1
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
2
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Koslow M, Zhu P, McCabe C, Xu X, Lin X. Kidney transcriptome and cystic kidney disease genes in zebrafish. Front Physiol 2023; 14:1184025. [PMID: 37256068 PMCID: PMC10226271 DOI: 10.3389/fphys.2023.1184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polycystic kidney disease (PKD) is a condition where fluid filled cysts form on the kidney which leads to overall renal failure. Zebrafish has been recently adapted to study polycystic kidney disease, because of its powerful embryology and genetics. However, there are concerns on the conservation of this lower vertebrate in modeling polycystic kidney disease. Methods: Here, we aim to assess the molecular conservation of zebrafish by searching homologues polycystic kidney disease genes and carrying transcriptome studies in this animal. Results and Discussion: We found that out of 82 human cystic kidney disease genes, 81 have corresponding zebrafish homologs. While 75 of the genes have a single homologue, only 6 of these genes have two homologs. Comparison of the expression level of the transcripts enabled us to identify one homolog over the other homolog with >70% predominance, which would be prioritized for future experimental studies. Prompted by sexual dimorphism in human and rodent kidneys, we studied transcriptome between different sexes and noted significant differences in male vs. female zebrafish, indicating that sex dimorphism also occurs in zebrafish. Comparison between zebrafish and mouse identified 10% shared genes and 38% shared signaling pathways. String analysis revealed a cluster of genes differentially expressed in male vs. female zebrafish kidneys. In summary, this report demonstrated remarkable molecular conservation, supporting zebrafish as a useful animal model for cystic kidney disease.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Chantal McCabe
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol 2023; 11:jdb11010014. [PMID: 36976103 PMCID: PMC10052950 DOI: 10.3390/jdb11010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeline Petrikas
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
7
|
Kato Y, Tonomura Y, Hanafusa H, Nishimura K, Fukushima T, Ueno M. Adult Zebrafish Model for Screening Drug-Induced Kidney Injury. Toxicol Sci 2021; 174:241-253. [PMID: 32040193 DOI: 10.1093/toxsci/kfaa009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-induced kidney injury is a serious safety issue in drug development. In this study, we evaluated the usefulness of adult zebrafish as a small in vivo system for detecting drug-induced kidney injury. We first investigated the effects of typical nephrotoxicants, gentamicin and doxorubicin, on adult zebrafish. We found that gentamicin induced renal tubular necrosis with increased lysosome and myeloid bodies, and doxorubicin caused foot process fusion of glomerular podocytes. These findings were similar to those seen in mammals, suggesting a common pathogenesis. Second, to further evaluate the performance of the model in detecting drug-induced kidney injury, adult zebrafish were treated with 28 nephrotoxicants or 14 nonnephrotoxicants for up to 4 days, euthanized 24 h after the final treatment, and examined histopathologically. Sixteen of the 28 nephrotoxicants and none of the 14 nonnephrotoxicants caused drug-induced kidney injury in zebrafish (sensitivity, 57%; specificity, 100%; positive predictive value, 100%; negative predictive value, 54%). Finally, we explored genomic biomarker candidates using kidneys isolated from gentamicin- and cisplatin-treated zebrafish using microarray analysis and identified 3 candidate genes, egr1, atf3, and fos based on increased expression levels and biological implications. The expression of these genes was upregulated dose dependently in cisplatin-treated groups and was > 25-fold higher in gentamicin-treated than in the control group. In conclusion, these results suggest that the adult zebrafish has (1) similar nephrotoxic response to those of mammals, (2) considerable feasibility as an experimental model for toxicity studies, and (3) applicability to pathological examination and genomic biomarker evaluation in drug-induced kidney injury.
