1
|
Esmaeilzadeh Aghjeh M, Suer I, Dirim AB, Kaya M, Ozturk S. Advances in focal segmental glomerulosclerosis research: genetic causes to non-coding RNAs. Mol Biol Rep 2025; 52:384. [PMID: 40210838 DOI: 10.1007/s11033-025-10488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a clinicopathological illness characterized by podocyte damage, impairing glomerular filtration, and substantial proteinuria, which often results in end-stage renal disease (ESRD). Divided into primary, secondary, genetic, and idiopathic categories, its diverse origin highlights the intricacy of its diagnosis and treatment. The existing dependence on immunosuppressive medicines highlights their side effects and inconsistent efficacy, underscoring the pressing necessity for innovative, focused treatments. Recent advancements in genomics and molecular biology have shown the significant involvement of genetic alterations, especially in podocyte-associated proteins, in the pathogenesis of FSGS. Identifying possible novel biomarkers for diagnosing FSGS and monitoring disease activity has revitalized interest in this condition. Recent data underscores the significance of non-coding RNAs, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), in the modulation of gene expression and podocyte functionality. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. Particular dysregulated miRNAs and circRNAs have demonstrated potential as biomarkers for early diagnosis and disease monitoring. Furthermore, understanding lncRNA-mediated pathways provides novel therapeutic targets. This review consolidates current progress in elucidating the genetic and molecular processes of FSGS, emphasizing biomarker identification and treatment innovation.
Collapse
Affiliation(s)
- Maryam Esmaeilzadeh Aghjeh
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Department of Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Burak Dirim
- Department of Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Fu S, Li F, Yu J, Ma S, Zhang L, Cheng Y. Investigating the role of gut microbiota in diabetic nephropathy through plasma proteome mediated analysis. Sci Rep 2025; 15:5457. [PMID: 39953202 PMCID: PMC11828962 DOI: 10.1038/s41598-025-90306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and poses significant threats to individuals with diabetes. The concept of gut-kidney axis has gained increasing attention in recent years and the in the occurrence and development of DN, alterations in the gut microbiota also plays a crucial and indispensable role. However, the specific causal relationships between various gut microbial communities and DN, as well as the underlying molecular mechanisms, remains unclear. This study utilized data from genome-wide association studies. After screening for qualified instrumental variables, mendelian randomization causal analyses were performed by inverse variance weighting, MR-Egger, weighted median, weighted mode and MR-RAPS methods. Additionally, sensitivity analyses such as heterogeneity, multiplicity, and the direction of the causal effect were carried out to ensure that the results were robust. After identifying significant gut microbiota, protein-proteomics mediation analysis was conducted on potential 3282 plasma proteins to determine those with mediating effects. Finally, Reactome enrichment analysis was performed to ascertain metabolic or signaling pathways with mediating effects. Mendelian randomization analysis indicated associations between 21 gut microbiota and DN. After adjusting significance levels, Catenibacterium and Parasutterella were found to have causal effects on the onset of DN. Subsequently, we identified 22 plasma proteins with mediating effects, along with 27 metabolic or signaling pathways including activated propionic acid metabolism. Increased in the abundance of Catenibacterium and Parasutterella intestinal bacteria are causative factors for DN. More importantly, the underlying mechanism by which the increased abundance of Catenibacterium and Parasutterella intestinal bacteria lead to DN were revealed, providing a blueprint for the involvement of gut-kidney axis in the pathogenesis of DN and paving the way for future studies.
