1
|
Patel MM, Gerakopoulos V, Lettenmaier B, Petsouki E, Zimmerman KA, Sayer JA, Tsiokas L. SOX9-dependent fibrosis drives renal function in nephronophthisis. EMBO Mol Med 2025:10.1038/s44321-025-00233-3. [PMID: 40211043 DOI: 10.1038/s44321-025-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Fibrosis is a key feature of a broad spectrum of cystic kidney diseases, especially autosomal recessive kidney disorders such as nephronophthisis (NPHP). However, its contribution to kidney function decline and the underlying molecular mechanism(s) remains unclear. Here, we show that kidney-specific deletion of Fbxw7, the recognition receptor of the SCFFBW7 E3 ubiquitin ligase, results in a juvenile-adult NPHP-like pathology characterized by slow-progressing corticomedullary cysts, tubular degeneration, severe fibrosis, and gradual loss of kidney function. Expression levels of SOX9, a known substrate of FBW7, and WNT4, a potent pro-fibrotic factor and downstream effector of SOX9, were elevated upon loss of FBW7. Heterozygous deletion of Sox9 in compound mutant mice led to the normalization of WNT4 levels, reduced fibrosis, and preservation of kidney function without significant effects on cystic dilatation and tubular degeneration. These data suggest that FBW7-SOX9-WNT4-induced fibrosis drives kidney function decline in NPHP and, possibly, other forms of autosomal recessive kidney disorders.
Collapse
Affiliation(s)
| | - Vasileios Gerakopoulos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bryan Lettenmaier
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eleni Petsouki
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Leventoğlu E, Kavgaci A, Örün UA, Büyükkaragöz B. The interplay between the cardiovascular system and pediatric congenital or acquired kidney diseases. Pediatr Nephrol 2025:10.1007/s00467-025-06750-0. [PMID: 40137987 DOI: 10.1007/s00467-025-06750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Kidney diseases often have systemic effects, particularly affecting the cardiovascular system due to their shared embryological origins. The deterioration of kidney function can lead to significant cardiovascular complications. Many kidney disorders, especially congenital and cystic kidney diseases, are diagnosed in childhood, often coexisting with cardiovascular issues. This review focuses on the cardiovascular abnormalities associated with primary kidney diseases, exploring the genetic and pathophysiological connections between these dual conditions. Some primary kidney diseases with cardiovascular abnormalities include congenital abnormalities of the kidney and urinary tract (CAKUT), polycystic kidney diseases (ADPKD and ARPKD), and glomerular diseases (nephrotic syndrome, focal segmental glomerulosclerosis (FSGS), IgA nephropathy, and Alport syndrome). These conditions often lead to hypertension, left ventricular hypertrophy, and other cardiac complications. For instance, ADPKD and ARPKD are associated with early vascular stiffness and cardiac valvular disorders. Nephrotic syndrome, particularly steroid-resistant form, is linked to elevated cardiovascular risks due to hyperlipidemia, endothelial injury, and an increased propensity for thrombosis. IgA nephropathy and FSGS are also associated with cardiovascular risks, exacerbated by kidney failure and hyperlipidemia. Alport syndrome, while primarily a glomerular disorder, can also result in serious cardiovascular complications like aortic dissection.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Akif Kavgaci
- Department of Pediatric Cardiology, Etlik City Hospital, Ankara, Turkey
| | - Utku Arman Örün
- Department of Pediatric Cardiology, Etlik City Hospital, Ankara, Turkey
| | | |
Collapse
|
3
|
Devlin LA, Dewhurst RM, Sudhindar PD, Sayer JA. Renal ciliopathies. Curr Top Dev Biol 2025; 163:229-305. [PMID: 40254346 DOI: 10.1016/bs.ctdb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Primary cilia are essential cellular organelles with pivotal roles in many signalling pathways. Here we provide an overview of the role of primary cilia within the kidney, starting with primary ciliary structure and key protein complexes. We then highlight the specialised functions of primary cilia, emphasising their role in a group of diseases known as renal ciliopathies. These conditions include forms of polycystic kidney disease, nephronophthisis, and other syndromic ciliopathies, such as Joubert syndrome and Bardet-Biedl syndrome. We explore models of renal ciliopathies, both in vitro and in vivo, shedding light on the molecular mechanisms underlying these diseases including Wnt and Hedgehog signalling pathways, inflammation, and cellular metabolism. Finally, we discuss therapeutic approaches, from current treatments to cutting-edge preclinical research and clinical trials.
Collapse
Affiliation(s)
- Laura A Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Praveen D Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Renal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; National Institute for Health Research, Newcastle Biomedical Research Centre, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Dahmer-Heath M, Gerß J, Fliser D, Liebau MC, Speer T, Telgmann AK, Burgmaier K, Pennekamp P, Pape L, Schaefer F, Konrad M, König JC. Urinary Dickkopf-3 Reflects Disease Severity and Predicts Short-Term Kidney Function Decline in Renal Ciliopathies. Kidney Int Rep 2025; 10:197-208. [PMID: 39810774 PMCID: PMC11725807 DOI: 10.1016/j.ekir.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Phenotypic heterogeneity and unpredictability of individual disease progression present enormous challenges in ultrarare renal ciliopathies. The tubular-derived glycoprotein, Dickkopf-related protein 3 (DKK3) is a promising biomarker for kidney fibrosis and prediction of kidney function decline. Here, we measured urinary DKK3 (uDKK3) levels in 195 pediatric patients with renal ciliopathy to assess its potential as a discriminative and prediction marker. Methods uDKK3 concentration was measured in 357 spot urine samples from 247 individuals, including 52 healthy age-matched controls. Disease entities comprised nephronophthisis (NPH) (n = 37), autosomal recessive polycystic kidney disease (ARPKD) (n = 61), Bardet Biedl syndrome (BBS) (n = 57), and hepatocyte nuclear factor 1 beta (HNF1B)-nephropathy (n = 40). The results were correlated with chronic kidney disease (CKD) stage and annual estimated glomerular filtration rate (eGFR) decline. Results Median uDKK3-to-creatinine ratios (uDKK3/crea) in all disease entities were significantly higher compared with healthy controls (11pg/mg uDKK3/crea, P < 0.001): NPH, 1.219 pg/mg; HNF1B, 731 pg/mg; BBS, 541 pg/mg; and ARPKD, 437 pg/mg. A significant correlation of CKD stage with uDKK3 levels was observed for all disease entities (P < 0.0001) with no other clinical parameter having a relevant impact. In our cohort, uDKK3 values >4.700 pg/mg were associated with a significantly greater annual eGFR loss independently of diagnosis and eGFR (P = 0.0029). Although we observed a trend toward lower uDKK3 levels in glomerulopathies compared to renal ciliopathies, there was no discriminative difference between individual ciliopathy entities (P = 0.2637). Conclusion In renal ciliopathies, uDKK3 is a marker to assess disease severity and estimate short-term kidney function decline.
Collapse
Affiliation(s)
- Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Danilo Fliser
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Center for Family Health and Center for Rare Disease, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
- Else Kroener Fresenius Center for Nephrological Research, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Lars Pape
- Department of Pediatrics II, University Hospital of Essen, Essen, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jens Christian König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - NEOCYST Consortium10
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University Medical Center, Homburg/ Saar, Germany
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Center for Family Health and Center for Rare Disease, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
- Else Kroener Fresenius Center for Nephrological Research, University Hospital Frankfurt, Frankfurt, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
- Department of Pediatrics II, University Hospital of Essen, Essen, Germany
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| |
Collapse
|
5
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
6
|
Al-Obaidi AD, Al-Obiade R, Al-Fatlawi N, Al-Badri SG, Al-Musawi M, Hashim HT, Al-Zeena A, Al-Obaidi MN, Hashim AS, Al-Awad A. Early-onset renal dysfunction in Jeune syndrome: A case report with atypical presentation. Radiol Case Rep 2024; 19:5754-5757. [PMID: 39314660 PMCID: PMC11418106 DOI: 10.1016/j.radcr.2024.08.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Jeune syndrome, a rare autosomal recessive disorder, is characterized by skeletal abnormalities, particularly a narrow, bell-shaped chest, leading to severe respiratory distress in newborns. This case report details a full-term female neonate presenting with significant respiratory challenges, typical skeletal features, and early-onset renal dysfunction. Despite normal initial imaging, persistent renal abnormalities were observed, underscoring the need for early diagnosis, vigilant monitoring, and a multidisciplinary management approach to optimize outcomes for patients with Jeune syndrome.
