1
|
Zuckerman J, Pham PT, Parakkal M, Velazquez AF, Sarkar M, Pablos MA, Bunnapradist S, Lum EL. C3 glomerulopathy post kidney transplantation: A single center experience. World J Transplant 2025; 15:101517. [DOI: 10.5500/wjt.v15.i2.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND C3 glomerulopathies (C3G) are a rare cause of kidney failure resulting from complement dysregulation. Small studies demonstrate a high rate of recurrence and poor outcomes in kidney transplantation. Treatment efficacy in this setting with eculizumab, a terminal complement inhibitor, is largely unknown.
AIM To determine the outcomes of kidney transplantation in patients with C3G and the potential impact of eculizumab.
METHODS We retrospectively studied kidney transplant recipients who underwent a post-transplant biopsy confirming C3G between January 1, 1993 and December 31, 2023 at a single center. Only the first episode of kidney transplant was reviewed. The electronic medical records were reviewed for post-transplant allograft function, indication for biopsy, time to biopsy from transplant, time to allograft failure from transplantation, post-C3G treatment, complement laboratory testing, and concurrent malignancy/infection. Reports, and when available slides and immunofluorescence/electron microscopic images, were re-reviewed by a renal pathologist.
RESULTS A total of fifteen patients were included in this study. Fourteen patients had suspected recurrent disease, with a pre-transplant native kidney report of C3G. One patient developed de novo C3G. Median post kidney transplant clinical follow up time was 91 months. Median time to recurrence was 7 months with median graft survival of 48 months post kidney transplantation. The most common index biopsy pattern of injury was endocapillary proliferative glomerulonephritis (often with exudative features) with or without mesangial hypercellularity (56%) followed by membranoproliferative glomerulonephritis (25%). Most patients developed membranoproliferative glomerulonephritis pattern of injury on follow up biopsies (63%). Seven patients with recurrent disease received treatment with eculizumab with a median graft survival of 73 months, with five functioning grafts by the end of the study period. Seven patients with recurrent disease did not receive therapy, and all lost their graft with a median graft survival of 22 months (P = 0.003).
CONCLUSION C3G following kidney transplantation is mostly a recurrent disorder with a poor prognosis in untreated patients. Untreated recurrence has a poor prognosis with median allograft survival < 2 years. Early treatment with eculizumab may improve transplant outcomes in patients with recurrent C3G.
Collapse
Affiliation(s)
- Jonathan Zuckerman
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Phuong-Thu Pham
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Meena Parakkal
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Alexis F Velazquez
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Mrinalini Sarkar
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Michael A Pablos
- Division of Nephrology, Harbor Medical Center, University of California, Los Angeles, CA 90095, United States
| | - Suphamai Bunnapradist
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Erik L Lum
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
2
|
Meuleman MS, Roquigny J, Brousse R, El Sissy C, Durieux G, Quintrec ML, Van Huyen JPD, Frémeaux-Bacchi V, Chauvet S. Acquired and genetic determinants of disease phenotype and therapeutic strategies in C3 glomerulopathy and immunoglobulin-associated MPGN. Nephrol Dial Transplant 2025; 40:842-851. [PMID: 39537192 DOI: 10.1093/ndt/gfae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 11/16/2024] Open
Abstract
C3 glomerulopathy (C3G), a prototype of complement-mediated disease, is characterized by significant heterogeneity, in terms of not only clinical, histological and biological presentation but also prognosis, and response to existing therapies. Recent advancements in understanding the factors responsible for alternative pathway dysregulation in the disease have highlighted its even more complex nature. Here, we propose a reexamination of the diversity of C3G presentations in light of the drivers of complement activation. Autoantibodies targeting complement proteins, genetic abnormalities in complement genes and monoclonal immunoglobulins are now well-known to drive disease occurrence. This review discusses how these drivers contribute to the heterogeneity in disease phenotype and outcomes, providing insights into tailored diagnostic and therapeutic approaches. In recent years, a broad spectrum of complement inhibitory therapies has emerged, soon to be available in clinical practice. The recognition of specific clinical, biological and histological patterns associated with different forms of C3G is crucial for personalized management, particularly treatment strategies.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
| | - Julia Roquigny
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Romain Brousse
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
| | - Carine El Sissy
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Immunology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), ILe de France, Paris, France
| | - Guillaume Durieux
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France, CRMR MARHEA and ARMAC
| | - Moglie Le Quintrec
- Department of Nephrology, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Duong Van Huyen
- Department of Anathomopathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Ile de France, Paris, France
- Paris Cité University, Paris, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Immunology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), ILe de France, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, ILe de France, Paris, France
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France, CRMR MARHEA and ARMAC
- Paris Cité University, Paris, France
| |
Collapse
|
3
|
Welte T, Arnold F, Westermann L, Rottmann FA, Hug MJ, Neumann-Haefelin E, Ganner A. Eculizumab as a treatment for C3 glomerulopathy: a single-center retrospective study. BMC Nephrol 2023; 24:8. [PMID: 36631797 PMCID: PMC9832765 DOI: 10.1186/s12882-023-03058-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND C3 Glomerulopathy (C3G) is a rare glomerular disease caused by dysregulation of the complement pathway. Based on its pathophysiology, treatment with the monoclonal antibody eculizumab targeting complement C5 may be a therapeutic option. Due to the rarity of the disease, observational data on the clinical response to eculizumab treatment is scarce. METHODS Fourteen patients (8 female, 57%) treated for C3 glomerulopathy at the medical center of the University of Freiburg between 2013 and 2022 were included. Subjects underwent biopsy before enrollment. Histopathology, clinical data, and response to eculizumab treatment were analyzed. Key parameters to determine the primary outcome were changes of estimated glomerular filtration rate (eGFR) over time. Positive outcome was defined as > 30% increase, stable outcome as ±30%, negative outcome as decrease > 30% of eGFR. RESULTS Eleven patients (78.8%) were treated with eculizumab, three received standard of care (SoC, 27.2%). Median follow-up time was 68 months (IQR: 45-98 months). Median eculizumab treatment duration was 10 months (IQR 5-46 months). After eculizumab treatment, five patients showed a stable outcome, six patients showed a negative outcome. Among patients receiving SoC, one patient showed a stable outcome, two patients showed a negative outcome. CONCLUSIONS The benefit of eculizumab in chronic progressive C3 glomerulopathy is limited.
Collapse
Affiliation(s)
- Thomas Welte
- Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Frederic Arnold
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Institute for Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Westermann
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix A. Rottmann
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin J. Hug
- grid.5963.9Pharmacy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- grid.5963.9Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Athina Ganner
- Department of Nephrology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Schubart A, Flohr S, Junt T, Eder J. Low-molecular weight inhibitors of the alternative complement pathway. Immunol Rev 2023; 313:339-357. [PMID: 36217774 PMCID: PMC10092480 DOI: 10.1111/imr.13143] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of the alternative complement pathway predisposes individuals to a number of diseases. It can either be evoked by genetic alterations in or by stabilizing antibodies to important pathway components and typically leads to severe diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. In addition, the alternative pathway may also be involved in many other diseases where its amplifying function for all complement pathways might play a role. To identify specific alternative pathway inhibitors that qualify as therapeutics for these diseases, drug discovery efforts have focused on the two central proteases of the pathway, factor B and factor D. Although drug discovery has been challenging for a number of reasons, potent and selective low-molecular weight (LMW) oral inhibitors have now been discovered for both proteases and several molecules are in clinical development for multiple complement-mediated diseases. While the clinical development of these inhibitors initially focuses on diseases with systemic and/or peripheral tissue complement activation, the availability of LMW inhibitors may also open up the prospect of inhibiting complement in the central nervous system where its activation may also play an important role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Schubart
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefanie Flohr
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
5
|
Long-term follow-up including extensive complement analysis of a pediatric C3 glomerulopathy cohort. Pediatr Nephrol 2022; 37:601-612. [PMID: 34476601 PMCID: PMC8921070 DOI: 10.1007/s00467-021-05221-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND C3 glomerulopathy (C3G) is a rare kidney disorder characterized by predominant glomerular depositions of complement C3. C3G can be subdivided into dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). This study describes the long-term follow-up with extensive complement analysis of 29 Dutch children with C3G. METHODS Twenty-nine C3G patients (19 DDD, 10 C3GN) diagnosed between 1992 and 2014 were included. Clinical and laboratory findings were collected at presentation and during follow-up. Specialized assays were used to detect rare variants in complement genes and measure complement-directed autoantibodies and biomarkers in blood. RESULTS DDD patients presented with lower estimated glomerular filtration rate (eGFR). C3 nephritic factors (C3NeFs) were detected in 20 patients and remained detectable over time despite immunosuppressive treatment. At presentation, low serum C3 levels were detected in 84% of all patients. During follow-up, in about 50% of patients, all of them C3NeF-positive, C3 levels remained low. Linear mixed model analysis showed that C3GN patients had higher soluble C5b-9 (sC5b-9) and lower properdin levels compared to DDD patients. With a median follow-up of 52 months, an overall benign outcome was observed with only six patients with eGFR below 90 ml/min/1.73 m2 at last follow-up. CONCLUSIONS We extensively described clinical and laboratory findings including complement features of an exclusively pediatric C3G cohort. Outcome was relatively benign, persistent low C3 correlated with C3NeF presence, and C3GN was associated with higher sC5b-9 and lower properdin levels. Prospective studies are needed to further elucidate the pathogenic mechanisms underlying C3G and guide personalized medicine with complement therapeutics.