Collapse
Affiliation(s)
- Yuki Kato
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Yutaka Tonomura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Hanafusa
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Kyohei Nishimura
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Tamio Fukushima
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Motonobu Ueno
- Drug Safety Evaluation, Research Laboratory for Development, Shionogi and Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
8
|
Melhem N, Rasmussen P, Joyce T, Clothier J, Reid CJD, Booth C, Sinha MD. Acute kidney injury in children with chronic kidney disease is associated with faster decline in kidney function. Pediatr Nephrol 2021; 36:1279-1288. [PMID: 33108507 PMCID: PMC8009790 DOI: 10.1007/s00467-020-04777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study aimed to investigate the association of acute kidney injury (AKI) with change in estimated glomerular filtration rate (eGFR) in children with advanced chronic kidney disease (CKD). METHODS Single centre, retrospective longitudinal study including all prevalent children aged 1-18 years with nondialysis CKD stages 3-5. Variables associated with CKD were analysed for their potential effect on annualised eGFR change (ΔGFR/year) following multiple regression analysis. Composite end-point including 25% reduction in eGFR or progression to kidney replacement therapy was evaluated. RESULTS Of 147 children, 116 had at least 1-year follow-up in a dedicated CKD clinic with mean age 7.3 ± 4.9 years with 91 (78.4%) and 77 (66.4%) with 2- and 3-year follow-up respectively. Mean eGFR at baseline was 29.8 ± 11.9 ml/min/1.73 m2 with 79 (68%) boys and 82 (71%) with congenital abnormalities of kidneys and urinary tract (CAKUT). Thirty-nine (33.6%) had at least one episode of AKI. Mean ΔGFR/year for all patients was - 1.08 ± 5.64 ml/min/1.73 m2 but reduced significantly from 2.03 ± 5.82 to - 3.99 ± 5.78 ml/min/1.73 m2 from youngest to oldest age tertiles (P < 0.001). There was a significant difference in primary kidney disease (PKD) (77% versus 59%, with CAKUT, P = 0.048) but no difference in AKI incidence (37% versus 31%, P = 0.85) between age tertiles. Multiple regression analysis identified age (β = - 0.53, P < 0.001) and AKI (β = - 3.2, P = 0.001) as independent predictors of ΔGFR/year. 48.7% versus 22.1% with and without AKI reached composite end-point (P = 0.01). CONCLUSIONS We report AKI in established CKD as a predictor of accelerated kidney disease progression and highlight this as an additional modifiable risk factor to reduce progression of kidney dysfunction. Graphical abstract.
Collapse
Affiliation(s)
- Nabil Melhem
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Pernille Rasmussen
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Triona Joyce
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Joanna Clothier
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Christopher J D Reid
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Caroline Booth
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Manish D Sinha
- Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & ST Thomas' Foundation Hospitals NHS Trust, Westminster Bridge Road, London, SE1 7EH, UK
- Kings College London, London, UK
| |
Collapse
|
9
|
Delcorso MC, de Paiva PP, Grigoleto MRP, Queiroz SCN, Collares-Buzato CB, Arana S. Effects of sublethal and realistic concentrations of the commercial herbicide atrazine in Pacu ( Piaractus mesopotamicus): Long-term exposure and recovery assays. Vet World 2020; 13:147-159. [PMID: 32158165 PMCID: PMC7020127 DOI: 10.14202/vetworld.2020.147-159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Background and Aim: The commercial formulations of the herbicide atrazine (cATZ) are widely employed in Brazilian agriculture, and, as a consequence, ATZ has been found at levels above that established by law in the river basins in Brazil. Although the toxicity of ATZ in fish is well documented, there are few studies on the recovery capacity after cATZ exposure. This work aimed to evaluate, using several biomarkers, the toxic effects of long-term exposure to the sublethal (3.57 mg/L) and nonlethal realistic (3.00 µg/L) cATZ concentrations followed by a recovery assay, in fingerlings of a Brazilian teleost, the Piaractus mesopotamicus (pacu). Materials and Methods: Pacu fingerlings were housed in glass tanks and divided into the following experimental groups (two tanks/group): Exposure control = EC, recovery control = RC, the sublethal groups exposed to 3.57 mg/L of cATZ, (sublethal exposure group = SLE and sublethal recovery group = SLR) and the nonlethal groups treated with 3.00 µg/L of cATZ (nonlethal exposure group = NLE and nonlethal recovery group = NLR). The exposure assay was semi-static with a duration of 30 days and the recovery assay (after cATZ withdrawal) lasted 14 days. Several biomarkers were evaluated in fingerlings from all groups: The swimming behavior, the body weight gain, the micronucleus formation and nuclear alterations in erythrocytes, and the hepatic and renal histopathology analyzed by qualitative and semi-quantitative morphological methods (using light and electron microscopy). Results: No significant difference in weight gain was observed among the groups after the exposure and recovery assays. The sublethal exposure induced impaired swimming movements, significant histopathological alterations, including necrosis in the liver and kidney, and a significant increase in the frequency of micronuclei in erythrocytes. The nonlethal exposure induced only subtle histopathological changes in the liver and kidney. After recovery assay, no genotoxic alteration was noted in pacu exposed to sublethal concentration, while the cATZ-induced kidney damage was partially reversed but not the hepatic injury. Conclusion: cATZ exhibits long-term toxic effects on pacu, even at relatively low concentrations, affecting mainly the liver and the kidney, and the effects of sublethal concentration are only partially reversed after cATZ withdrawal.