Collapse
Affiliation(s)
| | - Reem Al-Obiade
- University of Baghdad, College of Medicine, Baghdad, Iraq
| | | | | | | | | | - Asma Al-Zeena
- University of Al-Mustansiriyah, College Of Medicine, Baghdad, Iraq
| | | | | | | |
Collapse
|
7
|
Zhen Z, Dong Z, Gao L, Wang Q, Chen X, Na J, Yuan Y. Novel mutation in XPNPEP3 in a patient with heart failure without nephronophthisis-like nephropathy (NPHPL1): case report and literature review. BMC Pediatr 2024; 24:632. [PMID: 39363162 PMCID: PMC11451151 DOI: 10.1186/s12887-024-05124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND X-PROLYL AMINOPEPTIDASE 3: (XPNPEP3) mutations are known to cause nephronophthisis-like nephropathy-1 (NPHPL1), a rare autosomal-recessive kidney disease characterized by progressive kidney failure and cystic kidney disease in childhood. The full phenotypic spectrum associated with mutations in XPNPEP3 is not fully elucidated. CASE PRESENTATION: A 13-year-old Chinese female patient with intellectual disability presented with a 2-year history of convulsions and fatigue, with a recent episode of swelling, breathlessness, and nocturnal dyspnea lasting 10 days. The patient was diagnosed with heart failure and kidney failure. Whole exome sequencing revealed a homozygous c.970-2 A > G mutation in XPNPEP3 associated with severe cardiac dysfunction and neurological symptoms, including epilepsy and intellectual disability. Notably, kidney ultrasound did not reveal the typical changes of NPHPL1, and kidney failure was hypothesized to be secondary to cardiac dysfunction rather than primary kidney pathology. CONCLUSIONS: This case suggests the possible association of additional phenotypic features associated with XPNPEP3 mutations, emphasizing the need for further investigation into the heterogeneous clinical presentations associated with XPNPEP3 mutations. The findings highlight the importance of considering alternative phenotypes in patients with genetic mutations traditionally associated with specific diseases. Segregation and functional analyses are necessary to determine causality between the c.970-2 A > G XPNPEP3 mutation and disease.
Collapse
Affiliation(s)
- Zhen Zhen
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Ziyan Dong
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Lu Gao
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Qin Wang
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Xi Chen
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jia Na
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yue Yuan
- Department of Cardiology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China.
| |
Collapse
|
8
|
Sen S, Fabozzi L, Fujinami K, Fujinami-Yokokawa YU, Wright GA, Webster A, Mahroo O, Robson AG, Georgiou M, Michaelides M. IQCB1 (NPHP5)-Retinopathy: Clinical and Genetic Characterization and Natural History. Am J Ophthalmol 2024; 264:205-215. [PMID: 38522724 PMCID: PMC11752837 DOI: 10.1016/j.ajo.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE To describe the clinical and genetic features, and explore the natural history of retinopathy associated with IQCB1 variants in children and adults with retinopathy. DESIGN Retrospective cohort study at a single tertiary care referral center. METHODS The study recruited 19 patients with retinopathy, harboring likely disease-causing variants in IQCB1. Demographic data and clinical presentation, best corrected visual acuity (BCVA), fundus appearance, optical coherence tomography (OCT) and autofluorescence features, electroretinography (ERG) and molecular genetics are reported. RESULTS Ten patients had best corrected visual acuity better than 1.0 LogMAR, and BCVA remained stable till the last review. Seven patients had a vision of hand movements or worse in at least one eye at presentation. There was no correlation found between age of onset and severity of vision loss. Nine patients (47.4%) had a diagnosis of end-stage renal failure at presentation. The other 10 patients (52.6%) had a diagnosis of non-syndromic IQCB1-retinopathy and maintained normal renal function until the last follow-up. The mean age at diagnosis of renal failure was 26.3 ±19.8 years. OCT showed ellipsoid zone (EZ) disruption with foveal sparing in 8/13 patients. All patients had stable OCT findings. Full-field ERGs in four adults revealed a severe cone-rod dystrophy and three children had extinguished ERGs. We identified 17 IQCB1 variants, all predicted to cause loss of function. CONCLUSION IQCB1-retinopathy is a severe early-onset cone-rod dystrophy. The dissociation between severely decreased retinal function and relative preservation of retinal structure over a wide age window makes the disease a candidate for gene therapy.
Collapse
Affiliation(s)
- Sagnik Sen
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom
| | - Lorenzo Fabozzi
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom
| | - Kaoru Fujinami
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research (K.F., Y.F.-Y.), National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Y U Fujinami-Yokokawa
- UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research (K.F., Y.F.-Y.), National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan; Department of Health Policy and Management (Y.F.-Y.), Keio University School of Medicine, Tokyo, Japan
| | - Genevieve A Wright
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom
| | - Andrew Webster
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom
| | - Omar Mahroo
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom
| | - Anthony G Robson
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom
| | - Michalis Georgiou
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom; Jones Eye Institute (M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Michel Michaelides
- Moorfields Eye Hospital (S.S, L.F., K.F., G.W., A.W., O.M., A.R., M.G., M.MM), London, United Kingdom; UCL Institute of Ophthalmology (S.S., K.F., Y.F.-K., A.W., O.M., A.R., M.G., M.M.), University College London, London, United Kingdom.
| |
Collapse
|
9
|
Liu X, Pacwa A, Bresciani G, Swierczynska M, Dorecka M, Smedowski A. Retinal primary cilia and their dysfunction in retinal neurodegenerative diseases: beyond ciliopathies. Mol Med 2024; 30:109. [PMID: 39060957 PMCID: PMC11282803 DOI: 10.1186/s10020-024-00875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cilia are sensory organelles that extend from the cellular membrane and are found in a wide range of cell types. Cilia possess a plethora of vital components that enable the detection and transmission of several signaling pathways, including Wnt and Shh. In turn, the regulation of ciliogenesis and cilium length is influenced by various factors, including autophagy, organization of the actin cytoskeleton, and signaling inside the cilium. Irregularities in the development, maintenance, and function of this cellular component lead to a range of clinical manifestations known as ciliopathies. The majority of people with ciliopathies have a high prevalence of retinal degeneration. The most common theory is that retinal degeneration is primarily caused by functional and developmental problems within retinal photoreceptors. The contribution of other ciliated retinal cell types to retinal degeneration has not been explored to date. In this review, we examine the occurrence of primary cilia in various retinal cell types and their significance in pathology. Additionally, we explore potential therapeutic approaches targeting ciliopathies. By engaging in this endeavor, we present new ideas that elucidate innovative concepts for the future investigation and treatment of retinal ciliopathies.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Anna Pacwa
- GlaucoTech Co, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | | | - Marta Swierczynska
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland
| | - Mariola Dorecka
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co, Katowice, Poland.
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland.
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Ceglana 35, 40-514, Katowice, Poland.
| |
Collapse
|
10
|
Tory K. The dominant findings of a recessive man: from Mendel's kid pea to kidney. Pediatr Nephrol 2024; 39:2049-2059. [PMID: 38051388 PMCID: PMC11147900 DOI: 10.1007/s00467-023-06238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
The research of Mendel, born two centuries ago, still has many direct implications for our everyday clinical work. He introduced the terms "dominant" and "recessive" characters and determined their 3:1 ratio in the offspring of heterozygous "hybrid" plants. This distribution allowed calculation of the number of the phenotype-determining "elements," i.e., the alleles, and has been used ever since to prove the monogenic origin of a disorder. The Mendelian inheritance of monogenic kidney disorders is still of great help in distinguishing them from those with multifactorial origin in clinical practice. Inheritance of most monogenic kidney disorders fits to Mendel's observations: the equal contribution of the two parents and the complete penetrance or the direct correlation between the frequency of the recessive character and the degree of inbreeding. Nevertheless, beyond the truth of these basic concepts, several observations have expanded their genetic characteristics. The extreme genetic heterogeneity, the pleiotropy of the causal genes and the role of modifiers in ciliopathies, the digenic inheritance and parental imprinting in some tubulopathies, and the incomplete penetrance and eventual interallelic interactions in podocytopathies, reflect this expansion. For all these reasons, the transmission pattern in a natural setting may depend not only on the "character" but also on the causal gene and the variant. Mendel's passion for research combined with his modest personality and meticulous approach can still serve as an example in the work required to understand the non-Mendelian universe of genetics.
Collapse
Affiliation(s)
- Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences, Budapest, Hungary.