Collapse
Affiliation(s)
- Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jinyu Yu
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shengjie Ma
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Li Zhang
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Guaragna MS, Casimiro FMS, Varela P, de S Feltran L, Watanabe A, Neves PDMM, Pesquero JB, Belangero VMS, Nogueira PCK, Onuchic LF. Past and future in vitro and in vivo approaches toward circulating factors and biomarkers in idiopathic nephrotic syndrome. Pediatr Nephrol 2025:10.1007/s00467-024-06643-8. [PMID: 39883133 DOI: 10.1007/s00467-024-06643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Predicting the risks of progression to chronic kidney disease (CKD) stage 5 in idiopathic nephrotic syndrome (NS) and recurrence of the disease (rNS) following kidney transplantation (KT) is a key assessment to provide essential management information. NS has been categorized etiologically as genetic and immune-based. A genetic cause can be identified in ~ 30% of children with steroid-resistant NS (SRNS), a finding associated with a very low risk of rNS following KT. In immune-based NS, clinical overlap is observed among steroid-sensitive NS, secondary-resistant NS, and SRNS not associated with disease-causing genetic variants (non-monogenic SRNS). While ~ 50% of SRNS patients with no identified monogenic disease respond to intensified immunosuppressive treatments, the ones that do not respond to this therapy have a high risk of progression to CKD stage 5 and post-KT rNS. Secondary-resistant patients who progress to CKD stage 5 display the highest risk of post-KT rNS. The proposed shared underlying mechanism of the immune-based NS associated with post-KT rNS is based on a systemic circulating factor (CF) that affects glomerular permeability by inducing foot process effacement and focal segmental glomerulosclerosis. However, identifying patients without a detected genetic form who will recur post-KT is a major challenge. Extensive efforts, therefore, have been made to identify CFs and biomarkers potentially capable of predicting the risk of progression to CKD stage 5 and post-KT rNS. This review discusses the in vitro and in vivo approaches employed to date to identify and characterize potential CFs and CF-induced biomarkers of recurrent NS and offers an assessment of their potential to improve outcomes of KT in this patient population.
Collapse
Affiliation(s)
- Mara S Guaragna
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Fernanda M S Casimiro
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia Varela
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciana de S Feltran
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
| | - Andreia Watanabe
- Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Precil D M M Neves
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - João B Pesquero
- Center for Diagnosis and Research On Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Vera M S Belangero
- Department of Pediatrics, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Paulo C K Nogueira
- Division of Pediatric Kidney Transplantation, São Paulo Samaritan Hospital, São Paulo, Brazil
- Department of Pediatric Nephrology, São Paulo Federal University, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
- Division of Nephrology, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
4
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
5
|
Poppelaars F, Eskandari SK, Damman J, Seelen MA, Faria B, Gaya da Costa M. A non-muscle myosin heavy chain 9 genetic variant is associated with graft failure following kidney transplantation. Kidney Res Clin Pract 2023; 42:389-402. [PMID: 37313613 PMCID: PMC10265209 DOI: 10.23876/j.krcp.22.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Despite current matching efforts to identify optimal donor-recipient pairs for kidney transplantation, alloimmunity remains a major source of late transplant failure. Additional genetic parameters in donor-recipient matching could help improve longterm outcomes. Here, we studied the impact of a non-muscle myosin heavy chain 9 gene (MYH9) polymorphism on allograft failure. METHODS We conducted an observational cohort study, analyzing the DNA of 1,271 kidney donor-recipient transplant pairs from a single academic hospital for the MYH9 rs11089788 C>A polymorphism. The associations of the MYH9 genotype with risk of graft failure, biopsy-proven acute rejection (BPAR), and delayed graft function (DGF) were estimated. RESULTS A trend was seen in the association between the MYH9 polymorphism in the recipient and graft failure (recessive model, p = 0.056), but not for the MYH9 polymorphism in the donor. The AA-genotype MYH9 polymorphism in recipients was associated with higher risk of DGF (p = 0.03) and BPAR (p = 0.021), although significance was lost after adjusting for covariates (p = 0.15 and p = 0.10, respectively). The combined presence of the MYH9 polymorphism in donor-recipient pairs was associated with poor long-term kidney allograft survival (p = 0.04), in which recipients with an AA genotype receiving a graft with an AA genotype had the worst outcomes. After adjustment, this combined genotype remained significantly associated with 15-year death-censored kidney graft survival (hazard ratio, 1.68; 95% confidence interval, 1.05-2.70; p = 0.03). CONCLUSION Our results reveal that recipients with an AA-genotype MYH9 polymorphism receiving a donor kidney with an AA genotype have significantly elevated risk of graft failure after kidney transplantation.