Collapse
Affiliation(s)
- Mariana Cruz Delcorso
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP, Brazil
| | - Paula Pereira de Paiva
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Sônia C N Queiroz
- Laboratory of Residues and Contaminants, Embrapa Environment, Jaguariúna, SP, Brazil
| | | | - Sarah Arana
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
10
|
Fernandes CE, Marcondes SF, Galindo GM, Franco-Belussi L. Kidney anatomy, histology and histometric traits associated to renosomatic index in Gymnotus inaequilabiatus (Gymnotiformes: Gymnotidae). NEOTROPICAL ICHTHYOLOGY 2019. [DOI: 10.1590/1982-0224-20190107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT The Gymnotus inaequilabiatus is a Neotropical fish widely distributed in marginal areas of bays. The aim of this study was to describe the main histological and histopathological traits in the head and exocrine kidney. Here, histometric and structural density techniques were associated with renosomatic index (RSI). The kidney was processed for light microscopy. Lipofuscin and hemosiderin content were visually estimated in the melonomacrophages centers (MMCs). All the biometric body variables were correlated with RSI, especially the kidney weight and gross lesions count. The general architecture of head and exocrine kidney was similar to that described for other teleost species. MMCs were prevalent in both portions and correlated with RSI in the head and exocrine kidney. Granulomatous structures were often observed in both portions; however, they were associated only in the exocrine kidney with RSI. Of all the structures hystometrically estimated, only proximal tubular diameter and thickness, and distal tubular thickness were correlated to renosomatic index. The RSI is an useful biometric variable that represent some physiological and morphological characteristics of kidney in G. inaequilabiatus. These findings may be used in future studies to evaluate the effects of environmental stressors on the renal adaptative physiological process.
Collapse
|
11
|
Outcomes of prenatally diagnosed solitary functioning kidney during early life. J Perinatol 2017; 37:1325-1329. [PMID: 29072675 DOI: 10.1038/jp.2017.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To evaluate outcomes of congenital solitary functioning kidney (SFK) in early childhood. STUDY DESIGN A retrospective study of 32 children diagnosed in utero with SFK owing to unilateral renal agenesis or multicystic dysplastic kidney and followed for 1 to 11.5 years. RESULTS SFK length was in the compensatory hypertrophy range in 45% of fetal sonographic evaluations from mid-pregnancy, and in 85% on postnatal follow-up. Glomerular filtration rate was below normal range in 44.4%, 12.5% and 0% at <1 year, age 1 to 3 years and thereafter, respectively. Hyperfiltration was detected in 18.5% and 82.6% at <1 year and >3 years, respectively. Hypertension was documented in 35% at age 1 to 3 years but in none at an older age. Proteinuria was absent in all children. CONCLUSION Congenital SFK is apparently associated with little or no renal damage in infancy or childhood. Compensatory enlargement of the functioning kidney begins in utero and might serve as a prognostic indicator for normal renal function after birth.
