a less favorable prognosis, and can be due to mutations in the gene codifying factor H, a protein that regulates activation of the alternative complement pathway, among other causes. Factor H deficiency produces continuous complement activation, causing injury to capillary endothelial cells. We report a case of incomplete (absence of thrombocytopenia and uremia), atypical HUS in which hypocomplementemia secondary to partial factor H deficiency was detected, with favorable outcome. Prior to symptom onset, the patient had a Campylobacter infection, precipitating the symptoms. Genetic analysis showed a heterozygous mutation (C846T) located in the SCR4 domain, generating an amino acid change in the factor H molecule (Pro240Leu). This mutation may have been the cause of the partial factor H deficiency and the patient's symptoms on admission.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Hemolytic uremic syndrome is a rare disease of microangiopathic hemolytic anemia, low platelet count and is associated with renal impairment. The atypical form, which occurs in adult patients, is associated with defective complement control. RECENT FINDINGS Recent data show that atypical hemolytic uremic syndrome is a genetic disease and gene mutations have been reported for factor H, membrane cofactor protein/CD46 and factor I. All corresponding gene products act in concert and control the activity of the complement convertase C3bBb. This enzyme initiates the alternative pathway as well as amplification of the complement system. Similar to genetic defects, autoantibodies which bind to factor H have been linked to the disease. Defective complement control resulting in hemolytic uremic syndrome explains the disease mechanism and allows improved diagnosis and therapy. SUMMARY The atypical form of hemolytic uremic syndrome is associated with defective complement control and inappropriate protein function and may influence disease progression and provide new ways for treatment. Positive effects were reported upon substitution of a defective protein by plasma exchange or plasmaphoreses. The disease recurrence rate for renal transplants depends on the type of gene mutated; patients with mutations in the membrane cofactor protein gene have a better prognosis than patients with mutations in other genes.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstrasse 11a, D-07743 Jena, Germany.
| | | |
Collapse
|
24
|
Licht C, Heinen S, Józsi M, Löschmann I, Saunders RE, Perkins SJ, Waldherr R, Skerka C, Kirschfink M, Hoppe B, Zipfel PF. Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). Kidney Int 2006; 70:42-50. [PMID: 16612335 DOI: 10.1038/sj.ki.5000269] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a novel pathomechanism for membranoproliferative glomerulonephritis type II (MPGN II) caused by a mutant Factor H protein expressed in the plasma. Genetic analyses of two patients revealed deletion of a single Lys residue (K224) located within the complement regulatory region in domain 4 of Factor H. This deletion resulted in defective complement control: mutant protein purified from the plasma of patients showed severely reduced cofactor and decay-accelerating activity, as well as reduced binding to the central complement component C3b. However, cell-binding activity of the mutant protein was normal and comparable to wild-type Factor H. The patients are daughters of consanguineous parents. As both patients but also their healthy mother were positive for C3 nephritic factor, the mutant Factor H protein is considered relevant for unrestricted activation of the disease-causing activation of the alternative complement pathway. Replacement of functional Factor H by fresh frozen plasma (10-15 ml/kg/14 days) was well tolerated, prevented so far disease progression in both patients, and is in the long run expected to preserve kidney function.
Collapse
Affiliation(s)
- C Licht
- Children's Hospital of the University of Cologne, Pediatric Nephrology, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zipfel PF, Heinen S, Józsi M, Skerka C. Complement and diseases: Defective alternative pathway control results in kidney and eye diseases. Mol Immunol 2006; 43:97-106. [PMID: 16026839 DOI: 10.1016/j.molimm.2005.06.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complement system is a central part of innate immunity and in its normal setting aimed to recognize and eliminate microbes. For elimination toxic activation products are generated locally and are reported directly of the surface of the invading microbe. A deregulation of the alternative pathway results in defective recognition and toxic activation products can be formed on the surface of host tissues and structures. Recent studies have shown that mutated or defective regulators of the alternative pathway of complement are associated with auto immune diseases of the kidney, including the atypical form of hemolytic uremic syndrome (HUS), membranoproliferative glomerulonephritis (MPGN) and also of the eye, such as age-related macular degeneration (ARMD). Current research provides clues how mutations occurring in genes coding for single complement components or the inactivation of single regulators lead to defective alternative pathway amplification, via the convertase C3bBb. These scenarios explain how defects of a single regulator lead to local, organ specific damage.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
26
|
Dragon-Durey MA, Frémeaux-Bacchi V. Atypical haemolytic uraemic syndrome and mutations in complement regulator genes. ACTA ACUST UNITED AC 2005; 27:359-74. [PMID: 16189652 DOI: 10.1007/s00281-005-0003-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy (TMA) disorder characterised by the association of haemolytic anaemia, thrombocytopenia and acute renal failure. Atypical forms (non-related to shigatoxin) may be familial or sporadic, with frequent recurrences and most of them lead to end stage renal failure. During the last years, different groups have demonstrated genetic predisposition of atypical HUS involving complement components factor H (FH), CD46 [or membrane co-factor protein (MCP)] and factor I. These three proteins are involved in the regulation of the alternative pathway of the complement system. Several series have reported mutations in the FH gene (called HF1) in between 10 and 22% of atypical HUS patients. At this time, four pedigrees corresponding to 13 cases have been reported with an MCP mutation and four cases with a sporadic disease presented factor I mutation. Whereas FH mutations were reported in both familial and sporadic forms of HUS, CD46 mutations were restricted to familial HUS, and factor I mutations were only observed in cases of sporadic HUS. We speculate that the penetrance of the disease may be variable regarding the identified susceptibility factors. Recently, the analysis of single nucleotide polymorphisms in both HF1 and MCP in three large cohorts of HUS patients identified significant association between atypical HUS and HF1 and MCP particular alleles. All these results, together with the finding of anti-FH antibodies in some atypical HUS patients, strongly suggest that an abnormality in the regulation of the alternative pathway participates in the patho-physiological mechanisms of atypical HUS. The recent progress made in the determination of susceptibility factors for atypical HUS has permitted the development of new diagnostic tests and may eventually lead to new specific treatments to block the pathological process.
Collapse
Affiliation(s)
- Marie-Agnès Dragon-Durey
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France
| | | |
Collapse
|
27
|
TSAI HM. Why Do We Need ADAMTS13? NIHON KESSEN SHIKETSU GAKKAI SHI = JAPANESE JOURNAL OF THROMBOSIS AND HEMOSTASIS 2005; 16:54-69. [PMID: 21709769 PMCID: PMC3121331 DOI: 10.2491/jjsth.16.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Han-Mou TSAI
- Division of Hematology Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA, Division of Hematology Montefiore Medical Center (111 East 210 Street Bronx, NY 10467 USA., Tel: 1 718 920 4410 Fax: 1 718 881 7108
| |
Collapse
|