Collapse
Affiliation(s)
- Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Siawosh K. Eskandari
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeffrey Damman
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marc A. Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bernardo Faria
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Crk1/2 and CrkL play critical roles in maintaining podocyte morphology and function. Exp Cell Res 2020; 394:112135. [PMID: 32535035 DOI: 10.1016/j.yexcr.2020.112135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Podocytes are actin-rich epithelial cells whose effacement and detachment are the main cause of glomerular disease. Crk family proteins: Crk1/2 and CrkL are reported to be important intracellular signaling proteins that are involved in many biological processes. However, the roles of them in maintaining podocyte morphology and function remain poorly understood. In this study, specific knocking down of Crk1/2 and CrkL in podocytes caused abnormal cell morphology, actin cytoskeleton rearrangement and dysfunction in cell adhesion, spreading, migration, and viability. The p130Cas, focal adhesion kinase, phosphatidylinositol 3-kinase/Akt, p38 and JNK signaling pathways involved in these alterations. Furthermore, knocking down CrkL alone conferred a more modest phenotype than did the Crk1/2 knockdown and the double knockdown. Kidney biopsy specimens from patients with focal segmental glomerulosclerosis and minimal change nephropathy showed downregulation of Crk1/2 and CrkL in glomeruli. In zebrafish embryos, Crk1/2 and CrkL knockdown compromised the morphology and caused abnormal glomerular development. Thus, our results suggest that Crk1/2 and CrkL expression are important in podocytes; loss of either will cause podocyte dysfunction, leading to foot process effacement and podocyte detachment.
Collapse
|
7
|
Use of genomic and functional analysis to characterize patients with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2018; 33:1741-1750. [PMID: 29982877 DOI: 10.1007/s00467-018-3995-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Children with genetic causes of steroid-resistant nephrotic syndrome (SRNS) usually do well after renal transplantation, while some with idiopathic SRNS show recurrence due to a putative podocyte-toxic factor. Distinguishing different forms of SRNS based on clinical criteria has been difficult. The aim of our study was to test a novel approach that allows categorization of patients into clinically useful subgroups. METHODS Seventeen patients with clinically confirmed SRNS were analyzed by next-generation sequencing (NGS) of 37 known SRNS genes and a functional assay of cultured human podocytes, which indirectly tests for toxicity of patients' sera by evidenced loss of podocyte focal adhesion complex (FAC) number. RESULTS We identified a pathogenic mutation in seven patients (41%). Sera from patients with monogenic SRNS caused mild loss of FAC number down to 73% compared to untreated controls, while sera from seven of the remaining ten patients with idiopathic SRNS caused significant FAC number loss to 43% (non-overlapping difference 30%, 95% CI 26-36%, P < 0.001). All patients with recurrent SRNS (n = 4) in the graft showed absence of podocyte gene mutations but significant FAC loss. Three patients had no mutation nor serum podocyte toxicity. CONCLUSIONS Our approach allowed categorization of patients into three subgroups: (1) patients with monogenic SRNS; (2) patients with idiopathic SRNS and marked serum podocyte toxicity; and (3) patients without identifiable genetic cause nor evidence of serum podocyte toxicity. Post-transplant SRNS recurrence risk appears to be low in groups 1 and 3, but high in group 2.