Collapse
|
12
|
Abstract
The Xenopus genus includes several members of aquatic frogs native to Africa but is perhaps best known for the species Xenopus laevis and Xenopus tropicalis. These species were popularized as model organisms from as early as the 1800s and have been instrumental in expanding several biological fields including cell biology, environmental toxicology, regenerative biology, and developmental biology. In fact, much of what we know about the formation and maturation of the vertebrate renal system has been acquired by examining the intricate genetic and morphological patterns that epitomize nephrogenesis in Xenopus. From these numerous reports, we have learned that the process of kidney development is as unique among organs as it is conserved among vertebrates. While development of most organs involves increases in size at a single location, development of the kidney occurs through a series of three increasingly complex nephric structures that are temporally distinct from one another and which occupy discrete spatial locales within the body. These three renal systems all serve to provide homeostatic, osmoregulatory, and excretory functions in animals. Importantly, the kidneys in amphibians, such as Xenopus, are less complex and more easily accessed than those in mammals, and thus tadpoles and frogs provide useful models for understanding our own kidney development. Several descriptive and mechanistic studies conducted with the Xenopus model system have allowed us to elucidate the cellular and molecular mediators of renal patterning and have also laid the foundation for our current understanding of kidney repair mechanisms in vertebrates. While some species-specific responses to renal injury have been observed, we still recognize the advantage of the Xenopus system due to its distinctive similarity to mammalian wound healing, reparative, and regenerative responses. In addition, the first evidence of renal regeneration in an amphibian system was recently demonstrated in Xenopus laevis. As genetic and molecular tools continue to advance, our appreciation for and utilization of this amphibian model organism can only intensify and will certainly provide ample opportunities to further our understanding of renal development and repair.
Collapse
|
13
|
Camarata T, Howard A, Elsey RM, Raza S, O’Connor A, Beatty B, Conrad J, Solounias N, Chow P, Mukta S, Vasilyev A. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney. PLoS One 2016; 11:e0153422. [PMID: 27144443 PMCID: PMC4856328 DOI: 10.1371/journal.pone.0153422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population.
Collapse
Affiliation(s)
- Troy Camarata
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Alexis Howard
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Grand Chenier, Louisiana, United States of America
| | - Sarah Raza
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Alice O’Connor
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Brian Beatty
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Jack Conrad
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Nikos Solounias
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Priscilla Chow
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Saima Mukta
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| | - Aleksandr Vasilyev
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States of America
| |
Collapse
|
14
|
Hoppe B, Pietsch S, Franke M, Engel S, Groth M, Platzer M, Englert C. MiR-21 is required for efficient kidney regeneration in fish. BMC DEVELOPMENTAL BIOLOGY 2015; 15:43. [PMID: 26577279 PMCID: PMC4650918 DOI: 10.1186/s12861-015-0089-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/25/2015] [Indexed: 01/20/2023]
Abstract
Background Acute kidney injury in mammals, which is caused by cardiovascular diseases or the administration of antibiotics with nephrotoxic side-effects is a life-threatening disease, since loss of nephrons is irreversible in mammals. In contrast, fish are able to generate new nephrons even in adulthood and thus provide a good model to study renal tubular regeneration. Results Here, we investigated the early response after gentamicin-induced renal injury, using the short-lived killifish Nothobranchius furzeri. A set of microRNAs was differentially expressed after renal damage, among them miR-21, which was up-regulated. A locked nucleic acid-modified antimiR-21 efficiently knocked down miR-21 activity and caused a lag in the proliferative response, enhanced apoptosis and an overall delay in regeneration. Transcriptome profiling identified apoptosis as a process that was significantly affected upon antimiR-21 administration. Together with functional data this suggests that miR-21 acts as a pro-proliferative and anti-apoptotic factor in the context of kidney regeneration in fish. Possible downstream candidate genes that mediate its effect on proliferation and apoptosis include igfbp3 and fosl1, among other genes. Conclusion In summary, our findings extend the role of miR-21 in the kidney. For the first time we show its functional involvement in regeneration indicating that fast proliferation and reduced apoptosis are important for efficient renal tubular regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0089-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beate Hoppe
- Molecular Genetics Laboratory, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Stefan Pietsch
- Molecular Genetics Laboratory, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Martin Franke
- Molecular Genetics Laboratory, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.,Present address: Research Group of Development & Disease, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Sven Engel
- Molecular Genetics Laboratory, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Christoph Englert
- Molecular Genetics Laboratory, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany. .,Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Fürstengraben 1, 07743, Jena, Germany.