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Kuwasako K, Dang W, He F, Takahashi M, Tsuda K, Nagata T, Tanaka A, Kobayashi N, Kigawa T, Güntert P, Shirouzu M, Yokoyama S, Muto Y. 1H, 13C, and 15N resonance assignments and solution structure of the N-terminal divergent calponin homology (NN-CH) domain of human intraflagellar transport protein 54. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:71-78. [PMID: 38551798 DOI: 10.1007/s12104-024-10170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.
Collapse
Affiliation(s)
- Kanako Kuwasako
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan
| | - Weirong Dang
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Fahu He
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Kengo Tsuda
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Nagata
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Advanced Energy, Graduate School of Energy Science, Kyoto University, Gokasho, Kyoto, Uji, 611-0011, Japan
| | - Akiko Tanaka
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Yokohama NMR Facility, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
- Institute of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich, 8093, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192- 0397, Japan
| | - Mikako Shirouzu
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Yokohama, 230-0045, Japan.
| | - Yutaka Muto
- RIKEN, Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230- 0045, Japan.
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, 202-8585, Japan.
| |
Collapse
|
12
|
Pacheco-Orozco RA, Forero-Delgadillo JM, Ochoa V, Toro JS, Pachajoa H, Restrepo JM. Genetic and radiological aspects of pediatric renal cystic disease: A case series. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:27-41. [PMID: 39079142 PMCID: PMC11357701 DOI: 10.7705/biomedica.7110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024]
Abstract
Renal cystic diseases are common conditions whose etiology can be highly heterogeneous. They require a correct approach for adequate diagnosis and management. We aimed to illustrate part of the spectrum of renal cystic diseases through some clinical cases managed in our service. We describe 11 clinical cases including clinical entities such as renal multicystic dysplasia, and autosomal dominant and autosomal recessive polycystic renal disease, among other pathologies. Renal cystic diseases are heterogeneous in their clinical presentation, natural history, radiological findings, and genetic and pathophysiological basis. An integral clinical approach is needed to get a clear etiological diagnosis and offer adequate individualized care and follow-up for patients.
Collapse
Affiliation(s)
- Rafael Adrián Pacheco-Orozco
- Servicio de Genética, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
| | - Jessica María Forero-Delgadillo
- Servicio de Nefrología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
| | - Vanessa Ochoa
- Servicio de Nefrología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
| | - Juan Sebastián Toro
- Servicio de Imágenes Diagnósticas, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
| | - Harry Pachajoa
- Servicio de Genética, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
| | - Jaime Manuel Restrepo
- Servicio de Nefrología Pediátrica, Fundación Valle del Lili, Cali, ColombiaFundación Valle del LiliFundación Valle del LiliCaliColombia
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, ColombiaUniversidad IcesiUniversidad IcesiCaliColombia
| |
Collapse
|
13
|
Patel MM, Gerakopoulos V, Petsouki E, Zimmerman KA, Tsiokas L. Nephronophthisis-associated FBW7 mediates cyst-dependent decline of renal function in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582788. [PMID: 38464230 PMCID: PMC10925305 DOI: 10.1101/2024.02.29.582788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nephronophthisis (NPHP) and autosomal dominant Polycystic Kidney Disease (ADPKD) are two genetically distinct forms of Polycystic Kidney Disease (PKD), yet both diseases present with kidney cysts and a gradual decline in renal function. Prevailing dogma in PKD is that changes in kidney architecture account for the decline in kidney function, but the molecular/cellular basis of such coupling is unknown. To address this question, we induced a form of proteome reprogramming by deleting Fbxw7 encoding FBW7, the recognition receptor of the SCF FBW7 E3 ubiquitin ligase in different segments of the kidney tubular system. Deletion of Fbxw7 in the medulla led to a juvenile-adult NPHP-like phenotype, where the decline in renal function was due to SOX9-mediated interstitial fibrosis rather than cystogenesis. In contrast, the decline of renal function in ADPKD is coupled to cystic expansion via the abnormal accumulation of FBW7 in the proximal tubules and other cell types in the renal cortex. We propose that FBW7 functions at the apex of a protein network that determines renal function in ADPKD by sensing architectural changes induced by cystic expansion.
Collapse
|
14
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
15
|
Djaziri N, Burel C, Abbad L, Bakey Z, Piedagnel R, Lelongt B. Cleavage of periostin by MMP9 protects mice from kidney cystic disease. PLoS One 2023; 18:e0294922. [PMID: 38039285 PMCID: PMC10691688 DOI: 10.1371/journal.pone.0294922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The matrix metalloproteinase MMP9 influences cellular morphology and function, and plays important roles in organogenesis and disease. It exerts both protective and deleterious effects in renal pathology, depending upon its specific substrates. To explore new functions for MMP9 in kidney cysts formation and disease progression, we generated a mouse model by breeding juvenile cystic kidney (jck) mice with MMP9 deficient mice. Specifically, we provide evidence that MMP9 is overexpressed in cystic tissue where its enzymatic activity is increased 7-fold. MMP9 deficiency in cystic kidney worsen cystic kidney diseases by decreasing renal function, favoring cyst expansion and fibrosis. In addition, we find that periostin is a new critical substrate for MMP9 and in its absence periostin accumulates in cystic lining cells. As periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney diseases, we propose that the control of periostin by MMP9 and its associated intracellular signaling pathways including integrins, integrin-linked kinase and focal adhesion kinase confers to MMP9 a protective effect on the severity of the disease.
Collapse
Affiliation(s)
- Nabila Djaziri
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Cindy Burel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Lilia Abbad
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Zeineb Bakey
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Rémi Piedagnel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Brigitte Lelongt
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| |
Collapse
|
16
|
Hanna C, Iliuta IA, Besse W, Mekahli D, Chebib FT. Cystic Kidney Diseases in Children and Adults: Differences and Gaps in Clinical Management. Semin Nephrol 2023; 43:151434. [PMID: 37996359 DOI: 10.1016/j.semnephrol.2023.151434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cystic kidney diseases, when broadly defined, have a wide differential diagnosis extending from recessive diseases with a prenatal or pediatric diagnosis, to the most common autosomal-dominant polycystic kidney disease primarily affecting adults, and several other genetic or acquired etiologies that can manifest with kidney cysts. The most likely diagnoses to consider when assessing a patient with cystic kidney disease differ depending on family history, age stratum, radiologic characteristics, and extrarenal features. Accurate identification of the underlying condition is crucial to estimate the prognosis and initiate the appropriate management, identification of extrarenal manifestations, and counseling on recurrence risk in future pregnancies. There are significant differences in the clinical approach to investigating and managing kidney cysts in children compared with adults. Next-generation sequencing has revolutionized the diagnosis of inherited disorders of the kidney, despite limitations in access and challenges in interpreting the data. Disease-modifying treatments are lacking in the majority of kidney cystic diseases. For adults with rapid progressive autosomal-dominant polycystic kidney disease, tolvaptan (V2-receptor antagonist) has been approved to slow the rate of decline in kidney function. In this article, we examine the differences in the differential diagnosis and clinical management of cystic kidney disease in children versus adults, and we highlight the progress in molecular diagnostics and therapeutics, as well as some of the gaps meriting further attention.
Collapse
Affiliation(s)
- Christian Hanna
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Ioan-Andrei Iliuta
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Whitney Besse
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
17
|
De Groof J, Dachy A, Breysem L, Mekahli D. Cystic kidney diseases in children. Arch Pediatr 2023; 30:240-246. [PMID: 37062654 DOI: 10.1016/j.arcped.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 04/18/2023]
Abstract
Cystic kidney disease comprises a broad group of heterogeneous diseases, which differ greatly in age at onset, disease manifestation, systemic involvement, disease progression, and long-term prognosis. As our understanding of these diseases continues to evolve and new treatment strategies continue to emerge, correctly differentiating and diagnosing these diseases becomes increasingly important. In this review, we aim to highlight the key features of the most relevant cystic kidney diseases, underscore important diagnostic characteristics of each disease, and present specific management options if applicable.