Collapse
|
8
|
Artelt N, Ludwig TA, Rogge H, Kavvadas P, Siegerist F, Blumenthal A, van den Brandt J, Otey CA, Bang ML, Amann K, Chadjichristos CE, Chatziantoniou C, Endlich K, Endlich N. The Role of Palladin in Podocytes. J Am Soc Nephrol 2018; 29:1662-1678. [PMID: 29720549 DOI: 10.1681/asn.2017091039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/28/2018] [Indexed: 11/03/2022] Open
Abstract
Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein.Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also investigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld-/- mice) by immunofluorescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin.Results Compared with control-treated podocytes, palladin-knockdown podocytes had reduced actin filament staining, smaller focal adhesions, and downregulation of the podocyte-specific proteins synaptopodin and α-actinin-4. Furthermore, palladin-knockdown podocytes were more susceptible to disruption of the actin cytoskeleton with cytochalasin D, latrunculin A, or jasplakinolide and showed altered migration dynamics. In zebrafish embryos, palladin knockdown compromised the morphology and dynamics of epithelial cells at an early developmental stage. Compared with PodoPalld+/+ controls, PodoPalld-/- mice developed glomeruli with a disturbed morphology, an enlarged subpodocyte space, mild effacement, and significantly reduced expression of nephrin and vinculin. Furthermore, nephrotoxic serum injection led to significantly higher levels of proteinuria in PodoPalld-/- mice than in controls. Kidney biopsy specimens from patients with diabetic nephropathy and FSGS showed downregulation of palladin in podocytes as well.Conclusions Palladin has an important role in podocyte function in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Kavvadas
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | | | | | - Jens van den Brandt
- Central Core and Research Facility of Laboratory Animals (ZSFV), University Medicine Greifswald, Greifswald, Germany
| | - Carol A Otey
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill (UNC), Chapel Hill, North Carolina
| | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy; and
| | - Kerstin Amann
- Department of Nephropathology, University Medicine Erlangen, Erlangen, Germany
| | - Christos E Chadjichristos
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | | | | |
Collapse
|
9
|
Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2342-2354. [PMID: 28629718 PMCID: PMC5557291 DOI: 10.1016/j.bbadis.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvβ3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvβ3-integrin as potential therapeutic targets.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Kachurina N, Chung CF, Benderoff E, Babayeva S, Bitzan M, Goodyer P, Kitzler T, Matar D, Cybulsky AV, Alachkar N, Torban E. Novel unbiased assay for circulating podocyte-toxic factors associated with recurrent focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2015; 310:F1148-56. [PMID: 26719363 DOI: 10.1152/ajprenal.00349.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/28/2015] [Indexed: 01/28/2023] Open
Abstract
Focal segmental glomerular sclerosis (FSGS) is an irreversible renal pathology characterized by podocyte detachment from the glomerular basement membrane, hyalinosis, and sclerosis. Clinically, it manifests with proteinuria and progressive loss of glomerular filtration. Primary idiopathic FSGS can occur in isolation and frequently progresses to end-stage renal disease, requiring dialysis or kidney transplantation. In 30-50% of these patients, proteinuria and FSGS recur in the renal allograft, suggesting the presence of a podocyte-toxic factor(s) in the recipient's serum. Currently, there is no reliable way to quantify the serum activity or predict the subset of FSGS patients at risk for recurrence after transplantation. We describe a novel in vitro method that measures the podocyte-toxic activity of sera from FSGS patients using cultured human podocytes; we compare this with the effect of compounds such as adriamycin. Using immunofluorescence microscopy followed by computerized image-processing analysis, we show that incubation of human podocytes with adriamycin leads to a dose-dependent disassembly of focal adhesion complexes (FACs). We then demonstrate that sera from patients with posttransplant recurrent or idiopathic FSGS cause a similar FAC disturbance. In contrast, sera from nonrecurrent FSGS patients do not affect FACs. In some FSGS patients, toxic effects of serum can be prevented by blockade of the tumor necrosis factor-α pathway. We propose that this method may be useful as a diagnostic tool to identify FSGS patients with serum podocyte-toxic activity that presumably places them at increased risk for recurrence in the renal allograft.