| |
Collapse
|
15
|
Katari R, Edgar L, Wong T, Boey A, Mancone S, Igel D, Callese T, Voigt M, Tamburrini R, Zambon JP, Perin L, Orlando G. Tissue-Engineering Approaches to Restore Kidney Function. Curr Diab Rep 2015; 15:69. [PMID: 26275443 DOI: 10.1007/s11892-015-0643-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney transplantation for the treatment of chronic kidney disease has established outcome and quality of life. However, its implementation is severely limited by a chronic shortage of donor organs; consequently, most candidates remain on dialysis and on the waiting list while accruing further morbidity and mortality. Furthermore, those patients that do receive kidney transplants are committed to a life-long regimen of immunosuppressive drugs that also carry significant adverse risk profiles. The disciplines of tissue engineering and regenerative medicine have the potential to produce alternative therapies which circumvent the obstacles posed by organ shortage and immunorejection. This review paper describes some of the most promising tissue-engineering solutions currently under investigation for the treatment of acute and chronic kidney diseases. The various stem cell therapies, whole embryo transplantation, and bioengineering with ECM scaffolds are outlined and summarized.
Collapse
Affiliation(s)
- Ravi Katari
- Section of Transplantation, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cirio MC, de Caestecker MP, Hukriede NA. Zebrafish Models of Kidney Damage and Repair. CURRENT PATHOBIOLOGY REPORTS 2015; 3:163-170. [PMID: 28690924 PMCID: PMC5497754 DOI: 10.1007/s40139-015-0080-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vertebrate kidney possesses the capacity to repair damaged nephrons, and this potential is conserved regardless of the complexity of species-specific kidneys. However, many aquatic vertebrates possess the ability to not only repair existing nephrons, but also generate new nephrons after injury. Adult zebrafish have the ability to recover from acute renal injury not only by replacing lost injured epithelial cells of endogenous nephrons, but by also generating de novo nephrons. This strong regeneration potential, along with other unique characteristics such as the high degree of genetic conservation with humans, the ease of harvesting externally fertilized, transparent embryos, the accessibility to larval and adult kidneys, and the ability to perform whole organism phenotypic small molecule screens, has positioned zebrafish as a unique vertebrate model to study kidney injury. In this review, we provide an overview of the contribution of zebrafish larvae/adult studies to the understanding of renal regeneration, diseases, and therapeutic discovery.
Collapse
Affiliation(s)
- Maria Cecilia Cirio
- Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Li SY, Huang PH, Tarng DC, Lin TP, Yang WC, Chang YH, Yang AH, Lin CC, Yang MH, Chen JW, Schmid-Schönbein GW, Chien S, Chu PH, Lin SJ. Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. J Am Soc Nephrol 2015; 26:3072-84. [PMID: 25855776 DOI: 10.1681/asn.2014100989] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/23/2015] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication that leads to kidney dysfunction and ESRD, but the underlying mechanisms remain unclear. Podocyte Wnt-pathway activation has been demonstrated to be a trigger mechanism for various proteinuric diseases. Notably, four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in urogenital systems and has been implicated in Wnt/β-catenin signaling. Here, we used in vitro podocyte culture experiments and a streptozotocin-induced DKD model in FHL2 gene-knockout mice to determine the possible role of FHL2 in DKD and to clarify its association with the Wnt pathway. In human and mouse kidney tissues, FHL2 protein was abundantly expressed in podocytes but not in renal tubular cells. Treatment with high glucose or diabetes-related cytokines, including angiotensin II and TGF-β1, activated FHL2 protein and Wnt/β-catenin signaling in cultured podocytes. This activation also upregulated FHL2 expression and promoted FHL2 translocation from cytosol to nucleus. Genetic deletion of the FHL2 gene mitigated the podocyte dedifferentiation caused by activated Wnt/β-catenin signaling under Wnt-On, but not under Wnt-Off, conditions. Diabetic FHL2(+/+) mice developed markedly increased albuminuria and thickening of the glomerular basement membrane compared with nondiabetic FHL2(+/+) mice. However, FHL2 knockout significantly attenuated these DKD-induced changes. Furthermore, kidney samples from patients with diabetes had a higher degree of FHL2 podocyte nuclear translocation, which was positively associated with albuminuria and progressive renal function deterioration. Therefore, we conclude that FHL2 has both structural and functional protein-protein interactions with β-catenin in the podocyte nucleus and that FHL2 protein inhibition can mitigate Wnt/β-catenin-induced podocytopathy.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Chang Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hwa Chang
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Hang Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, and Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Geert W Schmid-Schönbein
- The Institute of Engineering in Medicine, University of California San Diego, La Jolla, California
| | - Shu Chien
- Departments of Bioengineering, Nanoengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California; and
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine; Healthcare Center; Heart Failure Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Shing-Jong Lin
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Park BH, Jeong BC, Jeon SS, Seo SI, Lee HM, Choi HY, Jeon HG. Volumetric measurement of compensatory hypertrophy in the contralateral normal kidney by the tumor growth. World J Urol 2015; 34:63-8. [DOI: 10.1007/s00345-015-1551-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/25/2015] [Indexed: 12/19/2022] Open
|
19
|
Hishikawa K, Takase O, Yoshikawa M, Tsujimura T, Nangaku M, Takato T. Adult stem-like cells in kidney. World J Stem Cells 2015; 7:490-494. [PMID: 25815133 PMCID: PMC4369505 DOI: 10.4252/wjsc.v7.i2.490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration.