Collapse
|
6
|
Blatt NB, Kumar T, Wickman LT, Kanaan HD, Chang A, Zhang PL. Myeloperoxidase immunohistochemical staining can identify glomerular endothelial cell injury in dense deposit disease. Pediatr Nephrol 2021; 36:4003-4007. [PMID: 34522991 DOI: 10.1007/s00467-021-05262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/11/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies have demonstrated residual complement-mediated deposits in repeat kidney biopsies of C3 glomerulopathies (C3G) (dense deposit disease (DDD) and C3 glomerulonephritis) following eculizumab treatment, despite some clinical improvement. With residual complement deposition, it is difficult to determine whether there is a reduced complement-mediated endothelial cell injury. We validated that myeloperoxidase (MPO) immunohistochemical staining identified glomerular endothelial cell injury in crescentic glomerulonephritis and C3G. CASE (DIAGNOSIS/TREATMENT) We report that MPO staining in the glomerular endothelium of the post-treatment kidney biopsy was significantly reduced after 3 years of eculizumab treatment and clinical improvement in a 5-year-old boy with initial DDD and secondary crescent formation. CONCLUSION We find that immunostaining for MPO is a useful method to compare glomerular endothelial injury in C3G following eculizumab treatment. This finding also supports the notion that eculizumab, a C5 blocker, may not mainly block C3 deposits in the glomeruli but significantly blocks final activation of the complement cascade, thus reducing glomerular endothelial cell injury.
Collapse
Affiliation(s)
- Neal B Blatt
- Division of Pediatric Nephrology, Beaumont Health, Royal Oak, MI, USA.
| | - Tripti Kumar
- Department of Pathology, Ascension Providence Hospital, Southfield, MI, USA
| | - Larysa T Wickman
- Division of Pediatric Nephrology, Beaumont Health, Royal Oak, MI, USA
| | - Hassan D Kanaan
- Department of Pathology, Beaumont Laboratories, Beaumont Health, Royal Oak, MI, USA
| | - Anthony Chang
- The University of Chicago Medical Center, Chicago, IL, USA
| | - Ping L Zhang
- Department of Pathology, Beaumont Laboratories, Beaumont Health, Royal Oak, MI, USA.
| |
Collapse
|
7
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Muff-Luett M, Sanderson KR, Engen RM, Zahr RS, Wenderfer SE, Tran CL, Sharma S, Cai Y, Ingraham S, Winnicki E, Weaver DJ, Hunley TE, Kiessling SG, Seamon M, Woroniecki R, Miyashita Y, Xiao N, Omoloja AA, Kizilbash SJ, Mansuri A, Kallash M, Yu Y, Sherman AK, Srivastava T, Nester CM. Eculizumab exposure in children and young adults: indications, practice patterns, and outcomes-a Pediatric Nephrology Research Consortium study. Pediatr Nephrol 2021; 36:2349-2360. [PMID: 33693990 PMCID: PMC8263513 DOI: 10.1007/s00467-021-04965-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Eculizumab is approved for the treatment of atypical hemolytic uremic syndrome (aHUS). Its use off-label is frequently reported. The aim of this study was to describe the broader use and outcomes of a cohort of pediatric patients exposed to eculizumab. METHODS A retrospective, cohort analysis was performed on the clinical and biomarker characteristics of eculizumab-exposed patients < 25 years of age seen across 21 centers of the Pediatric Nephrology Research Consortium. Patients were included if they received at least one dose of eculizumab between 2008 and 2015. Traditional summary statistics were applied to demographic and clinical data. RESULTS A total of 152 patients were identified, mean age 9.1 (+/-6.8) years. Eculizumab was used "off-label" in 44% of cases. The most common diagnoses were aHUS (47.4%), Shiga toxin-producing Escherichia coli HUS (12%), unspecified thrombotic microangiopathies (9%), and glomerulonephritis (9%). Genetic testing was available for 60% of patients; 20% had gene variants. Dosing regimens were variable. Kidney outcomes tended to vary according to diagnosis. Infectious adverse events were the most common adverse event (33.5%). No cases of meningitis were reported. Nine patients died of noninfectious causes while on therapy. CONCLUSIONS This multi-center retrospective cohort analysis indicates that a significant number of children and young adults are being exposed to C5 blockade for off-label indications. Dosing schedules were highly variable, limiting outcome conclusions. Attributable adverse events appeared to be low. Cohort mortality (6.6%) was not insignificant. Prospective studies in homogenous disease cohorts are needed to support the role of C5 blockade in kidney outcomes.
Collapse
Affiliation(s)
- Melissa Muff-Luett
- Department of Pediatrics, Pediatric Nephrology, University of Nebraska Medical School, Children's Hospital and Medical Center, 8200 Dodge St., Omaha, NE, 68114-4113, USA.
| | - Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel M Engen
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott E Wenderfer
- Pediatric Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Cheryl L Tran
- Division of Pediatric Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Sheena Sharma
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi Cai
- Division of Nephrology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Susan Ingraham
- Kapi'olani Medical Center for Women and Children, Honolulu, HI, USA
| | - Erica Winnicki
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Donald J Weaver
- Division of Pediatric Nephrology and Hypertension, Atrium Health Levine Children's Hospital, Charlotte, NC, USA
| | - Tracy E Hunley
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stefan G Kiessling
- Division of Pediatric Nephrology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | | | - Robert Woroniecki
- Pediatric Nephrology and Hypertension, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | - Yosuke Miyashita
- Department of Pediatrics, Division of Pediatric Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Abiodun A Omoloja
- Nephrology Department, The Children's Medical Center, Dayton, OH, USA
| | - Sarah J Kizilbash
- Department of Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
| | - Asif Mansuri
- Children's Hospital of Georgia, Augusta University, Augusta, GA, USA
| | - Mahmoud Kallash
- Division of Nephrology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yichun Yu
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Ashley K Sherman
- Division of Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tarak Srivastava
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Carla M Nester
- Departments of Internal Medicine and Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Eculizumab for pediatric dense deposit disease: A case report and literature review. Clin Nephrol Case Stud 2020; 8:96-102. [PMID: 33329990 PMCID: PMC7737524 DOI: 10.5414/cncs110309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
Dense deposit disease (DDD), a subtype of complement component 3 (C3) glomerulopathy (C3G), results from alternative complement pathway hyperactivity leading to membrane attack complex formation. DDD treatment strategies are limited. We report a case of a 13-year-old girl diagnosed with DDD at 9 years of age, with nephritic and nephrotic syndrome and C3 nephritic factor-negative alternative complement pathway activation. Initial treatment with prednisolone, methylprednisolone pulses (MPs), and mizoribines was effective for 3 years, after which she relapsed. Despite MP treatment followed by prednisolone and mycophenolate mofetil (MMF), her kidney function and proteinuria deteriorated with a high soluble (s)C5b-9 level; she also developed dyspnea and pleural effusion (PE). Three days after the first eculizumab (ECZ) infusion, urine volume increased, respiratory condition improved, PE resolved, and proteinuria decreased in 1 month. Serum creatinine level decreased, and kidney function completely normalized within 7 weeks. The sC5b-9 level normalized, and although proteinuria decreased, nephrotic range proteinuria persisted during ECZ treatment with MMF for 53 weeks, even with increased treatment interval. Thus, complement activation pathway-targeted therapy may be useful for rapidly progressing DDD. Our data support the role of complement pathway abnormalities in C3G with DDD.