Collapse
Affiliation(s)
- Nadezda Kachurina
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Erin Benderoff
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Martin Bitzan
- The Montreal Children's Hospital, Department of Paediatric Nephrology, McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- The Montreal Children's Hospital, Department of Paediatric Nephrology, McGill University Health Center, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Thomas Kitzler
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Dany Matar
- McKinsey & Company, Washington, District of Columbia; and
| | - Andrey V Cybulsky
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Nada Alachkar
- Division of Nephrology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elena Torban
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada;
| |
Collapse
|
11
|
Casalena G, Bottinger E, Daehn I. TGFβ-Induced Actin Cytoskeleton Rearrangement in Podocytes Is Associated with Compensatory Adaptation of Mitochondrial Energy Metabolism. Nephron Clin Pract 2015; 131:278-84. [PMID: 26613578 DOI: 10.1159/000442051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/01/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND/AIMS In podocytes, the overexpression of TGFβ ligands and receptors during glomerulosclerosis could be a causal factor for injury induction and perpetuation in glomerular tufts. Mitochondrial dysfunction and oxidative stress are emerging as potential therapeutic targets in glomerular injury, and TGFβ has been shown to modulate mitochondrial metabolism in different cell types. This study aims at investigating the role of TGFβ in podocyte energy metabolism and cytoskeleton dynamics. METHODS Mitochondrial function and cytoskeleton dynamics were analyzed in TGFβ-treated WT and Smad2/3 double KO podocytes. RESULTS TGFβ treatment in podocytes induced a significant Smad-dependent increase of mitochondrial oxygen consumption rate (OCR). ATP content was unchanged and increased respiration was not associated with increased mitochondrial mass. Increased cellular reactive oxygen species induced by Smad-mediated TGFβ signaling were reverted by NADPH oxidase inhibitor apocynin. TGFβ treatment did not induce mitochondrial oxidative stress, and Smad2/3-dependent TGFβ signaling and increased mitochondrial OCR were found to be associated with actin cytoskeleton dynamics. The role of motor proteins myosin II and dynamin in TGFβ-induced actin polymerization was demonstrated by specific inhibition, resulting in actin stabilization and normalization of mitochondrial OCR. CONCLUSION TGFβ-induced rearrangements of actin cytoskeleton are controlled by Smad2/3 signaling pathways and coupled with the activation of mitochondrial ATP synthesis as bioenergetic adaptation to ATP consumption by ATP- and GTP-dependent motor proteins, myosin II and dynamin.
Collapse
Affiliation(s)
- Gabriella Casalena
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, N.Y., USA
| | | | | |
Collapse
|
12
|
Saleem MA. One hundred ways to kill a podocyte. Nephrol Dial Transplant 2015; 30:1266-71. [PMID: 25637640 DOI: 10.1093/ndt/gfu363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022] Open
Abstract
The podocyte is a highly specialized cell, forming within the developing glomerulus from a mesenchymal origin, acquiring some but not complete features of an epithelial cell as it matures. Once mature, this cell has the potential to receive signals from several different directions and sits within a dynamic microenvironment. By taking an overview of many lines of evidence, it is clear that we already know many signals that are tightly controlled in keeping the podocyte healthy. For example, vascular endothelial growth factor, insulin and integrins are all known to have bidirectional effects on podocyte functionality, depending on whether there is too much or too little. It is of little surprise therefore that disrupting this delicate balance can result in a dramatic loss of function, and manifestation of glomerular disease originating from many different primary insults. The cues directing podocyte phenotype and functionality for the purpose of this review will be divided into four main sources: (i) genetic, (ii) paracrine signals from endothelial and mesangial cells, (iii) direct contact signals to/from the glomerular basement membrane and (iv) signals from circulating plasma. Of course there are other influences, which we still know little about, such as flow and shear stresses, signals from the urinary space that should all be considered in the overall healthy environment.