Collapse
Affiliation(s)
- J De Groof
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - A Dachy
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium
| | - L Breysem
- Department of Pediatric Radiology, University Hospitals Leuven, Leuven, Belgium
| | - D Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
19
|
Reducing GEF-H1 Expression Inhibits Renal Cyst Formation, Inflammation, and Fibrosis via RhoA Signaling in Nephronophthisis. Int J Mol Sci 2023; 24:ijms24043504. [PMID: 36834937 PMCID: PMC9967383 DOI: 10.3390/ijms24043504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Nephronophthisis (NPHP) is the most prevalent monogenic disease leading to end-stage renal failure in childhood. RhoA activation is involved in NPHP pathogenesis. This study explored the role of the RhoA activator guanine nucleotide exchange factor (GEF)-H1 in NPHP pathogenesis. We analyzed the expression and distribution of GEF-H1 in NPHP1 knockout (NPHP1KO) mice using Western blotting and immunofluorescence, followed by GEF-H1 knockdown. Immunofluorescence and renal histology were used to examine the cysts, inflammation, and fibrosis. A RhoA GTPase activation assay and Western blotting were used to detect the expression of downstream GTP-RhoA and p-MLC2, respectively. In NPHP1 knockdown (NPHP1KD) human kidney proximal tubular cells (HK2 cells), we detected the expressions of E-cadherin and α-smooth muscle actin (α-SMA). In vivo, increased expression and redistribution of GEF-H1, and higher levels of GTP-RhoA and p-MLC2 in renal tissue of NPHP1KO mice were observed, together with renal cysts, fibrosis, and inflammation. These changes were alleviated by GEF-H1 knockdown. In vitro, the expression of GEF-H1 and activation of RhoA were also increased, with increased expression of α-SMA and decreased E-cadherin. GEF-H1 knockdown reversed these changes in NPHP1KD HK2 cells. Thus, the GEF-H1/RhoA/MLC2 axis is activated in NPHP1 defects and may play a pivotal role in NPHP pathogenesis.
Collapse
|
20
|
Manti S, Gitto E, Ceravolo I, Mancuso A, Ceravolo A, Salpietro A, Farello G, Chimenz R, Iapadre G, Battaglia F, Cuppari C. A Brief Focus on Joubert Syndrome and Related Acute Complications. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:003-007. [DOI: 10.1055/s-0042-1760240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) and related disorders are a group of congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign, a complex midbrain–hindbrain malformation. Moreover, JS may be associated with multiorgan involvement, mainly nephronophthisis, hepatic fibrosis, retinal dystrophy, and other abnormalities with both inter- and intra-familial variability. Therefore, these patients should be followed by both diagnostic protocol and multidisciplinary approach to assess multiorgan involvement. Here, we briefly summarize the possible complications in patients with JS.
Collapse
Affiliation(s)
- Sara Manti
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Francesco Battaglia
- Department of Biomedical Sciences and Advanced Therapies, Orthopaedic Clinic, University of Ferrara, Ferrara, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
21
|
Cuppari C, Ceravolo I, Mancuso A, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo MD. Joubert Syndrome: Diagnostic Evaluation and Follow-up. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:053-057. [DOI: 10.1055/s-0042-1759532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe follow-up of a child with genetic syndrome is necessarily multidisciplinary because of the multiplicity of problems and calls for close collaboration between different specialists. The primary objective is the total care of the child and his family, regardless of the rarity and complexity of the disease, to obtain the highest possible degree of mental and physical health and autonomy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
22
|
Guha C, Khalid R, van Zwieten A, Francis A, Hawley CM, Jauré A, Teixeira-Pinto A, Mallard AR, Bernier-Jean A, Johnson DW, Hahn D, Reidlinger D, Pascoe EM, Ryan EG, Mackie F, McCarthy HJ, Craig JC, Varghese J, Kiriwandeniya C, Howard K, Larkins NG, Macauley L, Walker A, Howell M, Irving M, Caldwell PHY, Woodleigh R, Jesudason S, Carter SA, Kennedy SE, Alexander SI, McTaggart S, Wong G. Baseline characteristics of participants in the NAVKIDS 2 trial: a patient navigator program in children with chronic kidney disease. Pediatr Nephrol 2022; 38:1577-1590. [PMID: 36264432 PMCID: PMC9584266 DOI: 10.1007/s00467-022-05772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Children with chronic kidney disease (CKD) require multidisciplinary care to meet their complex healthcare needs. Patient navigators are trained non-medical personnel who assist patients and caregivers to overcome barriers to accessing health services through care coordination. This trial aims to determine the effectiveness of a patient navigator program in children with CKD. METHODS The NAVKIDS2 trial is a multi-center, waitlisted, randomized controlled trial of patient navigators in children with CKD conducted at five sites across Australia. Children (0-16 years) with CKD from low socioeconomic status rural or remote areas were randomized to an intervention group or a waitlisted control group (to receive intervention after 6 months). The study primary and secondary endpoints include the self-rated health (SRH) (primary), and utility-based quality of life, progression of kidney dysfunction of the child, SRH, and satisfaction with healthcare of the caregiver at 6 months post-randomization. RESULTS The trial completed recruitment in October 2021 with expected completion of follow-up by October 2022. There were 162 patients enrolled with 80 and 82 patients randomized to the immediate intervention and waitlisted groups, respectively. Fifty-eight (36%) participants were from regional/remote areas, with a median (IQR) age of 9.5 (5.0, 13.0) years, 46% were of European Australian ethnicity, and 65% were male. A total of 109 children (67%) had CKD stages 1-5, 42 (26%) were transplant recipients, and 11 (7%) were receiving dialysis. CONCLUSION The NAVKIDS2 trial is designed to evaluate the effectiveness of patient navigation in children with CKD from families experiencing socioeconomic disadvantage. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Chandana Guha
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Rabia Khalid
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Anita van Zwieten
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Anna Francis
- Child and Adolescent Renal Services, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Allison Jauré
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Alistair R Mallard
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Amelie Bernier-Jean
- CIUSSS du Nord-de-l'Île de Montréal, University of Montréal, Montreal, Canada
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Deirdre Hahn
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Department of Nephrology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Donna Reidlinger
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
| | - Elaine M Pascoe
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth G Ryan
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Fiona Mackie
- Department of Nephrology, Sydney Children's Hospital, Randwick, Sydney, NSW, Australia
| | - Hugh J McCarthy
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Department of Nephrology, Sydney Children's Hospital, Randwick, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan C Craig
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Julie Varghese
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
| | - Charani Kiriwandeniya
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsten Howard
- Menzies Centre for Health Policy and Economics and Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas G Larkins
- Department of Nephrology, Perth Children's Hospital, Perth, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | | | - Amanda Walker
- Department of Nephrology, Royal Children's Hospital, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Martin Howell
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Michelle Irving
- Menzies Centre for Health Policy, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
- Centre for Evidence and Implementation, 33 Lincoln Square South Carlton, Melbourne, VIC, 3053, Australia
| | - Patrina H Y Caldwell
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Shilpanjali Jesudason
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Simon A Carter
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Sean E Kennedy
- Department of Nephrology, Sydney Children's Hospital, Randwick, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Steven McTaggart
- Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Germaine Wong
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia.
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia.
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
23
|
NPHP3 splice acceptor site variant is associated with infantile nephronophthisis and asphyxiating thoracic dystrophy; A rare combination. Eur J Med Genet 2022; 65:104578. [PMID: 35987473 DOI: 10.1016/j.ejmg.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Nephronophthisis (NPHP) is a group of rare inherited ciliopathy disorders characterized by the multicystic dysplastic kidney, oligohydramnios, and tubulointerstitial nephritis that progresses to end-stage renal disease (ESRD). NPHP is a clinically and genetically heterogeneous disorder with extrarenal symptoms including skeletal deformities, nervous system anomalies, and ophthalmologic features. Three clinical subtypes, infantile, juvenile, and adolescent, have been recognized based on age of onset of ESRD. Infantile nephronophthisis with asphyxiating thoracic dystrophy is a very rare association. Here, we investigated a consanguineous family having two neonates with a clinical phenotype of lethal infantile NPHP associated with asphyxiating thoracic dystrophy. Whole exome sequence data analysis identified a splice acceptor site variant (Chr3-132408107-CCT-C; NM_153240.4: c.2694-2_2694-1del) in the NPHP3 gene. The segregation of a variant in the family was confirmed by Sanger sequencing. The lethal phenotype in our case might be due to respiratory insufficiency secondary to a severely restricted thoracic cage. Present work is an exclusive depiction of lethal infantile NPHP phenotype in association with asphyxiating thoracic dystrophy that has not been reported before in families segregating NPHP3 mutations. Moreover, this work expands the phenotypic spectrum of NPHP3 variants. Overall, our findings add to the increasing body of evidence that mutations in ciliary genes/proteins show pleiotropic effects with phenotypic overlap between related disorders and apparently unrelated clinical entities.