Collapse
|
20
|
Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ. Development of the zebrafish mesonephros. Genesis 2015; 53:257-69. [PMID: 25677367 DOI: 10.1002/dvg.22846] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 12/11/2022]
Abstract
The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney.
Collapse
Affiliation(s)
- Cuong Q Diep
- Department of Medicine, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts; Kidney Program, Harvard Stem Cell Institute, Cambridge, Massachusetts; Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania
| | | | | | | | | | | |
Collapse
|
21
|
Yang HC, Fogo AB. Mechanisms of disease reversal in focal and segmental glomerulosclerosis. Adv Chronic Kidney Dis 2014; 21:442-7. [PMID: 25168834 DOI: 10.1053/j.ackd.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023]
Abstract
It is well known that progression of chronic kidney disease can be ameliorated or stabilized by different interventions, but more studies indicate that it can even be reversed. Most data suggest that current therapy, especially renin-angiotensin system inhibition alone, is not sufficient to initiate and maintain long-term regression of glomerular structural injury. In this article, we review the potential reversal of glomerulosclerosis and evidence from both human and animal studies. We discuss mechanisms that involve matrix remodeling, capillary reorganization, and podocyte reconstitution. In the future, a multipronged strategy including novel anti-inflammatory and antifibrotic molecules should be considered to potentiate regression of glomerulosclerosis.
Collapse
|
22
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
23
|
Abstract
Recent years have challenged the view that adult somatic cells reach a state of terminal differentiation. Although the ultimate example of this, somatic cell nuclear transfer, has not proven feasible in human beings, dedifferentiation of mature cell types to a more primitive state, direct reprogramming from one mature state to another, and the reprogramming of any adult cell type to a pluripotent state via enforced expression of key transcription factors now all have been shown. The implications of these findings for kidney disease include the re-creation of key renal cell types from more readily available and expandable somatic cell sources. The feasibility of such an approach recently was shown with the dedifferentiation of proximal tubule cells to nephrogenic mesenchyme. In this review, we examine the technical and clinical challenges that remain to such an approach and how new reprogramming approaches also may be useful for kidney disease.
Collapse
Affiliation(s)
- Minoru Takasato
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jessica M Vanslambrouck
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa H Little
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
|
25
|
Abstract
BACKGROUND Several organs such as the skin and liver have a great capacity for regeneration. However, many approaches only delay the progression of end-stage kidney disease and do not achieve efficient long-term stabilization, let alone regeneration. SUMMARY In mammals, the kidney has an innate but limited capacity for regeneration which can only modify the nephron structure and function but not increase the nephron number. Several clinical and animal studies have indicated that functional improvements and/or structural regression can occur in chronic kidney disease. Cell reconstitution, matrix remodeling, and tissue reorganization are major mechanisms for kidney regeneration. Current approaches achieve only partial kidney regeneration, but this does not occur in all animals and is not sustained in the long term. Multipronged and early interventions are future choices for the induction of kidney regeneration. KEY MESSAGES Kidney regeneration in mammals is feasible but limited and may be enhanced by multitargeting key mechanisms.