Collapse
Affiliation(s)
- Moin A Saleem
- Bristol Children's Hospital, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Miura K, Kurihara H, Horita S, Chikamoto H, Hattori M, Harita Y, Tsurumi H, Kajiho Y, Sawada Y, Sasaki S, Igarashi T, Kunishima S, Sekine T. Podocyte expression of nonmuscle myosin heavy chain-IIA decreases in idiopathic nephrotic syndrome, especially in focal segmental glomerulosclerosis. Nephrol Dial Transplant 2013; 28:2993-3003. [PMID: 24042022 DOI: 10.1093/ndt/gft350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have identified significant associations between the development of idiopathic focal segmental glomerulosclerosis (FSGS) and MYH9 encoding nonmuscle myosin heavy chain-IIA (NMMHC-IIA). However, these studies focused only on the linkage of MYH9 polymorphisms and development of FSGS. There have been no reports on pathological changes of NMMHC-IIA in human glomerular diseases. Here we report on the precise localization of NMMHC-IIA in podocytes and changes in NMMHC-IIA expression in pathological states in rats and humans. METHODS Immunocytochemical (immunofluorescence and immunoelectron microscopy) studies were performed to determine the precise localization of NMMHC-IIA. Expression levels of NMMHC-IIA were investigated in puromycin aminonucleoside (PAN)-treated rats; and expression levels of NMMHC-IIA and other podocyte-related proteins were investigated in glomeruli of patients with idiopathic FSGS and other heavy proteinuric glomerular diseases. RESULTS NMMHC-IIA was located primarily at the cell body and primary processes of podocytes; this localization is distinct from other podocyte-related molecules causing hereditary FSGS. In PAN-treated rat kidneys, expression levels of NMMHC-IIA in podocytes decreased. Immunohistochemical analysis revealed that expression levels of NMMHC-IIA markedly decreased in idiopathic nephrotic syndrome, especially FSGS, whereas it did not change in other chronic glomerulonephritis showing apparent proteinuria. Changes in NMMHC-IIA expression were observed in glomeruli where expression of nephrin and synaptopodin was maintained. CONCLUSIONS Considering previous genome-wide association studies and development of FSGS in patients with MYH9 mutations, the characteristic localization of NMMHC-IIA and the specific decrease in NMMHC-IIA expression in idiopathic nephrotic syndrome, especially FSGS, suggest the important role of NMMHC-IIA in the development of FSGS.
Collapse
Affiliation(s)
- Kenichiro Miura
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
TNFα pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and β3 integrin activation. Pediatr Nephrol 2012; 27:2217-26. [PMID: 22538781 DOI: 10.1007/s00467-012-2163-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the absence of mutant genes encoding components of the podocyte slit diaphragm, about 30-50 % of children with primary glucocorticoid-resistant focal segmental glomerulosclerosis (FSGS) develop recurrent proteinuria and slowly progressive FSGS lesions following renal transplantation. Recurrence of FSGS in the allograft strongly suggests a circulating factor that disturbs normal podocyte biology. To date, the nature of the circulating factor is unclear, and there is no cure for the recurrent form of FSGS (R-FSGS). METHODS Cultured differentiated human podocytes were exposed to the plasmapheresis effluent or blood plasma samples from pediatric patients with recurrent or primary FSGS; in some cases, podocytes were pre-incubated with specific antibodies to block the tumor necrosis factor-alpha (TNFα) signaling pathway. Integrity of focal adhesion complexes and actin cytoskeleton were investigated by immunofluorescent microscopy. RESULTS Plasmapheresis effluent from an R-FSGS child or fresh plasma from two children with primary FSGS rapidly disturbed the cytoskeleton of normal human podocytes in vitro. Plasma from a child with R-FSGS also activated β3 integrin and dispersed focal adhesion complexes. The effects were reversed by pre-incubation with antibodies against TNFα or either of the two TNFα receptors. When our patient with R-FSGS became resistant to plasmapheresis, we initiated treatment with twice weekly etanercept injections and then infliximab. Within 3 weeks of regular anti-TNFα therapy, the patient achieved sustained partial remission of proteinuria, allowing us to wean her off plasmapheresis completely. CONCLUSIONS We suggest that in some FSGS patients, disruption of the podocyte cytoskeleton and β3 integrin-mediated podocyte attachment are driven by the TNFα pathway.