Collapse
|
24
|
König JC, Karsay R, Gerß J, Schlingmann KP, Dahmer-Heath M, Telgmann AK, Kollmann S, Ariceta G, Gillion V, Bockenhauer D, Bertholet-Thomas A, Mastrangelo A, Boyer O, Lilien M, Decramer S, Schanstra J, Pohl M, Schild R, Weber S, Hoefele J, Drube J, Cetiner M, Hansen M, Thumfart J, Tönshoff B, Habbig S, Liebau MC, Bald M, Bergmann C, Pennekamp P, Konrad M. Refining Kidney Survival in 383 Genetically Characterized Patients With Nephronophthisis. Kidney Int Rep 2022; 7:2016-2028. [PMID: 36090483 PMCID: PMC9459005 DOI: 10.1016/j.ekir.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We assessed differences in kidney survival, impact of variant type, and the association of clinical characteristics with declining kidney function. Methods Data was obtained from 3 independent sources, namely the network for early onset cystic kidney diseases clinical registry (n = 105), an online survey sent out to the European Reference Network for Rare Kidney Diseases (n = 60), and a literature search (n = 218). Results A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85 NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3–12.0); NPHP1, 13.5 years (interquartile range 10.5–16.5); NPHP4, 16.0 years (interquartile range 11.0–25.0); and NPHP11/TMEM67, 19.0 years (interquartile range 8.7–28.0). Kidney survival was significantly associated with the underlying variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio 2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was linked to an accelerated glomerular filtration rate (GFR) decline. Conclusion The presented data will enable clinicians to better estimate kidney prognosis of distinct patients with NPH and thereby allow personalized counseling.
Collapse
|
25
|
Avcı B, Baskın E, Gülleroğlu K, Çaltık Yılmaz A, Kantar A, Akdur A, Moray G, Haberal M. Long-Term Outcomes of Kidney Transplant Recipients With Juvenile Nephronophthisis. EXP CLIN TRANSPLANT 2022; 20:122-125. [PMID: 35570616 DOI: 10.6002/ect.pediatricsymp2022.o39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Nephronophthisis is the most common genetic cause of kidney failure in childhood. Treatment for nephronophthisis is symptomatic, and kidney transplant is a good treatment option when kidney failure has developed. We reported the outcomes of kidney transplant recipients with primary diagnosis of juvenile nephronophthisis who were followed-up in our center. MATERIALS AND METHODS We retrospectively examined medical records of 17 kidney transplant patients with a primary diagnosis of juvenile nephronophthisis. We compared this group of 17 patients with kidney transplant recipients who had other etiologies of kidney failure in terms of transplant age, donor type, immunosuppressive treatment, acute rejection, graft loss rates, and glomerular filtration rates at 1 and 5 years posttransplant (N = 180 total analyzed). RESULTS Among 180 kidney transplant recipients, the 17 patients (9.4%) with nephronophthisis had a mean age of 12.6 ± 4.3 years and mean follow-up time posttransplant of 79.5 ± 41.9 months. Five of 17 patients received a kidney transplant from a deceased donor (29.4%), and the remaining 12 patients (70.6%) received transplants from living related donors. Preemptive kidney transplant was performed in 4 patients (23.5%). There was a statistically significant difference (P < .05) in terms of acute rejection between patients with nephronophthisis (17.6%) versus patients with other primary diagnoses (34%). However, the patients with nephronophthisis versus those with other primary diagnoses were similar (P > .05) in terms of transplant age (12.6 ± 4.3 vs 13.8 ± 6.7 years, respectively) and follow-up time (79.5 ± 41.9 vs 59.1 ± 38.8 months, respectively). Donor type, immunosuppressive treatment, and 1-year (96.7 ± 23.2 vs 97.6 ± 28.4 mL/min/1.73 m2) and 5-year (84.7 ± 31.1 vs 86.7 ± 21.7 mL/min/1.73 m2) glomerular filtration rates were also similar (P > .05) between groups. CONCLUSIONS Posttransplant prognosis was good among kidney transplant recipients with juvenile nephronophthisis.
Collapse
Affiliation(s)
- Begüm Avcı
- From the Department of Pediatric Nephrology, Baskent University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Agonists of prostaglandin E 2 receptors as potential first in class treatment for nephronophthisis and related ciliopathies. Proc Natl Acad Sci U S A 2022; 119:e2115960119. [PMID: 35482924 PMCID: PMC9170064 DOI: 10.1073/pnas.2115960119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceJuvenile nephronophthisis (NPH) is a renal ciliopathy due to a dysfunction of primary cilia for which no curative treatment is available. This paper describes the identification of agonists of prostaglandin E2 receptors as a potential therapeutic approach for the most common NPHP1-associated ciliopathies. We demonstrated that prostaglandin E1 rescues defective ciliogenesis and ciliary composition in NPHP1 patient urine-derived renal tubular cells and improves ciliary and kidney phenotypes in our NPH zebrafish and Nphp1-/- mouse models. In addition, Taprenepag alleviates the severe retinopathy observed in Nphp1-/- mice. Finally, transcriptomic analyses pointed out several pathways downstream the prostaglandin receptors as cell cycle progression, extracellular matrix, or actin cytoskeleton organization. Altogether, our findings provide an alternative for treatment of NPH.
Collapse
|
27
|
Petit C, Cantarovich D, Langs V, Isidor B, Figueres L. [Genetic screening is essential in polycystic kidney disease: It is never too late!]. Nephrol Ther 2022; 18:144-147. [PMID: 35101355 DOI: 10.1016/j.nephro.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
In France, numerous patients suffered from chronic kidney disease on polycystic kidney disorder. If PKD1 and PKD2 inactivating mutations are the most prevalent, several other genetic polycystic kidney diseases are responsible for similar kidney features and may be associated with severe extrarenal phenotypes. Genetic analysis in front of a polycystic disorder is not systematic, but is essential to assess the genetic diagnosis, discuss the intensity of treatment (vaptan) and precise the prognostic and the transmission of the phenotype. We detailed the case of a patient with end stage renal disease due to a polycystic kidney disease. Genetic analysis at 70 year of age revealed an oral-facial-digital syndrome type 1. The diagnosis had an important impact in the familial history and to attach the extrarenal phenotype to the syndrome. Our case illustrates that, in front of a polycystic kidney disease (even in aged patients with end stage renal disease) genetic screening is essential, for the propositus and their family and to take care of the extrarenal manifestations.
Collapse
Affiliation(s)
- Clémence Petit
- Service de néphrologie et d'immunologie clinique, CHU de Nantes, France; CRTI, ITUN, Université de Médecine de Nantes, France
| | - Diego Cantarovich
- Service de néphrologie et d'immunologie clinique, CHU de Nantes, France
| | - Virginie Langs
- Pôle Santé des Olonnes - Association ECHO, Les Sables d'Olonne, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Université de Médecine de Nantes, France
| | - Lucile Figueres
- Service de néphrologie et d'immunologie clinique, CHU de Nantes, France; CRTI, ITUN, Université de Médecine de Nantes, France.
| |
Collapse
|
28
|
Heidenreich LS, Bendel-Stenzel EM, Harris PC, Hanna C. Genetic Etiologies, Diagnosis, and Management of Neonatal Cystic Kidney Disease. Neoreviews 2022; 23:e175-e188. [PMID: 35229136 DOI: 10.1542/neo.23-3-e175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fetal kidney development is a complex and carefully orchestrated process. The proper formation of kidney tissue involves many transcription factors and signaling pathways. Pathogenic variants in the genes that encodethese factors and proteins can result in neonatal cystic kidney disease. Advancements in genomic sequencing have allowed us to identify many of these variants and better understand the genetic underpinnings for an increasing number of presentations of childhood kidney disorders. This review discusses the genes essential in kidney development, particularly those involved in the structure and function of primary cilia, and implications of gene identification for prognostication and management of cystic kidney disorders.
Collapse
Affiliation(s)
- Leah S Heidenreich
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Ellen M Bendel-Stenzel
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN
| | - Peter C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Christian Hanna
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
29
|
Mansour F, Boivin FJ, Shaheed IB, Schueler M, Schmidt-Ott KM. The Role of Centrosome Distal Appendage Proteins (DAPs) in Nephronophthisis and Ciliogenesis. Int J Mol Sci 2021; 22:ijms222212253. [PMID: 34830133 PMCID: PMC8621283 DOI: 10.3390/ijms222212253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The primary cilium is found in most mammalian cells and plays a functional role in tissue homeostasis and organ development by modulating key signaling pathways. Ciliopathies are a group of genetically heterogeneous disorders resulting from defects in cilia development and function. Patients with ciliopathic disorders exhibit a range of phenotypes that include nephronophthisis (NPHP), a progressive tubulointerstitial kidney disease that commonly results in end-stage renal disease (ESRD). In recent years, distal appendages (DAPs), which radially project from the distal end of the mother centriole, have been shown to play a vital role in primary ciliary vesicle docking and the initiation of ciliogenesis. Mutations in the genes encoding these proteins can result in either a complete loss of the primary cilium, abnormal ciliary formation, or defective ciliary signaling. DAPs deficiency in humans or mice commonly results in NPHP. In this review, we outline recent advances in our understanding of the molecular functions of DAPs and how they participate in nephronophthisis development.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Felix J. Boivin
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Iman B. Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12613 Giza, Egypt;
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Correspondence: (M.S.); (K.M.S.-O.)
| | - Kai M. Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (F.M.); (F.J.B.)