Collapse
|
10
|
Autoimmune abnormalities of the alternative complement pathway in membranoproliferative glomerulonephritis and C3 glomerulopathy. Pediatr Nephrol 2019; 34:1311-1323. [PMID: 29948306 DOI: 10.1007/s00467-018-3989-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023]
Abstract
Membranoproliferative glomerulonephritis (MPGN) is a rare chronic kidney disease associated with complement activation. Recent immunofluorescence-based classification distinguishes between immune complex (IC)-mediated MPGN, with glomerular IgG and C3 deposits, and C3 glomerulopathies (C3G), with predominant C3 deposits. Genetic and autoimmune abnormalities causing hyperactivation of the complement alternative pathway have been found as frequently in patients with immune complex-associated MPGN (IC-MPGN) as in those with C3G. In the last decade, there have been great advances in research into the autoimmune causes of IC-MPGN and C3G. The complement-activating autoantibodies called C3-nephritic factors (C3NeFs), which are present in 40-80% of patients, form a heterogeneous group of autoantibodies that stabilise the C3 convertase or the C5 convertase of the alternative pathway or both. A few patients, mainly with IC-MPGN, carry autoantibodies directed against the two components of the alternative pathway C3 convertase, factors B and C3b. Finally, autoantibodies against factor H, the main regulator of the alternative pathway, have been reported in a small proportion of patients with IC-MPGN or C3G. The identification of distinct pathogenetic patterns leading to kidney injury and of targets in the complement cascade may pave the way for tailored therapies for IC-MPGN and C3G, with specific complement inhibitors in the development pipeline.
Collapse
|
11
|
Kojc N, Bahovec A, Levart TK. C3 glomerulopathy in children: Is there still a place for anti-cellular immunosuppression? Nephrology (Carlton) 2019; 24:188-194. [PMID: 30393898 DOI: 10.1111/nep.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
AIM To contribute additional clinical experience to the paucity of reports on C3 glomerulopathy (C3GP) in children, we are reporting our cohort of 11 children with C3GP, emphasizing the therapeutic options in this peculiar entity. METHODS We describe the incidence, manifestation, histopathology findings, follow-up, treatment and outcome of C3GP in 11 children with C3GP by retrospectively analyzing their clinical charts and renal biopsy reports. RESULTS Eleven C3GP patients were identified among 240 children who had undergone renal biopsy, accounting for a 4.6% incidence of C3GP. A light microscopy examination showed a membranoproliferative pattern (n = 8), mesangial proliferation (n = 1), a mesangial/membranoproliferative pattern (n = 1) and endocapillary proliferation (n = 1). All children presented with proteinuria of varying degrees, the majority of them with additional hematuria, three with full-blown nephrotic-nephritic syndrome, and two with renal insufficiency at presentation. Very diverse treatments were applied in our cohort of patients, from no specific treatment to different mono or combined anti-cellular immunosuppression treatments, as well as a trial of plasma therapy or eculizumab. Our results are in to some extend in concordance with other studies revealing that an optimal therapy for C3GP is still unknown, but we believe that a trial of classical immunosuppression before eculizumab is still worth trying, while eculizumab can have a beneficial effect, but not in all patients. CONCLUSION A diverse histological pattern and clinical picture and no known optimal therapy are a hallmark of C3GP.
Collapse
Affiliation(s)
- Nika Kojc
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Bahovec
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik Levart
- Department of Nephrology, Division of Paediatrics, University Medical Centre, Ljubljana, Slovenia
| |
Collapse
|
12
|
Corvillo F, Okrój M, Nozal P, Melgosa M, Sánchez-Corral P, López-Trascasa M. Nephritic Factors: An Overview of Classification, Diagnostic Tools and Clinical Associations. Front Immunol 2019; 10:886. [PMID: 31068950 PMCID: PMC6491685 DOI: 10.3389/fimmu.2019.00886] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Nephritic factors comprise a heterogeneous group of autoantibodies against neoepitopes generated in the C3 and C5 convertases of the complement system, causing its dysregulation. Classification of these autoantibodies can be clustered according to their stabilization of different convertases either from the classical or alternative pathway. The first nephritic factor described with the capacity to stabilize C3 convertase of the alternative pathway was C3 nephritic factor (C3NeF). Another nephritic factor has been characterized by the ability to stabilize C5 convertase of the alternative pathway (C5NeF). In addition, there are autoantibodies against assembled C3/C5 convertase of the classical and lectin pathways (C4NeF). These autoantibodies have been mainly associated with kidney diseases, like C3 glomerulopathy and immune complex-associated-membranoproliferative glomerulonephritis. Other clinical situations where these autoantibodies have been observed include infections and autoimmune disorders such as systemic lupus erythematosus and acquired partial lipodystrophy. C3 hypocomplementemia is a common finding in all patients with nephritic factors. The methods to measure nephritic factors are not standardized, technically complex, and lack of an appropriate quality control. This review will be focused in the description of the mechanism of action of the three known nephritic factors (C3NeF, C4NeF, and C5NeF), and their association with human diseases. Moreover, we present an overview regarding the diagnostic tools for its detection, and the main therapeutic approach for the patients with nephritic factors.
Collapse
Affiliation(s)
- Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Pilar Nozal
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain.,Immunology Unit, La Paz University Hospital, Madrid, Spain
| | - Marta Melgosa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Nephrology Unit, La Paz University Hospital, Madrid, Spain
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER U754), Madrid, Spain
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Hohenstein B, Amann K, Menne J. Membranoproliferative Glomerulonephritis und C3‑Glomerulopathie. Internist (Berl) 2019; 60:458-467. [DOI: 10.1007/s00108-019-0572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Abbas F, El Kossi M, Kim JJ, Shaheen IS, Sharma A, Halawa A. Complement-mediated renal diseases after kidney transplantation - current diagnostic and therapeutic options in de novo and recurrent diseases. World J Transplant 2018; 8:203-219. [PMID: 30370231 PMCID: PMC6201327 DOI: 10.5500/wjt.v8.i6.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 02/05/2023] Open
Abstract
For decades, kidney diseases related to inappropriate complement activity, such as atypical hemolytic uremic syndrome and C3 glomerulopathy (a subtype of membranoproliferative glomerulonephritis), have mostly been complicated by worsened prognoses and rapid progression to end-stage renal failure. Alternative complement pathway dysregulation, whether congenital or acquired, is well-recognized as the main driver of the disease process in these patients. The list of triggers include: surgery, infection, immunologic factors, pregnancy and medications. The advent of complement activation blockade, however, revolutionized the clinical course and outcome of these diseases, rendering transplantation a viable option for patients who were previously considered as non-transplantable cases. Several less-costly therapeutic lines and likely better efficacy and safety profiles are currently underway. In view of the challenging nature of diagnosing these diseases and the long-term cost implications, a multidisciplinary approach including the nephrologist, renal pathologist and the genetic laboratory is required to help improve overall care of these patients and draw the optimum therapeutic plan.
Collapse
Affiliation(s)
- Fedaey Abbas
- Nephrology Department, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
| | - Mohsen El Kossi
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Jon Jin Kim
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom
| | - Ihab Sakr Shaheen
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Hospital for Children, Glasgow G51 4TF, United Kingdom
| | - Ajay Sharma
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Sheffield Teaching Hospitals, Sheffield S57AU, United Kingdom
| |
Collapse
|
15
|
Cianciolo RE, Jennette JC. Glomerulonephritis in Animal Models and Human Medicine: Discovery, Pathogenesis, and Diagnostics. Toxicol Pathol 2018; 46:898-903. [PMID: 30278837 DOI: 10.1177/0192623318800714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glomerulonephritis (GN) is inflammation of glomeruli. The four major categories that cause human GN are mediated by immunoglobulin or complement or both, and they include (1) immune complex-mediated GN, (2) anti-glomerular basement membrane-mediated GN, (3) antineutrophil cytoplasmic autoantibody-mediated GN, and (4) complement factor 3 glomerulopathy mediated by complement dysregulation. Initiating processes include infection, autoimmunity, exogenous antigens, and neoplasia. Often there are predisposing and modulating genetic, epigenetic, and/or environmental factors. Animal models facilitated the recognition and elucidation of the pathogeneses of all four categories of GN, and they continue to be used in preclinical studies to identify and validate therapies for all four types of GN. Advanced diagnostic modalities (e.g., transmission electron microscopy and immunofluorescence) are helpful and sometimes required for the correct categorization of GN in humans and animals. This review provides historical background on the discovery of the different GN pathogeneses, describes some of the animal models used to discover and understand each GN pathogenic category, reviews the diagnostic classification of each category of GN, and compares human GN to spontaneous forms of nonhuman GN.