Collapse
|
15
|
Nonfunction of the ECT2 gene may cause renal tubulointerstitial injury leading to focal segmental glomerulosclerosis. Clin Exp Nephrol 2012; 16:875-82. [PMID: 22552385 PMCID: PMC3521645 DOI: 10.1007/s10157-012-0636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/08/2012] [Indexed: 11/24/2022]
Abstract
Background Secondary focal segmental glomerulosclerosis (FSGS) follows congenital or acquired tubulointerstitial alterations such as in Dent’s disease, Lowe syndrome, and reflux nephropathy. Failure of adequate regeneration after tubulointerstitial injury, or abnormal tubulogenesis, can disturb intrarenal blood circulation, causing excessive glomerular filtration. The epithelial cell-transforming sequence 2 gene (ECT2) contributes to tight junction function in epithelial cells. Methods We encountered two patients with a nonfunctioning ECT2 genotype who later developed FSGS. Both developed proteinuria associated with acute renal failure in early childhood. Results Renal biopsy specimens showed marked tubulointerstitial nephritis at the onset of proteinuria, later progressing to FSGS consequent to tubulointerstitial injury. The patients did not respond to corticosteroids and attained only incomplete remission upon cyclosporine A administration. One patient received a maternal renal transplant with good function and no rejection. Conclusions ECT2 is important for tight junction function and maintenance of cell polarity. Nonfunction of this gene may cause renal tubulointerstitial injury, progressing to glomerular sclerosis.
Collapse
|
16
|
Abstract
BACKGROUND The continuing disease burden of HIV-associated nephropathy (HIVAN) warrants better elucidation of its pathogenic mechanisms. Given that loss of MYH9 function causes a Mendelian renal disease, we hypothesized that renal expression of MYH9 is down-regulated by HIV-1 in HIVAN pathogenesis. METHOD AND RESULTS Using immunofluorescence, we determined that glomerular expression of MYH9 was reduced in the kidneys of HIV-1 transgenic mice. We further determined that Myh9 expression was reduced in HIV-1 transgenic podocytes, statistically significantly at the protein level, and that MYH9 expression was significantly reduced at protein and message level in human podocytes transduced with HIV-1. In analyzing expression in human tissue, we confirmed that MYH9 is abundantly expressed in glomeruli, and podocytes specifically. Finally, we found that MYH9 expression was significantly reduced in human glomeruli in the setting of HIVAN. CONCLUSION We conclude that the podocyte host response to HIV-1 includes down-regulation of MYH9 expression, and hypothesize that this down-regulation might play a role in the pathogenesis of HIVAN.
Collapse
|
17
|
Abstract
Proteinuria is often accompanied by a pathological change in the glomerulus that is refereed as effacement of the podocyte foot processes. The highly dynamic podocyte foot processes contain an actin-based contractile apparatus comparable to that of pericytes, which needs to be precisely and temporally controlled to withstand high pressure in the capillaries and to maintain intact glomerular filtration properties. This review outlines the most recent concepts on the function of the podocyte contractile apparatus with a focus on the role of non-muscle myosins as they have been highlighted by studies in monogenic hereditary proteinuric diseases.
Collapse
Affiliation(s)
- Marina Noris
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases "Aldo e Cele Daccò", Department of Molecular Medicine, Ranica, Italy
| | - Giuseppe Remuzzi
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.,Unit of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti di Bergamo, Italy
| |
Collapse
|
18
|
Recurrent focal segmental glomerulosclerosis: a discrete clinical entity. Int J Nephrol 2012; 2012:246128. [PMID: 22288013 PMCID: PMC3263622 DOI: 10.1155/2012/246128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 12/01/2022] Open
Abstract
Focal segmental glomerulosclerosis refers to a set of particular histopathologic lesions in which steroid-resistant podocyte injury leads to patchy adhesions between the glomerular tuft and Bowman's capsule, followed by progressive glomerulosclerosis and proteinuric renal failure. Because of the nonspecific nature of this lesion, it has been difficult to classify the various forms of primary nephrotic syndrome in children. However, with the recognition of hereditary FSGS caused by mutations podocyte slit diaphragm genes, it is increasingly clear that the steroid-resistant form of FSGS that recurs in the renal allografts (R-FSGS) constitutes a distinct clinical entity. Capitalizing on recent studies in which patients have been screened for slit diaphragm gene mutations, this review focuses on the natural history and pathogenesis of R-FSGS.
Collapse
|