- Molecular and Translational Kidney Research, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence: (M.S.); (K.M.S.-O.)
| |
Collapse
|
30
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
31
|
Yahalom C, Volovelsky O, Macarov M, Altalbishi A, Alsweiti Y, Schneider N, Hanany M, Khan MI, Cremers FPM, Anteby I, Banin E, Sharon D, Khateb S. SENIOR-LØKEN SYNDROME: A Case Series and Review of the Renoretinal Phenotype and Advances of Molecular Diagnosis. Retina 2021; 41:2179-2187. [PMID: 33512896 DOI: 10.1097/iae.0000000000003138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To report genetic and clinical findings in a case series of 10 patients from eight unrelated families diagnosed with Senior-Løken syndrome. METHODS A retrospective study of patients with Senior-Løken syndrome. Data collected included clinical findings electroretinography and ocular imaging. Genetic analysis was based on molecular inversion probes, whole-exome sequencing (WES), and Sanger sequencing. RESULTS All patients who underwent electrophysiology (8/10) had widespread photoreceptor degeneration. Genetic analysis revealed two mutations in NPHP1, two mutations in NPHP4, and two mutations in IQCB1 (NPHP5). Five of the six mutations identified in the current study were found in a single family each in our cohort. The IQCB1-p.R461* mutation has been identified in 3 families. Patients harboring mutations in IQCB1 were diagnosed with Leber congenital amaurosis, while patients with NPHP4 and NPHP1 mutations showed early and sector retinitis pigmentosa, respectively. Full-field electroretinography was extinct for 6 of 10 patients, moderately decreased for two, and unavailable for another 2 subjects. Renal involvement was evident in 7/10 patients at the time of diagnosis. Kidney function was normal (based on serum creatinine) in patients younger than 10 years. Mutations in IQCB1 were associated with high hypermetropia, whereas mutations in NPHP4 were associated with high myopia. CONCLUSION Patients presenting with infantile inherited retinal degeneration are not universally screened for renal dysfunction. Modern genetic tests can provide molecular diagnosis at an early age and therefore facilitate early diagnosis of renal disease with recommended periodic screening beyond childhood and family planning.
Collapse
Affiliation(s)
- Claudia Yahalom
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Volovelsky
- Pediatric Nephrology Unit, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Macarov
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Altalbishi
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Israel
| | - Yahya Alsweiti
- St John of Jerusalem Eye Hospital Group, East Jerusalem, Israel
| | - Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands ; and
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands ; and
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irene Anteby
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
32
|
Zhou J, Yang Z, Yang CS, Lin H. Paraneoplastic focal segmental glomerulosclerosis associated with gastrointestinal stromal tumor with cutaneous metastasis: A case report. World J Clin Cases 2021; 9:8120-8126. [PMID: 34621870 PMCID: PMC8462187 DOI: 10.12998/wjcc.v9.i27.8120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor (GIST) with cutaneous metastasis is very rare. As a result, cutaneous GISTs have not been well characterized. Focal segmental glomerulosclerosis (FSGS) is also a rare symptom among paraneoplastic nephritic syndromes (PNS).
CASE SUMMARY In this case report, we describe a patient with cutaneous metastatic GIST accompanied by nephrotic syndrome occurring as a malignancy-associated PNS, for whom symptomatic treatment was ineffective, but clinical remission was achieved after surgery. Moreover, the patient has a missense mutation in NPHP4, which can explain the occurrences of GIST and FSGS in this patient and indicates that the association is not random.
CONCLUSION This is the first reported case of a GIST with cutaneous metastasis accompanied by nephrotic syndrome manifesting as a PNS.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nephrology and Rheumatology, Haikou People’s Hospital Affiliated to Xiangya School of Medicine of Central South University, Haikou 570208, Hainan Province, China
| | - Zhen Yang
- Department of Nephrology and Rheumatology, Haikou People’s Hospital Affiliated to Xiangya School of Medicine of Central South University, Haikou 570208, Hainan Province, China
| | - Cui-Shun Yang
- Department of Nephrology and Rheumatology, Haikou People’s Hospital Affiliated to Xiangya School of Medicine of Central South University, Haikou 570208, Hainan Province, China
| | - Hua Lin
- Department of Nursing, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, Hainan Province, China
| |
Collapse
|
33
|
Focșa IO, Budișteanu M, Bălgrădean M. Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 2021; 48:176. [PMID: 34278440 PMCID: PMC8354309 DOI: 10.3892/ijmm.2021.5009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023] Open
Abstract
Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania
| |
Collapse
|
34
|
Wu Q, Fenton RA. Urinary proteomics for kidney dysfunction: insights and trends. Expert Rev Proteomics 2021; 18:437-452. [PMID: 34187288 DOI: 10.1080/14789450.2021.1950535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Kidney dysfunction poses a high burden on patients and health care systems. Early detection and accurate prediction of kidney disease progression remains a major challenge. Compared to existing clinical parameters, urinary proteomics has the potential to reveal molecular alterations within the kidney that may alter its function before the onset of clinical symptoms. Thus, urinary proteomics has greater prognostic potential for assessment of kidney dysfunction progression.Areas covered: Advances in urinary proteomics for major causes of kidney dysfunction are discussed. The application of urinary extracellular vesicles for studying kidney dysfunction are discussed. Technological advances in urinary proteomics are discussed. The literature was identified using a database search for titles containing 'proteom*' and 'urin*' and published within the past 5 years. Retrieved literature was manually filtered to retain kidney dysfunctions-related studies.Expert opinion: Despite major advances, diagnosis by urinary proteomics has not been fully applied in any clinical settings. This could be attributed to the complex nature of kidney diseases, in addition to the constraints on study power and feasibility of incorporating mass spectrometry techniques in daily routine analysis. Nevertheless, we are confident that advances in urinary proteomics will soon provide superior insights into kidney disease beyond existing clinical parameters.
Collapse
Affiliation(s)
- Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Birtel J, Spital G, Book M, Habbig S, Bäumner S, Riehmer V, Beck BB, Rosenkranz D, Bolz HJ, Dahmer-Heath M, Herrmann P, König J, Charbel Issa P. NPHP1 gene-associated nephronophthisis is associated with an occult retinopathy. Kidney Int 2021; 100:1092-1100. [PMID: 34153329 DOI: 10.1016/j.kint.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Biallelic deletions in the NPHP1 gene are the most frequent molecular defect of nephronophthisis, a kidney ciliopathy and leading cause of hereditary end-stage kidney disease. Nephrocystin 1, the gene product of NPHP1, is also expressed in photoreceptors where it plays an important role in intra-flagellar transport between the inner and outer segments. However, the human retinal phenotype has never been investigated in detail. Here, we characterized retinal features of 16 patients with homozygous deletions of the entire NPHP1 gene. Retinal assessment included multimodal imaging (optical coherence tomography, fundus autofluorescence) and visual function testing (visual acuity, full-field electroretinography, color vision, visual field). Fifteen patients had a mild retinal phenotype that predominantly affected cones, but with relative sparing of the fovea. Despite a predominant cone dysfunction, night vision problems were an early symptom in some cases. The consistent retinal phenotype on optical coherence tomography images included reduced reflectivity and often a granular appearance of the ellipsoid zone, fading or loss of the interdigitation zone, and mild outer retinal thinning. However, there were usually no obvious structural changes visible upon clinical examination and fundus autofluorescence imaging (occult retinopathy). More advanced retinal degeneration might occur with ageing. An identified additional CEP290 variant in one patient with a more severe retinal degeneration may indicate a potential role for genetic modifiers, although this requires further investigation. Thus, diagnostic awareness about this distinct retinal phenotype has implications for the differential diagnosis of nephronophthisis and for individual prognosis of visual function.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Georg Spital
- Eye Center at St. Franziskus-Hospital Münster, Münster, Germany
| | - Marius Book
- Eye Center at St. Franziskus-Hospital Münster, Münster, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sören Bäumner
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vera Riehmer
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, Cologne, Germany; Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, University of Cologne, University Hospital of Cologne, Cologne, Germany
| | | | - Hanno J Bolz
- Institute of Human Genetics, University of Cologne, University Hospital of Cologne, Cologne, Germany; Senckenberg Centre for Human Genetics, Frankfurt, Germany
| | - Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | | | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
37
|
Rahil MA, Hadjmhamed M. Nephronophthisis and central veins abnormalities: A case report. Clin Case Rep 2021; 9:1977-1979. [PMID: 33936626 PMCID: PMC8077304 DOI: 10.1002/ccr3.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 11/11/2022] Open
Abstract
Patients with genetic disorders are potentially more susceptible to present vascular abnormalities compared to the general population. For these patients, unusual difficulties could appear during a CVC placement procedure that could lead to major complications if venous abnormalities are undiagnosed. Ultrasound and fluoroscopy guidance should be used routinely for all patients in order to avoid complications and catheter misplacement.