Collapse
|
16
|
Santoro D, Siligato R, Vadalà C, Lucanto M, Cristadoro S, Conti G, Buemi M, Costa S, Sabadini E, Magazzù G. C3 glomerulopathy in cystic fibrosis: a case report. BMC Nephrol 2018; 19:73. [PMID: 29592796 PMCID: PMC5875003 DOI: 10.1186/s12882-018-0880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/20/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND C3 glomerulonephritis is a rare glomerulopathy characterized at renal biopsy by C3 deposition, alone or with scanty immunoglobulins, as well as by an electron-dense material in mesangium, subendothelial and subepithelial space. An abnormal systemic activation of the alternative pathway of the complement cascade is responsible for the development of the disease if triggered by several possible environmental conditions. We report the first case in literature of a patient affected by cystic fibrosis and C3GN. CASE PRESENTATION Our case involves a young woman with cystic fibrosis, who had persistent microscopic hematuria, proteinuria and hypocomplementemia C3 for over three months. Renal biopsy confirmed the diagnosis of C3 glomerulopathy. Complement system dysregulation was tested and resulted in a strong terminal pathway activation proved by high levels of sC5b-9 complex, amounting to 1588 ng/ml (normal value < 400 ng/ml). Next generation sequencing (NGS) showed polymorphism in CFH (p.V62I in SCR1) and THBD (p.A473V), already known as pathogenic for C3GN, as well as a mutation in C3 (p.R102G) associated only with age-related macular degeneration (AMD) so far. Treatment was based on ACE inhibitors and kidney function is currently stable (GFR 50 ml/min, serum creatinine 1.7). CONCLUSIONS The co-existence of C3 glomerulopathy in a patient with CF, which is characterized by chronic infection/inflammation, makes this case an interesting model of chronic altered systemic activation of the alternative pathway of the complement cascade.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | - Rossella Siligato
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | - Carmela Vadalà
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | - Mariacristina Lucanto
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, University of Messina, Messina, Italy
| | - Simona Cristadoro
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, University of Messina, Messina, Italy
| | - Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| | - Michele Buemi
- Department of Clinical and Experimental Medicine, University of Messina, Via Faranda, 2-98123 Messina, Italy
| | - Stefano Costa
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, University of Messina, Messina, Italy
| | | | - Giuseppe Magazzù
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Spartà G, Gaspert A, Neuhaus TJ, Weitz M, Mohebbi N, Odermatt U, Zipfel PF, Bergmann C, Laube GF. Membranoproliferative glomerulonephritis and C3 glomerulopathy in children: change in treatment modality? A report of a case series. Clin Kidney J 2018; 11:479-490. [PMID: 30094012 PMCID: PMC6070093 DOI: 10.1093/ckj/sfy006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Background Membranoproliferative glomerulonephritis (MPGN) with immune complexes and C3 glomerulopathy (C3G) in children are rare and have a variable outcome, with some patients progressing to end-stage renal disease (ESRD). Mutations in genes encoding regulatory proteins of the alternative complement pathway and of complement C3 (C3) have been identified as concausative factors. Methods Three children with MPGN type I, four with C3G, i.e. three with C3 glomerulonephritis (C3GN) and one with dense deposit disease (DDD), were followed. Clinical, autoimmune data, histological characteristics, estimated glomerular filtration rate (eGFR), proteinuria, serum C3, genetic and biochemical analysis were assessed. Results The median age at onset was 7.3 years and the median eGFR was 72 mL/min/1.73 m2. Six children had marked proteinuria. All were treated with renin-angiotensin-aldosterone system (RAAS) blockers. Three were given one or more immunosuppressive drugs and two eculizumab. At the last median follow-up of 9 years after diagnosis, three children had normal eGFR and no or mild proteinuria on RAAS blockers only. Among four patients without remission of proteinuria, genetic analysis revealed mutations in complement regulator proteins of the alternative pathway. None of the three patients with immunosuppressive treatment achieved partial or complete remission of proteinuria and two progressed to ESRD and renal transplantation. Two patients treated with eculizumab revealed relevant decreases in proteinuria. Conclusions In children with MPGN type I and C3G, the outcomes of renal function and response to treatment modality show great variability independent from histological diagnosis at disease onset. In case of severe clinical presentation at disease onset, early genetic and biochemical analysis of the alternative pathway dysregulation is recommended. Treatment with eculizumab appears to be an option to slow disease progression in single cases.
Collapse
Affiliation(s)
- Giuseppina Spartà
- Pediatric Nephrology Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ariana Gaspert
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas J Neuhaus
- Children's Hospital of Lucerne, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Marcus Weitz
- Pediatric Nephrology Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Odermatt
- Nephrology Unit, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology e. V. Hans-Knöll-Institute, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Carsten Bergmann
- Bioscientia Center of Human Genetics, Ingelheim am Rhein, Germany
| | - Guido F Laube
- Pediatric Nephrology Unit, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Le Quintrec M, Lapeyraque AL, Lionet A, Sellier-Leclerc AL, Delmas Y, Baudouin V, Daugas E, Decramer S, Tricot L, Cailliez M, Dubot P, Servais A, Mourey-Epron C, Pourcine F, Loirat C, Frémeaux-Bacchi V, Fakhouri F. Patterns of Clinical Response to Eculizumab in Patients With C3 Glomerulopathy. Am J Kidney Dis 2018; 72:84-92. [PMID: 29429752 DOI: 10.1053/j.ajkd.2017.11.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/24/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cases reports and small series of patients with C3 glomerulopathy have reported variable efficacy of eculizumab. STUDY DESIGN Case series of C3 glomerulopathy. SETTING & PARTICIPANTS Pediatric and adult patients with C3 glomerulopathy treated with eculizumab between 2010 and 2016 were identified through the C3 glomerulopathy French registry database, and a questionnaire was sent to participating French pediatric and adult nephrology centers, as well as one pediatric referral center in Québec, Canada. OUTCOMES Global or partial clinical renal response. MEASUREMENTS Evolution of serum creatinine and proteinuria values. RESULTS 26 patients (13 children/adolescents) were included. 22 (85%) patients had received steroids, plasma exchange, or immunosuppressive therapy before eculizumab, and 3 of them had rapid progression of their kidney disease despite treatment. At the initiation of eculizumab therapy, 11 (42%) patients had chronic kidney disease, 7 (27%) had rapidly progressive disease, and 3 (12%) required dialysis. After eculizumab treatment (median duration, 14 months), 6 (23%) patients had a global clinical response; 6 (23%), a partial clinical response; and 14 (54%), no response. Compared with those who had a partial clinical or no response, patients who had a global clinical response had lower estimated glomerular filtration rates, a more rapidly progressive course, and more extracapillary proliferation on kidney biopsy. Age, extent of renal fibrosis, frequency of nephrotic syndrome, low serum C3 and C3 nephritic factor and elevated soluble C5b-9 concentrations, or complement gene variants did not differ between responders and nonresponders. LIMITATIONS Retrospective design without a control group, relatively small number of cases, inclusion of pediatric and adult cases. CONCLUSIONS Eculizumab appears to be a potential treatment for patients with crescentic rapidly progressive C3 glomerulopathy. Its benefit in patients with non-rapidly progressing forms seems to be limited.