Collapse
Affiliation(s)
- Hai-Chun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tenn., USA
| | | | | |
Collapse
|
26
|
Anders HJ. Immune system modulation of kidney regeneration--mechanisms and implications. Nat Rev Nephrol 2014; 10:347-58. [PMID: 24776845 DOI: 10.1038/nrneph.2014.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an important guardian of tissue homeostasis. In response to injury, resident and infiltrating immune cells orchestrate all phases of danger control, resolution of inflammation and tissue regeneration or scar formation. As mammalian postnatal kidneys are not capable of de novo nephrogenesis, recovery is limited to the regeneration or repair of existing nephrons. The regenerative capacity of the nephron varies between compartments; the epithelial cells of the tubule regenerate more efficiently than the structurally highly organized podocytes. Cells of the surrounding environment modulate nephron regeneration by secreting paracrine mediators. This Review discusses immune mediators and pathways that regulate the intrinsic regenerative capacity of the nephron. Eliminating injurious triggers, modulating renal inflammation and specifically enhancing the regenerative capacity of nephrons might be a promising strategy to improve long-term outcomes in patients with acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München-Innenstadt, Ziemssenstrasse 1, 80336 Munich, Germany
| |
Collapse
|
27
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
28
|
The bigger the better: determining nephron size in kidney. Pediatr Nephrol 2014; 29:525-30. [PMID: 23974984 PMCID: PMC3944135 DOI: 10.1007/s00467-013-2581-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
The main functions of the kidney are to excrete metabolic waste products and actively reabsorb essential molecules such as amino acids, ions, glucose and water. In humans, a wide range of genetic disorders exist characterized by wasting of metabolically important compounds. At the cellular level, more than 20 highly specialized renal epithelial cell types located in different segments of the nephron contribute to the reabsorption process. In particular, proximal tubular cells play a crucial role and are uniquely adapted to maximize reabsorption efficiency. They accommodate high numbers of transporters and channels by increasing the apical surface area in contact with the primary filtrate by forming a brush border as well as undergoing hypertrophy and hyperplasia. This adaptation is evolutionarily conserved and is detected in the primitive pronephric kidney of fish and amphibians as well as the metanephric kidney of higher vertebrates. Surprisingly, signaling pathways regulating these three processes have remained largely unknown. Here we summarize recent studies that highlight the early phases of kidney development as a critical juncture in establishing proximal tubule size.
Collapse
|
29
|
Charlton JR, Beeman SC, Bennett KM. MRI-detectable nanoparticles: the potential role in the diagnosis of and therapy for chronic kidney disease. Adv Chronic Kidney Dis 2013; 20:479-87. [PMID: 24206600 DOI: 10.1053/j.ackd.2013.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) is a common, deadly, and expensive threat to public health. Patients susceptible to the development of CKD are difficult to identify because there are few noninvasive clinical techniques and markers to assess early kidney dysfunction. Noninvasive imaging techniques are being developed to quantitatively measure kidney morphology and function in preclinical research and in clinical trials. Magnetic resonance imaging (MRI) techniques in particular have the potential to provide structural and functional information in the kidney. Novel molecular imaging techniques, using targeted magnetic nanoparticles that exploit the characteristics of the endogenous protein, ferritin, have been developed in conjunction with MRI to count every perfused glomerulus in the kidney and measure their individual volumes. This technique could open the door to the possibility of prospectively assessing and eventually reducing a patient's risk for progression to CKD. This review highlights the potential clinical benefits of early detection in patients predisposed to CKD and discusses technologic and regulatory hurdles to the translation of these molecular MRI techniques to provide early diagnosis of CKD.
Collapse
|
30
|
Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 2013; 9:137-46. [PMID: 23338209 DOI: 10.1038/nrneph.2012.290] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following kidney injury, repair can result in functional tissue becoming a patch of cells and disorganized extracellular matrix--a scar--or it can recapitulate the original tissue architecture through the process of regeneration. Regeneration can potentially occur in all animal species and humans. Indeed, the repair of portions of the existing nephron after tubular damage, a response that has been designated classically as cellular regeneration, is conserved in all animal species from the ancestral phases of evolution. By contrast, another type of regenerative response--nephron neogenesis--has been described in lower branches of the animal kingdom, but does not occur in adult mammals. Converging evidence suggests that a renal progenitor system is present in the adult kidney across different stages of evolution, with renal progenitors having been identified as the main drivers of kidney regenerative responses in fish, insects, rodents and humans. In this Review, we describe similarities and differences between the renal progenitor systems through evolution, and propose explanations for how progressive kidney adaptation to environmental changes both required and permitted neonephrogenesis to be given up and for cellular regeneration to be retained as the main regenerative strategy. Understanding the mechanisms that drive renal progenitor growth and differentiation represent the key step for modulating this potential for therapeutic purposes.