Collapse
|
38
|
Thomas CC, Jana M, Sinha A, Bagga A, Ramachandran A, Sudhakaran D, Gupta AK. Ultrasound Imaging of Renal Cysts in Children. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:621-635. [PMID: 32798245 DOI: 10.1002/jum.15435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Renal cysts can be focal or diffuse and unilateral or bilateral. In childhood, most renal cysts are due to hereditary diseases rather than simple cysts or acquired cystic diseases, unlike adults. Inherited cystic diseases can be ciliopathies due to a primary ciliary defect (as in polycystic kidney diseases and nephronophthisis). Acquired causes include obstructive cystic dysplasia, dyselectrolytemia, and acquired cysts in renal replacement therapy. The final diagnosis requires a multispecialty approach, including radiology, pathology, and genetics. Imaging is a very important component in treating patients with cystic renal diseases. This article discusses the ultrasound findings of cystic renal diseases in children, along with a brief discussion of other imaging modalities and a suggested ultrasound reporting format.
Collapse
Affiliation(s)
| | - Manisha Jana
- Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Aditi Sinha
- Departments of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Bagga
- Departments of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Dipin Sudhakaran
- Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Arun Kumar Gupta
- Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
39
|
Kassab GH, Robinson I, Hayes R, Paltiel HJ, Bates DG, Cohen HL, Barth RA, Colleran GCM. Urinary Tract. PEDIATRIC ULTRASOUND 2021:729-833. [DOI: 10.1007/978-3-030-56802-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Murray SL, Fennelly NK, Doyle B, Lynch SA, Conlon PJ. Integration of genetic and histopathology data in interpretation of kidney disease. Nephrol Dial Transplant 2020; 35:1113-1132. [PMID: 32777081 DOI: 10.1093/ndt/gfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.
Collapse
Affiliation(s)
- Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- National Rare Disease Office Mater Hospital Dublin, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
41
|
McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis 2020; 77:410-419. [PMID: 33039432 DOI: 10.1053/j.ajkd.2020.08.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Primary cilia are specialized sensory organelles that protrude from the apical surface of most cell types. During the past 2 decades, they have been found to play important roles in tissue development and signal transduction, with mutations in ciliary-associated proteins resulting in a group of diseases collectively known as ciliopathies. Many of these mutations manifest as renal ciliopathies, characterized by kidney dysfunction resulting from aberrant cilia or ciliary functions. This group of overlapping and genetically heterogeneous diseases includes polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome as the main focus of this review. Renal ciliopathies are characterized by the presence of kidney cysts that develop due to uncontrolled epithelial cell proliferation, growth, and polarity, downstream of dysregulated ciliary-dependent signaling. Due to cystic-associated kidney injury and systemic inflammation, cases result in kidney failure requiring dialysis and transplantation. Of the handful of pharmacologic treatments available, none are curative. It is important to determine the molecular mechanisms that underlie the involvement of the primary cilium in cyst initiation, expansion, and progression for the development of novel and efficacious treatments. This review updates research progress in defining key genes and molecules central to ciliogenesis and renal ciliopathies.
Collapse
Affiliation(s)
- Dominique J McConnachie
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation Disease and Research, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L Stow
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Mallett
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation Disease and Research, The University of Queensland, Brisbane, QLD, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, VIC, Australia.
| |
Collapse
|
42
|
Vnučák M, Graňák K, Skálová P, Laca Ľ, Mokáň M, Dedinská I. Living-Related Kidney Transplantation in a Patient with Juvenile Nephronophthisis. Nephron Clin Pract 2020; 144:583-588. [PMID: 32906116 DOI: 10.1159/000508501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022] Open
Abstract
Nephronophthisis (NPHP) is an autosomal recessive disease manifesting as tubulointerstitial nephritis uniformly progressing to ESRD in approximately 5-10% patients in childhood. Living donor transplantation is the most beneficial mean of renal replacement therapy compared to other methods. However, living kidney donation is contraindicated in potential donor with diseases of autosomal dominant mode of inheritance potentially leading to kidney failure in future. On the other hand, autosomal recessive genetic kidney diseases, such as NPHP, are not usually contraindication to living kidney donation. Herein, we are reporting related living kidney transplantation with a family history of NPHP form 46-year-old mother (heterozygote) to 17-year-old daughter with (autosomal recessive homozygote) with focus on donor follow-up after nephrectomy.
Collapse
Affiliation(s)
- Matej Vnučák
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Karol Graňák
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia ,
| | - Petra Skálová
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Ľudovít Laca
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Marián Mokáň
- 1st Department of Internal Diseases, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| | - Ivana Dedinská
- Department of Surgery and Transplantation Center, University Hospital Martin and Jessenius Medical Faculty of Comenius University, Martin, Slovakia
| |
Collapse
|
43
|
Hibino S, Morisada N, Takeda A, Tanaka K, Nozu K, Yamakawa S, Iijima K, Fujita N. Medullary Cystic Kidney Disease and Focal Segmental Glomerulosclerosis Caused by a Compound Heterozygous Mutation in TTC21B. Intern Med 2020; 59:1735-1738. [PMID: 32238723 PMCID: PMC7434538 DOI: 10.2169/internalmedicine.4266-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mutations in the TTC21B gene have been identified in patients with nephronophthisis and were recently found in some patients with focal segmental glomerulosclerosis. We herein report a Japanese boy with end-stage renal disease due to medullary polycystic kidney disease and primary focal segmental glomerulosclerosis. Next-generation sequencing detected a new compound heterozygous missense mutation in the TTC21B gene. His renal pathological findings and gene mutations have not been previously reported in patients with ciliopathy. For children with severe renal dysfunction, mutations in the TTC21B gene cause both ciliopathy characterized by bilateral polycystic kidney disease and primary focal segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Satoshi Hibino
- Pediatric Nephrology, Aichi Children's Health & Medical Center, Japan
| | | | - Asami Takeda
- Department of Nephrology, Nagoya Second Red Cross Hospital, Japan
| | - Kazuki Tanaka
- Pediatric Nephrology, Aichi Children's Health & Medical Center, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University, Japan
| | - Satoshi Yamakawa
- Pediatric Nephrology, Aichi Children's Health & Medical Center, Japan
| | | | - Naoya Fujita
- Pediatric Nephrology, Aichi Children's Health & Medical Center, Japan
| |
Collapse
|
44
|
Alizadeh R, Jamshidi S, Keramatipour M, Moeinian P, Hosseini R, Otukesh H, Talebi S. Whole Exome Sequencing Reveals a XPNPEP3 Novel Mutation Causing Nephronophthisis in a Pediatric Patient. IRANIAN BIOMEDICAL JOURNAL 2020; 24:405-8. [PMID: 32660933 PMCID: PMC7601541 DOI: 10.29252/ibj.24.6.400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Background Nephronophthisis (NPHP) is a progressive tubulointestinal kidney condition that demonstrates an AR inheritance pattern. Up to now, more than 20 various genes have been detected for NPHP, with NPHP1 as the first one detected. X-prolyl aminopeptidase 3 (XPNPEP3) mutation is related to NPHP-like 1 nephropathy and late onset NPHP. Methods The proband (index patient) had polyuria, polydipsia and chronic kidney disease and was clinically suspected of NPHP. After the collection of blood sample from proband and her parents, whole exome sequencing (WES) was performed to identify the possible variants in the proband from a consanguineous marriage. The functional importance of variants was estimated by bioinformatic analysis. In the affected proband and her parents, Sanger sequencing was conducted for variants’ confirmation and segregation analysis. Results Clinical and paraclinical investigations of the patient was not informative. Using WES, we could detect a novel homozygous frameshift mutation in XPNPEP3 (NM_022098.2: c.719_720insA; p. Q241Tfs*13), and by Sanger sequencing, we demonstrated an insertion in XPNPEP3. Conclusion The homozygous genotype of the novel p.Q241Tfs*31 variant in XPNPEP3 may cause NPHP in the early childhood age.