Collapse
Affiliation(s)
- Moglie Le Quintrec
- Department of Nephrology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Department of Pediatrics, Centre Hospitalier Universitaire Sainte Justine and University of Montreal, Montréal, Québec, Canada
| | - Arnaud Lionet
- Department of Nephrology, Hôpital Huriez, Centre Hospitalier Universitaire de Lille, Lille
| | | | - Yahsou Delmas
- Department of Nephrology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux
| | - Véronique Baudouin
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire Robert Debré
| | - Eric Daugas
- Department of Nephrology, Centre Hospitalier Universitaire Bichat, Paris
| | - Stéphane Decramer
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de Toulouse, Toulouse
| | - Leila Tricot
- Department of Nephrology, Hôpital Foch, Suresnes
| | - Mathilde Cailliez
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire de la Timone, Marseille
| | - Philippe Dubot
- Department of Nephrology, Centre hospitalier William Morey, Chalon sur Saône
| | - Aude Servais
- Department of Nephrology, Centre Hospitalier Universitaire Necker, Paris
| | | | - Franck Pourcine
- Department of Nephrology, Centre Hospitalier Universitaire Henri Mondor, Créteil
| | - Chantal Loirat
- Department of Pediatric Nephrology, Centre Hospitalier Universitaire Robert Debré
| | | | - Fadi Fakhouri
- Department of Nephrology and Immunology, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| |
Collapse
|
19
|
Welte T, Arnold F, Kappes J, Seidl M, Häffner K, Bergmann C, Walz G, Neumann-Haefelin E. Treating C3 glomerulopathy with eculizumab. BMC Nephrol 2018; 19:7. [PMID: 29329521 PMCID: PMC5767001 DOI: 10.1186/s12882-017-0802-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Background C3 glomerulopathy (C3G) is a rare, but severe glomerular disease with grim prognosis. The complex pathogenesis is just unfolding, and involves acquired as well as inherited dysregulation of the alternative pathway of the complement cascade. Currently, there is no established therapy. Treatment with the C5 complement inhibitor eculizumab may be a therapeutic option. However, due to rarity of the disease, parameters predicting treatment response remain largely unknown. Methods Seven patients with C3G (five with C3 glomerulonephritis and two with dense deposit disease) were treated with eculizumab. Subjects underwent biopsy before enrollment. The histopathology, clinical data, and response to eculizumab treatment were analyzed. The key parameters to determine outcome were changes of serum creatinine and urinary protein over time. Results After treatment with eculizumab, four subjects showed significantly improved or stable renal function and urinary protein. A positive response occurred between 2 weeks and 6 months after therapy initiation. One subject (with allograft recurrent C3 glomerulonephritis) initially showed a positive response, but relapsed when eculizumab was discontinued, and did not respond after re-initiation of treatment. Two subjects showed impaired renal function and increasing urinary protein despite therapy with eculizumab. Conclusions Eculizumab may be a therapeutic option for a subset of C3G patients. The response to eculizumab is heterogeneous, and early as well as continuous treatment may be necessary to prevent disease progression. These findings emphasize the need for studies identifying genetic and functional complement abnormalities that may help to guide eculizumab treatment and predict response. Electronic supplementary material The online version of this article (10.1186/s12882-017-0802-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Welte
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Frederic Arnold
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Julia Kappes
- Department of Pneumology, Medical Center-University of Freiburg, Germany, Killianstrasse 4, 79106, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, Medical Center-University of Freiburg, Germany, Breisacher Strasse 115A, 79106, Freiburg, Germany
| | - Karsten Häffner
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Germany, Heiliggeiststrasse 1, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany, Konrad-Adenauer-Strasse 17, 55218, Ingelheim, Germany
| | - Gerd Walz
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Nephrology, Medical Center-University of Freiburg, Germany, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
20
|
Wong EKS, Kavanagh D. Diseases of complement dysregulation-an overview. Semin Immunopathol 2018; 40:49-64. [PMID: 29327071 PMCID: PMC5794843 DOI: 10.1007/s00281-017-0663-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3G), and paroxysmal nocturnal hemoglobinuria (PNH) are prototypical disorders of complement dysregulation. Although complement overactivation is common to all, cell surface alternative pathway dysregulation (aHUS), fluid phase alternative pathway dysregulation (C3G), or terminal pathway dysregulation (PNH) predominates resulting in the very different phenotypes seen in these diseases. The mechanism underlying the dysregulation also varies with predominant acquired autoimmune (C3G), somatic mutations (PNH), or inherited germline mutations (aHUS) predisposing to disease. Eculizumab has revolutionized the treatment of PNH and aHUS although has been less successful in C3G. With the next generation of complement therapeutic in late stage development, these archetypal complement diseases will provide the initial targets.
Collapse
Affiliation(s)
- Edwin K S Wong
- The National Renal Complement Therapeutics Centre, aHUS Service, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre, aHUS Service, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK. .,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
Urban A, Borowska A, Felberg A, van den Heuvel L, Stasiłojć G, Volokhina E, Okrój M. Gain of function mutant of complement factor B K323E mimics pathogenic C3NeF autoantibodies in convertase assays. Autoimmunity 2018; 51:18-24. [PMID: 29308663 DOI: 10.1080/08916934.2017.1423286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complement convertases are enzymatic complexes, which play a critical role in propagation and amplification of the complement cascade. Under physiological conditions, convertases decay shortly after being formed in either spontaneous or inhibitor-driven process. Prolongation of their half-life by C3NeF autoantibodies that prevent convertase dissociation results in pathogenic condition often manifested by renal diseases. However, the diagnosis of convertase abnormalities is difficult due to the labile nature of these enzymes and low credibility of existing methods. Only recently, two-step functional assays employing C5-depleted serum or C5 inhibitors were introduced. Their advantage is convertase formation in the physiological milieu of whole serum and the drawback is inter-assay variability due to variations in rabbit erythrocytes used for the haemolysis-based readout. Abovementioned problems demand the application of the internal standard in each experiment. Obtaining a defined preparation of autoantibodies is complicated due to ethical and practical considerations. We found that recombinant, his-tagged factor B (fB) variant K323E retains full hemolytic activity and possess the ability to form convertases with prolonged half-life either in fB-depleted serum or when mixed with normal human serum. Such dominant character of K323E mutation allows using recombinant protein as a reference in functional convertase assays, not limited to these using rabbit erythrocytes. Additionally, our results demonstrate that gain of function mutations in complement components mimic the phenotype of C3NeF. Hence, patients with such "genetic C3NeF" would not benefit from B-cell depletion (e.g. by rituximab) and therefore should be properly diagnosed in order to choose suitable therapeutic intervention.
Collapse
Affiliation(s)
- Aleksandra Urban
- a Department of Medical Biotechnology , Intercollegiate Faculty of Biotechnology UG-GUMED , Gdańsk , Poland
| | - Anna Borowska
- a Department of Medical Biotechnology , Intercollegiate Faculty of Biotechnology UG-GUMED , Gdańsk , Poland
| | - Anna Felberg
- a Department of Medical Biotechnology , Intercollegiate Faculty of Biotechnology UG-GUMED , Gdańsk , Poland
| | - Lambertus van den Heuvel
- b Department of Pediatric Nephrology , Radboud University Medical Center , Nijmegen , The Netherlands.,c Department of Laboratory Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,d Department of Pediatric Nephrology , University Hospitals Leuven , Leuven , Belgium.,e Department of Growth and Regeneration , University Hospitals Leuven , Leuven , Belgium
| | - Grzegorz Stasiłojć
- a Department of Medical Biotechnology , Intercollegiate Faculty of Biotechnology UG-GUMED , Gdańsk , Poland
| | - Elena Volokhina
- b Department of Pediatric Nephrology , Radboud University Medical Center , Nijmegen , The Netherlands.,c Department of Laboratory Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Marcin Okrój
- a Department of Medical Biotechnology , Intercollegiate Faculty of Biotechnology UG-GUMED , Gdańsk , Poland
| |
Collapse
|
22
|
Brocklebank V, Kavanagh D. Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin Kidney J 2017; 10:600-624. [PMID: 28980670 PMCID: PMC5622895 DOI: 10.1093/ckj/sfx081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway, predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice. In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy, publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS and other TMAs.
Collapse
Affiliation(s)
- Vicky Brocklebank
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Angeletti A, Reyes-Bahamonde J, Cravedi P, Campbell KN. Complement in Non-Antibody-Mediated Kidney Diseases. Front Med (Lausanne) 2017; 4:99. [PMID: 28748184 PMCID: PMC5506082 DOI: 10.3389/fmed.2017.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
The complement system is part of the innate immune response that plays important roles in protecting the host from foreign pathogens. The complement components and relative fragment deposition have long been recognized to be strongly involved also in the pathogenesis of autoantibody-related kidney glomerulopathies, leading to direct glomerular injury and recruitment of infiltrating inflammation pathways. More recently, unregulated complement activation has been shown to be associated with progression of non-antibody-mediated kidney diseases, including focal segmental glomerulosclerosis, C3 glomerular disease, thrombotic microangiopathies, or general fibrosis generation in progressive chronic kidney diseases. Some of the specific mechanisms associated with complement activation in these diseases were recently clarified, showing a dominant role of alternative activation pathway. Over the last decade, a growing number of anticomplement agents have been developed, and some of them are being approved for clinical use or already in use. Therefore, anticomplement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Herein, we review the complement system activation, regulatory mechanisms, their involvement in non-antibody-mediated glomerular diseases, and the recent advances in complement-targeting agents as potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Angeletti
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Joselyn Reyes-Bahamonde
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kirk N Campbell
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Lebreton C, Bacchetta J, Dijoud F, Bessenay L, Fremeaux-Bacchi V, Sellier-Leclerc AL. C3 glomerulopathy and eculizumab: a report on four paediatric cases. Pediatr Nephrol 2017; 32:1023-1028. [PMID: 28236143 DOI: 10.1007/s00467-017-3619-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Eculizumab may be used to treat C3-glomerulopathy (C3G), a rare but severe glomerular disease. DIAGNOSIS AND TREATMENT Patients 1, 2 and 3 were diagnosed with nephritic syndrome with alternative complement pathway activation (low C3, C3Nef-positive) and C3G at the age of 9, 13 and 12 years, respectively. Treatment with eculizumab normalized proteinuria within 1, 2 and 7 months, respectively. Proteinuria relapsed when eculizumab was withdrawn, but the re-introduction of eculizumab normalized proteinuria. Patient 4 was diagnosed with C3G at 9 years of age, with progression to end-stage renal disease within 2 years, followed by a first renal transplantation (R-Tx) with early disease recurrence and graft loss within 39 months. After a second R-Tx, she rapidly presented with biological and histological recurrence: therapy with eculizumab was started, with no effect on proteinuria after 5 months, in a complex clinical setting (i.e. association of C3G recurrence, humoral rejection and BK nephritis). Eculizumab was withdrawn due to multiple viral reactivations, but the re-introduction of the drug a few months later enabled a moderate decrease in proteinuria. CONCLUSION These cases illustrate the efficacy of eculizumab, at least on native kidneys, in paediatric C3G. However, larger international studies are warranted to confirm the benefit and safety of eculizumab therapy.