Collapse
Affiliation(s)
- Paola Romagnani
- Pediatric Nephrology Unit, Meyer Children's Hospital, University of Florence, Viale Pieraccini 24, 50139 Florence, Italy.
| | | | | |
Collapse
|
31
|
Rookmaaker MB, Joles JA. The nephron number counts—from womb to tomb. Nephrol Dial Transplant 2012; 28:1325-8. [DOI: 10.1093/ndt/gfs538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
33
|
Siahanidou T, Garatzioti M, Lazaropoulou C, Kourlaba G, Papassotiriou I, Kino T, Imura A, Nabeshima YI, Chrousos G. Plasma soluble α-klotho protein levels in premature and term neonates: correlations with growth and metabolic parameters. Eur J Endocrinol 2012; 167:433-40. [PMID: 22715479 PMCID: PMC3638242 DOI: 10.1530/eje-12-0476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE α-Klotho (α-KL), a protein with antiaging properties, regulates phosphate, calcium, and bone metabolism, induces resistance to oxidative stress, and may participate in insulin signaling. The role of α-KL in neonates, known to be prone to metabolic disturbances and oxidative stress, is not known. The aim of this study was to evaluate circulating soluble α-KL concentrations in preterm and full-term neonates and unravel possible correlations with growth, metabolism, and indices of oxidative stress. DESIGN Prospective study. METHODS Plasma-soluble α-KL levels were determined by specific ELISA in 50 healthy neonates (25 preterm, mean (s.d.) gestational age (GA) 33.7 (1.1) weeks, and 25 full-term infants) at days 14 and 28 of life. Associations of α-KL with anthropometric, metabolic parameters, and indices of oxidative stress were examined. RESULTS α-KL levels were significantly higher in full-term than in preterm infants at both days 14 (1099 (480) pg/ml vs 884 (239) pg/ml respectively; P<0.05) and 28 (1277 (444) pg/ml vs 983 (264) pg/ml respectively; P<0.01). In both preterm and full-term infants, α-KL levels increased significantly from day 14 to 28 of life (P<0.001). Circulating α-KL concentrations correlated with GA (β=0.32, P=0.001), body weight (β=0.34, P=0.001), body length (β=0.33, P=0.001), 1,25-dihydroxy-vitamin D level (β=0.24, P<0.05), and malondialdehyde level (β=0.20, P<0.05) but not with glucose, insulin, or homeostasis model assessment index of insulin resistance values. CONCLUSIONS Soluble α-KL levels rise as GA and postnatal age advance in neonates and may have an impact on vitamin D metabolism and oxidative stress. Whether α-KL may have a role in the regulation of infants' growth should be further studied.
Collapse
Affiliation(s)
- Tania Siahanidou
- First Department of Pediatrics, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.
Collapse
|
35
|
|
36
|
Swanhart LM, Cosentino CC, Diep CQ, Davidson AJ, de Caestecker M, Hukriede NA. Zebrafish kidney development: basic science to translational research. ACTA ACUST UNITED AC 2011; 93:141-56. [PMID: 21671354 DOI: 10.1002/bdrc.20209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish has become a significant model system for studying renal organogenesis and disease, as well as for the quest for new therapeutics, because of the structural and functional simplicity of the embryonic kidney. Inroads to the nature and disease states of kidney-related ciliopathies and acute kidney injury (AKI) have been advanced by zebrafish studies. This model organism has been instrumental in the analysis of mutant gene function for human disease with respect to ciliopathies. Additionally, in the AKI field, recent work in the zebrafish has identified a bona fide adult zebrafish renal progenitor (stem) cell that is required for neo-nephrogenesis, both during the normal lifespan and in response to renal injury. Taken together, these studies solidify the zebrafish as a successful model system for studying the broad spectrum of ciliopathies and AKI that affect millions of humans worldwide, and point to a very promising future of zebrafish drug discovery. The emphasis of this review will be on the role of the zebrafish as a model for human kidney-related ciliopathies and AKI, and how our understanding of these complex pathologies is being furthered by this tiny teleost.
Collapse
Affiliation(s)
- Lisa M Swanhart
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|