Collapse
Affiliation(s)
- Rasoul Alizadeh
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Schools of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozita Hosseini
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Somashekar PH, Upadhyai P, Shukla A, Girisha KM. Novel splice site and nonsense variants in INVS cause infantile nephronophthisis. Gene X 2020; 729:144229. [DOI: 10.1016/j.gene.2019.144229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022] Open
|
46
|
Tang C, Zhou D, Tan R, Zhong X, Xiao X, Qin D, Liu Y, Hu J, Liu Y. Auxiliary genetic analysis in a Chinese adolescent NPH family by single nucleotide polymorphism screening. Mol Med Rep 2020; 21:1115-1124. [PMID: 31922211 PMCID: PMC7003018 DOI: 10.3892/mmr.2020.10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
Hereditary nephropathy is a progressive fatal renal disease caused by genetic changes. In this study, genetic screening was used to reveal mutations in a family in Southern China, in which there are two patients with confirmed hereditary nephropathy, who are alive at the time of publication. Imaging tests, including color Doppler ultrasonography and magnetic resonance imaging (MRI), as well as pathological examinations, including hematoxylin-eosin staining, electron microscopy and immunohistochemistry were performed. Target sequencing of nephrosis 2 (NPHS2), wilms tumor 1 (WT1), phospholipase C ε 1 (PLCE1), actinin α 4 (ACTN4), angiotensin I converting enzyme (ACE), uromodulin (UMOD) and nephrocystin 1 (NPHP1) was also carried out. This study indicated that heterozygous genetic variants of NPHS2, WT1, ACTN4, PLCE1 and UMOD found in the patients were gene polymorphisms. A renal biopsy showed sclerosing glomerulonephritis, dilated tubules and lymphocyte/monocyte infiltration in the interstitium of the index patients. Genetic analysis showed vertical transmission of the disease-causing mutations, including a homozygous deletion in NPHP1 and a nonsense mutation in ACE found via PCR-based single nucleotide polymorphism screening. Further network analysis identified direct and indirect co-location genes between NPHP1 and ACE. To conclude, familial adolescent nephronophthisis was diagnosed in two index patients in this study. It is recommended that comprehensive gene mutation screening is used in the diagnosis of complex hereditary diseases.
Collapse
Affiliation(s)
- Chunrong Tang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Daoyuan Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Rongshao Tan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaoshi Zhong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiao Xiao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Danping Qin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yun Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jianguang Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yan Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
47
|
Kashgari A. Neonate with classic Zellweger syndrome. INTERNATIONAL JOURNAL OF PEDIATRICS AND ADOLESCENT MEDICINE 2020; 6:165-166. [PMID: 31890844 PMCID: PMC6926218 DOI: 10.1016/j.ijpam.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Schlimpert M, Lagies S, Müller B, Budnyk V, Blanz KD, Walz G, Kammerer B. Metabolic perturbations caused by depletion of nephronophthisis factor Anks6 in mIMCD3 cells. Metabolomics 2019; 15:71. [PMID: 31041607 DOI: 10.1007/s11306-019-1535-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Nephronophthisis (NPH) is an inherited form of cystic kidney disease with various extrarenal manifestations accounting for the largest amount of endstage renal disease in childhood. Patient mutations of Anks6 have also been found to cause NPH like phenotypes in animal models. However, little is known about functionality of Anks6. OBJECTIVES/METHODS We investigated the impact of Anks6 depletion on cellular metabolism of inner medullary collecting duct cells by GC-MS profiling and targeted LC-MS/MS analysis using two different shRNA cell lines for tetracycline-inducible Anks6 downregulation, namely mIMCD3 krab shANKS6 i52 and mIMCD3 krab shANKS6 i12. RESULTS In combination, we could successfully identify 158 metabolites of which 20 compounds showed similar alterations in both knockdown systems. Especially, large neutral amino acids, such as phenylalanine, where found to be significantly downregulated indicating disturbances in amino acid metabolism. Arginine, lysine and spermidine, which play an important role in cell survival and proliferation, were found to be downregulated. Accordingly, cell growth was diminished in tet treated mIMCD3 krab shANKS6 i52 knockdown cells. Deoxynucleosides were significantly downregulated in both knockdown systems. Hence, PARP1 levels were increased in tet treated mIMCD3 krab shANKS6 i52 cells, but not in tet treated mIMCD3 krab shANKS6 i12 cells. However, yH2AX was found to be increased in the latter. CONCLUSION In combination, we hypothesise that Anks6 affects DNA damage responses and proliferation and plays a crucial role in physiological amino acid and purine/pyrimidine metabolism.
Collapse
Affiliation(s)
- Manuel Schlimpert
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Simon Lagies
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Barbara Müller
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Vadym Budnyk
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Kelly Daryll Blanz
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Albert-Ludwigs-University of Freiburg, Medical Center, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Müller RU, Benzing T. Cystic Kidney Diseases From the Adult Nephrologist's Point of View. Front Pediatr 2018; 6:65. [PMID: 29623269 PMCID: PMC5875104 DOI: 10.3389/fped.2018.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
Cystic kidney diseases affect patients of all age groups with the onset spanning from prenatal disease to late adulthood. Autosomal-dominant polycystic kidney disease (ADPKD) is by far the most common renal cystic disease. However, there are various cystic kidney diseases, the onset of which occurs at different times in life and depends on the type of the disease and the causative genes involved. When genetic kidney diseases are discussed in the adult setting this view is usually limited on autosomal-dominant kidney disease, the most frequent genetic disorder causing adult onset ESRD. Other diseases-such as autosomal-recessive polycystic kidney disease-are often being viewed as a disorder only important in pediatric nephrology. However, more recent data has revealed that, despite clear age peaks of onset for each disorder, all of them can also show highly variable phenotypes with classical adult onset genetic diseases being of importance in pediatrics and vice versa. Furthermore, the affected children need to be seen by adult nephrologists in the long term after transition, requiring knowledge on the underlying pediatric disease, potential extrarenal manifestations, and genetic counseling. Consequently, the view on these diseases should be widened on both ends. Close interaction between pediatric and adult nephrology is key to appropriate care of patients suffering from genetic kidney disease to profit from each other's experience.
Collapse
Affiliation(s)
- Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
50
|
Venzac B, Madoun R, Benarab T, Monnier S, Cayrac F, Myram S, Leconte L, Amblard F, Viovy JL, Descroix S, Coscoy S. Engineering small tubes with changes in diameter for the study of kidney cell organization. BIOMICROFLUIDICS 2018; 12:024114. [PMID: 29657657 PMCID: PMC5882411 DOI: 10.1063/1.5025027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 05/08/2023]
Abstract
Multicellular tubes are structures ubiquitously found during development and in adult organisms. Their topologies (diameter, direction or branching), together with their mechanical characteristics, play fundamental roles in organ function and in the emergence of pathologies. In tubes of micrometric range diameters, typically found in the vascular system, renal tubules or excretory ducts, cells are submitted to a strong curvature and confinement effects in addition to flow. Then, small tubes with change in diameter are submitted to a local gradient of shear stress and curvature, which may lead to complex mechanotransduction responses along tubes, and may be involved in the onset or propagation of cystic or obstructive pathologies. We describe here a simple method to build a microfluidic device that integrates cylindrical channels with changes in diameter that mimic in vivo tube geometries. This microfabrication approach is based on molding of etched tungsten wires, which can achieve on a flexible way any change in diameter in a polydimethylsiloxane (PDMS) microdevice. The interest of this biomimetic multitube system has been evidenced by reproducing renal tubules on chip. In particular, renal cell lines were successfully seeded and grown in PDMS circular tubes with a transition between 80 μm and 50 μm diameters. Thanks to this biomimetic platform, the effect of the tube curvature has been investigated especially regarding cell morphology and orientation. The effect of shear stress on confluent cells has also been assessed simultaneously in both parts of tubes. It is thus possible to study interconnected cell response to differential constraints which is of central importance when mimicking tubes present in the organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ludovic Leconte
- Institut Curie, PSL Research University, CNRS UMR 144, 75005 Paris, France
| | | | | | | | - Sylvie Coscoy
- Authors to whom correspondence should be addressed: and
| |
Collapse
|