Collapse
Affiliation(s)
- Célia Lebreton
- Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Centre de Référence des Maladies Rénales Rares Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron, France
| | - Justine Bacchetta
- Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Centre de Référence des Maladies Rénales Rares Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron, France.,Faculté de Médecine Lyon Est, Université Lyon 1, Lyon, France
| | - Frédérique Dijoud
- Faculté de Médecine Lyon Est, Université Lyon 1, Lyon, France.,Laboratoire d'Anatomopathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Lucie Bessenay
- Service de Pédiatrie, CHU Clermont Ferrand, Clermont Ferrand, France
| | - Véronique Fremeaux-Bacchi
- Laboratoire d'Immunologie, Hôpital Georges Pompidou, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne Laure Sellier-Leclerc
- Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Centre de Référence des Maladies Rénales Rares Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
25
|
Rituximab for Treatment of Membranoproliferative Glomerulonephritis and C3 Glomerulopathies. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2180508. [PMID: 28573137 PMCID: PMC5440792 DOI: 10.1155/2017/2180508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023]
Abstract
Membranoproliferative glomerulonephritis (MPGN) is a histological pattern of injury resulting from predominantly subendothelial and mesangial deposition of immunoglobulins or complement factors with subsequent inflammation and proliferation particularly of the glomerular basement membrane. Recent classification of MPGN is based on pathogenesis dividing MPGN into immunoglobulin-associated MPGN and complement-mediated C3 glomerulonephritis (C3GN) and dense deposit disease (DDD). Current guidelines suggest treatment with steroids, cytotoxic agents with or without plasmapheresis only for subjects with progressive disease, that is, nephrotic range proteinuria and decline of renal function. Rituximab, a chimeric B-cell depleting anti-CD20 antibody, has emerged in the last decade as a treatment option for patients with primary glomerular diseases such as minimal change disease, focal-segmental glomerulosclerosis, or idiopathic membranous nephropathy. However, data on the use of rituximab in MPGN, C3GN, and DDD are limited to case reports and retrospective case series. Patients with immunoglobulin-associated and idiopathic MPGN who were treated with rituximab showed partial and complete responses in the majorities of cases. However, rituximab was not effective in few cases of C3GN and DDD. Despite promising results in immunoglobulin-associated and idiopathic MPGN, current evidence on this treatment remains weak, and controlled and prospective data are urgently needed.
Collapse
|
26
|
Abstract
Recent advances in our understanding of the disease pathology of membranoproliferative glomerulonephritis has resulted in its re-classification as complement C3 glomerulopathy (C3G) and immune complex-mediated glomerulonephritis (IC-GN). The new consensus is based on its underlying pathomechanism, with a key pathogenetic role for the complement alternative pathway (AP), rather than on histomorphological characteristics. In C3G, loss of AP regulation leads to predominant glomerular C3 deposition, which distinguishes C3G from IC-GN with predominant immunoglobulin G staining. Electron microscopy further subdivides C3G into C3 glomerulonephritis and dense deposit disease depending on the presence and distribution pattern of electron-dense deposits within the glomerular filter. Mutations or autoantibodies affecting the function of AP activators or regulators, in particular the decay of the C3 convertase (C3 nephritic factor), have been detected in up to 80 % of C3G patients. The natural outcome of C3G is heterogeneous, but 50 % of patients progress slowly and reach end-stage renal disease within 10-15 years. The new classification not only marks significant advancement in the pathogenic understanding of this rare disease, but also opens doors towards more specific treatment with the potential for improved outcomes.
Collapse
Affiliation(s)
- Magdalena Riedl
- Cell Biology Program of the Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, Innsbruck Medical University, Innsbruck, Austria
| | - Paul Thorner
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christoph Licht
- Cell Biology Program of the Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Goodship THJ, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, Nester CM, Noris M, Pickering MC, Rodríguez de Córdoba S, Roumenina LT, Sethi S, Smith RJH. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 2016; 91:539-551. [PMID: 27989322 DOI: 10.1016/j.kint.2016.10.005] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
In both atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) complement plays a primary role in disease pathogenesis. Herein we report the outcome of a 2015 Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference where key issues in the management of these 2 diseases were considered by a global panel of experts. Areas addressed included renal pathology, clinical phenotype and assessment, genetic drivers of disease, acquired drivers of disease, and treatment strategies. In order to help guide clinicians who are caring for such patients, recommendations for best treatment strategies were discussed at length, providing the evidence base underpinning current treatment options. Knowledge gaps were identified and a prioritized research agenda was proposed to resolve outstanding controversial issues.
Collapse
Affiliation(s)
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Fadi Fakhouri
- INSERM, UMR-S 1064, and Department of Nephrology and Immunology, CHU de Nantes, Nantes, France
| | - Fernando C Fervenza
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - David Kavanagh
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carla M Nester
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Ranica, Bergamo, Italy
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Lubka T Roumenina
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1138, Complément et Maladies, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes Sorbonne Paris-Cité, Paris, France; Université Pierre et Marie Curie (UPMC-Paris-6), Paris, France
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
28
|
Motwani SS, Herlitz L, Monga D, Jhaveri KD, Lam AQ. Paraprotein-Related Kidney Disease: Glomerular Diseases Associated with Paraproteinemias. Clin J Am Soc Nephrol 2016; 11:2260-2272. [PMID: 27526706 PMCID: PMC5142064 DOI: 10.2215/cjn.02980316] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paraproteins are monoclonal Igs that accumulate in blood as a result of abnormal excess production. These circulating proteins cause a diversity of kidney disorders that are increasingly being comanaged by nephrologists. In this review, we discuss paraprotein-related diseases that affect the glomerulus. We provide a broad overview of diseases characterized by nonorganized deposits, such as monoclonal Ig deposition disease (MIDD), proliferative GN with monoclonal Ig deposits (PGNMID), and C3 glomerulopathy, as well as those characterized by organized deposits, such as amyloidosis, immunotactoid glomerulopathy, fibrillary GN, and cryoglobulinemic GN, and rarer disorders, such as monoclonal crystalline glomerulopathies, paraprotein-related thrombotic microangiopathies, and membranous-like glomerulopathy with masked IgGκ deposits. This review will provide the nephrologist with an up to date understanding of these entities and highlight the areas of deficit in evidence and future lines of research.
Collapse
Affiliation(s)
- Shveta S. Motwani
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Adult Survivorship Program, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Divya Monga
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York
| | - Albert Q. Lam
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Adult Survivorship Program, Dana Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
29
|
Abstract
C3 glomerulopathy (C3G) is a recently identified disease entity caused by dysregulation of the alternative complement pathway, and dense deposit disease (DDD) and C3 glomerulonephritis (C3GN) are its components. Because laboratory detection of complement dysregulation is still uncommon in practice, "dominant C3 deposition by two orders greater than that of immunoglobulins in the glomeruli by immunofluorescence", as stated in the consensus report, defines C3G. However, this morphological definition possibly includes the cases with glomerular diseases of different mechanisms such as post-infectious glomerulonephritis. In addition, the differential diagnosis between DDD and C3GN is often difficult because the distinction between these two diseases is based solely on electron microscopic features. Recent molecular and genetic advances provide information to characterize C3G. Some C3G cases are found with genetic abnormalities in complement regulatory factors, but majority of cases seem to be associated with acquired factors that dysregulate the alternative complement pathway. Because clinical courses and prognoses among glomerular diseases with dominant C3 deposition differ, further understanding the background mechanism, particularly complement dysregulation in C3G, is needed. This may resolve current dilemmas in practice and shed light on novel targeted therapies to remedy the dysregulated alternative complement pathway in C3G.
Collapse
|
30
|
Abstract
C3 glomerulopathy (C3G) describes a spectrum of glomerular diseases defined by shared renal biopsy pathology: a predominance of C3 deposition on immunofluorescence with electron microscopy permitting disease sub-classification. Complement dysregulation underlies the observed pathology, a causal relationship that is supported by well described studies of genetic and acquired drivers of disease. In this article, we provide an overview of the features of C3G, including a discussion of disease definition and a review of the causal role of complement. We discuss molecular markers of disease and how biomarkers are informing our evolving understanding of underlying pathology. Research advances are laying the foundation for complement inhibition as a targeted approach to treatment of C3G.
Collapse
|
31
|
Salvadori M, Rosso G. Reclassification of membranoproliferative glomerulonephritis: Identification of a new GN: C3GN. World J Nephrol 2016; 5:308-320. [PMID: 27458560 PMCID: PMC4936338 DOI: 10.5527/wjn.v5.i4.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/31/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
This review revises the reclassification of the membranoproliferative glomerulonephritis (MPGN) after the consensus conference that by 2015 reclassified all the glomerulonephritis basing on etiology and pathogenesis, instead of the histomorphological aspects. After reclassification, two types of MPGN are to date recognized: The immunocomplexes mediated MPGN and the complement mediated MPGN. The latter type is more extensively described in the review either because several of these entities are completely new or because the improved knowledge of the complement cascade allowed for new diagnostic and therapeutic approaches. Overall the complement mediated MPGN are related to acquired or genetic cause. The presence of circulating auto antibodies is the principal acquired cause. Genetic wide association studies and family studies allowed to recognize genetic mutations of different types as causes of the complement dysregulation. The complement cascade is a complex phenomenon and activating factors and regulating factors should be distinguished. Genetic mutations causing abnormalities either in activating or in regulating factors have been described. The diagnosis of the complement mediated MPGN requires a complete study of all these different complement factors. As a consequence, new therapeutic approaches are becoming available. Indeed, in addition to a nonspecific treatment and to the immunosuppression that has the aim to block the auto antibodies production, the specific inhibition of complement activation is relatively new and may act either blocking the C5 convertase or the C3 convertase. The drugs acting on C3 convertase are still in different phases of clinical development and might represent drugs for the future. Overall the authors consider that one of the principal problems in finding new types of drugs are both the rarity of the disease and the consequent poor interest in the marketing and the lack of large international cooperative studies.
Collapse
|
32
|
Keir LS, Langman CB. Complement and the kidney in the setting of Shiga-toxin hemolytic uremic syndrome, organ transplantation, and C3 glomerulonephritis. Transfus Apher Sci 2016; 54:203-11. [PMID: 27156109 DOI: 10.1016/j.transci.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To review the role of complement in glomerular pathologies focusing on thrombotic microangiopathies (TMA) caused by Shiga toxin (Stx) and organ transplantation associated hemolytic uremic syndrome (HUS) as well as C3 glomerulopathy (C3G). METHODS Examination of literature discussing TMA associated with Stx HUS, transplantation related HUS and C3G. RESULTS There is an emerging role for complement biology in the renal glomerulus where its inappropriate over-activation is integral to several diseases. Stx HUS patients show evidence of complement activation and the toxin itself can activate complement and inhibit its normal regulation. However, therapeutic complement blockade has not yet proven effective in all circumstances. This may be partly related to late use and a clinical trial could be warranted. Organ transplantation associated HUS has carried a poor prognosis. While case reports supporting the use of complement inhibition exist, there has not been a formal trial. Complement activation in C3G is established but again treatment with complement inhibition has failed to be uniformly beneficial. Here, too, a clinical trial may help determine which subgroup of patients should be treated with these agents. CONCLUSION Complement plays an important role in the glomerulus but more work is needed to fully understand how it contributes to normal function and pathology. This will help direct appropriate therapy in these diseases.
Collapse
Affiliation(s)
- Lindsay S Keir
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Kidney Diseases, The Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Craig B Langman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Kidney Diseases, The Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| |
Collapse
|
33
|
Discontinuation of dialysis with eculizumab therapy in a pediatric patient with dense deposit disease. Pediatr Nephrol 2016; 31:683-7. [PMID: 26759144 DOI: 10.1007/s00467-015-3306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dense deposit disease (DDD) is a rare glomerular disease caused by an uncontrolled activation of the alternative complement pathway leading to end-stage renal disease in 50 % of patients. As such, DDD has been classified within the spectrum of complement component 3 (C3) glomerulopathies due to its pathogenesis from alternative pathway dysregulation. Conventional immunosuppressive therapies have no proven effectiveness. Eculizumab, a terminal complement inhibitor, has been reported to mitigate disease in some cases. CASE-DIAGNOSIS/TREATMENT We report on the efficacy of eculizumab in a pediatric patient who failed to respond to cyclophosphamide, corticosteroids, and plasma exchange. Complement biomarker profiling was remarkable for low serum C3, low properdin, and elevated soluble C5b-9. Consistent with these findings, the alternative pathway functional assay was abnormally low, indicative of alternative pathway activity, although neither C3-nephritic factors nor Factor H autoantibodies were detected. Eculizumab therapy was associated with significant improvement in proteinuria and renal function allowing discontinuation of hemodialysis (HD). Repeat C3 and soluble C5b-9 levels normalized, showing that terminal complement pathway activity was successfully blocked while the patient was receiving eculizumab therapy. Repeat testing for alternative pathway activation allowed for a successful decrease in eculizumab dosing. CONCLUSIONS The case reported here demonstrates the successful recovery of renal function in a pediatric patient on HD following the use of eculizumab.
Collapse
|
34
|
Fakhouri F. [Clinical approach to primary membranoproliferative glomerulonephritis]. Nephrol Ther 2016; 12 Suppl 1:S65-9. [PMID: 26972096 DOI: 10.1016/j.nephro.2016.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membranoproliferative glomerulonephritis represent a heterogeneous group of nephropathies. During the last five years, our understanding of membranoproliferative glomerulonephritis has greatly improved. Animal models and the study of complement genetics led to the dissection of the physiopathology of membranoproliferative glomerulonephritis, to the individualization of a new entity, C3 glomerulopathy, and to a new classification of these nephropathies. The study of large cohorts has also changed the clinical picture of membranoproliferative glomerulonephritis that has been long dominated by the severity of a single type of dense deposits disease. Finally, the rediscovery of complement through the study of the atypical haemolytic uremic syndrome and the availability in clinical practice of complement inhibitors have paved the way for new therapeutic approaches of membranoproliferative glomerulonephritis.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Service de néphrologie et d'immunologie, CHU de Nantes, 1, place Alexis-Ricordeau, 44000 Nantes, France; Inserm UMR S-1064, 30, boulevard Jean-Monnet, 44093 Nantes cedex 01, France; Institut de transplantation urologie-néphrologie (Itun), 30, boulevard Jean-Monnet, 44093 Nantes cedex 01, France.
| |
Collapse
|
35
|
Abstract
Biological therapeutics (biologics) that target autoimmune responses and inflammatory injury pathways have a marked beneficial impact on the management of many chronic diseases, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, and ankylosing spondylitis. Accumulating data suggest that a growing number of renal diseases result from autoimmune injury - including lupus nephritis, IgA nephropathy, anti-neutrophil cytoplasmic antibody-associated glomerulonephritis, autoimmune (formerly idiopathic) membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and C3 nephropathy - and one can speculate that biologics might also be applicable to these diseases. As many autoimmune renal diseases are relatively uncommon, with long natural histories and diverse outcomes, clinical trials that aim to validate potentially useful biologics are difficult to design and/or perform. Some excellent consortia are undertaking cohort studies and clinical trials, but more multicentre international collaborations are needed to advance the introduction of new biologics to patients with autoimmune renal disorders. This Review discusses the key molecules that direct injurious inflammation and the biologics that are available to modulate them. The opportunities and challenges for the introduction of relevant biologics into treatment protocols for autoimmune renal diseases are also discussed.
Collapse
|
36
|
Häffner K, Michelfelder S, Pohl M. Successful therapy of C3Nef-positive C3 glomerulopathy with plasma therapy and immunosuppression. Pediatr Nephrol 2015; 30:1951-9. [PMID: 25986912 DOI: 10.1007/s00467-015-3111-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND C3 glomerulopathies (C3G) are characterized by uncontrolled activation of the alternative pathway of complement. In most patients these diseases progress towards end-stage renal disease, and the risk of recurrence after renal transplantation is high. In the majority of patients, only antibodies against the C3 convertase, termed C3Nef, can be found as a potential pathogenic factor. Although a large variety of therapeutic approaches have been used, no generally accepted therapy exists. METHODS In four consecutive patients with C3G in whom all known complement factor mutations were excluded and only C3Nef could be identified as a potential cause of disease, a multimodal therapeutic regimen with plasma therapy, corticosteroids and mycophenolate mofetil was used. RESULTS The multimodal regimen achieved normalization of renal function in all four patients, with complete remission in two patients and a distinct reduction of proteinuria in the other two patients. The single patient with C3 glomerulonephritis (C3GN) and marked terminal complement complex elevation only showed partial remission; further improvement was achieved following the addition of eculizumab to the therapeutic regimen. Repeatedly measured C3Nef levels did not correlate with disease course or therapeutic response in any of the patients. CONCLUSIONS As this multimodal therapeutic approach was effective in all four treated patients with suspected autoimmune etiology of C3G, it offers a treatment option for severely affected patients with this rare disease until more specific regimens are available.
Collapse
Affiliation(s)
- Karsten Häffner
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany.
| | - Stefan Michelfelder
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Martin Pohl
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany
| |
Collapse
|
37
|
Rabasco C, Cavero T, Román E, Rojas-Rivera J, Olea T, Espinosa M, Cabello V, Fernández-Juarez G, González F, Ávila A, Baltar JM, Díaz M, Alegre R, Elías S, Antón M, Frutos MA, Pobes A, Blasco M, Martín F, Bernis C, Macías M, Barroso S, de Lorenzo A, Ariceta G, López-Mendoza M, Rivas B, López-Revuelta K, Campistol JM, Mendizábal S, de Córdoba SR, Praga M. Effectiveness of mycophenolate mofetil in C3 glomerulonephritis. Kidney Int 2015; 88:1153-1160. [PMID: 26221755 DOI: 10.1038/ki.2015.227] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023]
Abstract
C3 glomerulonephritis is a clinicopathologic entity defined by the presence of isolated or dominant deposits of C3 on immunofluorescence. To explore the effect of immunosuppression on C3 glomerulonephritis, we studied a series of 60 patients in whom a complete registry of treatments was available over a median follow-up of 47 months. Twenty patients had not received immunosuppressive treatments. In the remaining 40 patients, 22 had been treated with corticosteroids plus mycophenolate mofetil while 18 were treated with other immunosuppressive regimens (corticosteroids alone or corticosteroids plus cyclophosphamide). The number of patients developing end-stage renal disease was significantly lower among treated compared with untreated patients (3 vs. 7 patients, respectively). No patient in the corticosteroids plus mycophenolate mofetil group doubled serum creatinine nor developed end-stage renal disease, as compared with 7 (significant) and 3 (not significant), respectively, in patients treated with other immunosuppressive regimens. Renal survival (100, 80, and 72% at 5 years) and the number of patients achieving clinical remission (86, 50, and 25%) were significantly higher in patients treated with corticosteroids plus mycophenolate mofetil as compared with patients treated with other immunosuppressive regimens and untreated patients, respectively. Thus, immunosuppressive treatments, particularly corticosteroids plus mycophenolate mofetil, can be beneficial in C3 glomerulonephritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sandra Elías
- University Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | - Manuel Macías
- Hospital Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | | | | | | | | | | | | | | | - Manuel Praga
- Hospital 12 Octubre, Madrid, Spain
- Department of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
38
|
Rojas-Rivera J, Fernández-Juárez G, Praga M. Rapidly progressive IgA nephropathy: a form of vasculitis or a complement-mediated disease? Clin Kidney J 2015; 8:477-81. [PMID: 26413269 PMCID: PMC4581398 DOI: 10.1093/ckj/sfv095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023] Open
Abstract
A rapidly progressive and crescentic IgA nephropathy (IgAN) is uncommon, but it has a high risk of progression to end-stage renal disease and variable response to immunosuppression. The importance of a positive anti-neutrophil cytoplasmic antibody (ANCA) serology in this group of patients is not fully understood but may have prognostic significance. On the other hand, there is growing evidence of the role of complement in the pathogenesis of IgAN, especially in cases of crescentic IgAN. Therapies directed against the complement system are a potential and rational therapeutic approach. In this issue, two clinical studies of crescentic IgAN are presented. The first work, is a retrospective case-control study describing clinical presentation, histological findings and response to treatment of crescentic IgAN/positive ANCA patients, comparing them with IgAN/negative ANCA patients and ANCA vasculitis patients. The second is a case report showing the effect of eculizumab, a humanized monoclonal antibody that is a terminal cascade complement inhibitor, as salvage therapy for crescentic IgAN resistant to conventional immunosuppression. Both studies broaden our approach to patients with aggressive forms of IgAN.
Collapse
Affiliation(s)
- Jorge Rojas-Rivera
- Spanish Study Group of Glomerular Disease (GLOSEN) , Hospital Universitario Fundación Jiménez Díaz , Madrid , Spain
| | - Gema Fernández-Juárez
- Spanish Study Group of Glomerular Disease (GLOSEN) , Hospital Fundación Alcorcón , Madrid , Spain
| | - Manuel Praga
- Spanish Study Group of Glomerular Disease (GLOSEN) , Hospital Universitario 12 de Octubre , Madrid , Spain
| |
Collapse
|
39
|
Oosterveld MJS, Garrelfs MR, Hoppe B, Florquin S, Roelofs JJTH, van den Heuvel LP, Amann K, Davin JC, Bouts AHM, Schriemer PJ, Groothoff JW. Eculizumab in Pediatric Dense Deposit Disease. Clin J Am Soc Nephrol 2015; 10:1773-82. [PMID: 26316621 DOI: 10.2215/cjn.01360215] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Dense deposit disease (DDD), a subtype of C3 glomerulopathy, is a rare disease affecting mostly children. Treatment options are limited. Debate exists whether eculizumab, a monoclonal antibody against complement factor C5, is effective in DDD. Reported data are scarce, especially in children. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The authors analyzed clinical and histologic data of five pediatric patients with a native kidney biopsy diagnosis of DDD. Patients received eculizumab as therapy of last resort for severe nephritic or nephrotic syndrome with alternative pathway complement activation; this therapy was given only when the patients had not or only marginally responded to immunosuppressive therapy. Outcome measures were kidney function, proteinuria, and urine analysis. RESULTS In all, seven disease episodes were treated with eculizumab (six episodes of severe nephritic syndrome [two of which required dialysis] and one nephrotic syndrome episode). Median age at treatment start was 8.4 (range, 5.9-13) years. For three treatment episodes, eculizumab was the sole immunosuppressive treatment. In all patients, both proteinuria and renal function improved significantly within 12 weeks of treatment (median urinary protein-to-creatinine ratio of 8.5 [range, 2.2-17] versus 1.1 [range, 0.2-2.0] g/g, P<0.005, and eGFR of 58 [range, 17-114] versus 77 [range, 50-129] ml/min per 1.73 m(2), P<0.01). A striking finding was the disappearance of leukocyturia within 1 week after the first eculizumab dose in all five episodes with leukocyturia at treatment initiation. CONCLUSIONS In this case series of pediatric patients with DDD, eculizumab treatment was associated with reduction in proteinuria and increase in eGFR. Leukocyturia resolved within 1 week of initiation of eculizumab treatment. These results underscore the need for a randomized trial of eculizumab in DDD.
Collapse
Affiliation(s)
| | | | - Bernd Hoppe
- Department of Pediatrics, Division of Pediatric Nephrology, University Hospital Bonn, Bonn, Germany
| | - Sandrine Florquin
- Department of Pathology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - L P van den Heuvel
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Kerstin Amann
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | |
Collapse
|
40
|
Ring T, Pedersen BB, Salkus G, Goodship THJ. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J 2015; 8:489-91. [PMID: 26413271 PMCID: PMC4581393 DOI: 10.1093/ckj/sfv076] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
IgA nephropathy (IgAN) is characterized by a variable clinical course and multifaceted pathophysiology. There is substantial evidence to suggest that complement activation plays a pivotal role in the pathogenesis of the disease. Therefore, complement inhibition using the humanized anti-C5 monoclonal antibody eculizumab could be a rational treatment. We report here a 16-year-old male with the vasculitic form of IgAN who failed to respond to aggressive conventional therapy including high-dose steroids, cyclophosphamide and plasma exchange and who was treated with four weekly doses of 900 mg eculizumab followed by a single dose of 1200 mg. He responded rapidly to this treatment and has had a stable creatinine around 150 µmol/L (1.67 mg/dL) for >6 months. However, proteinuria was unabated on maximal conventional anti-proteinuric treatment, and a repeat renal biopsy 11 months after presentation revealed severe chronic changes. We believe this case provides proof of principle that complement inhibition may be beneficial in IgAN but also that development of chronicity may be independent of complement.
Collapse
Affiliation(s)
- Troels Ring
- Department of Nephrology , Aalborg University Hospital , Aalborg , Denmark
| | | | - Giedrius Salkus
- Department of Pathology , Aalborg University Hospital , Aalborg , Denmark
| | | |
Collapse
|
41
|
Rodriguez-Osorio L, Ortiz A. Timing of eculizumab therapy for C3 glomerulonephritis. Clin Kidney J 2015; 8:449-52. [PMID: 26251715 PMCID: PMC4515909 DOI: 10.1093/ckj/sfv065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 01/02/2023] Open
Abstract
Eculizumab is an anti-C5 antibody that inhibits C5 cleavage and prevents the generation of the terminal complement complex C5b-9. Eculizumab is licensed to treat paroxysmal nocturnal haemoglobinuria or atypical haemolytic uraemic syndrome (aHUS). Clinical trials are ongoing for C3 glomerulopathy. Given the unfamiliarity of physicians with these rare diseases and the variability of clinical presentation, a delayed initiation of eculizumab therapy is common. Thus, the question arises as to what extent improvement of kidney function may be expected when patients have been dialysis dependent for weeks or months already when eculizumab is initiated. Furthermore, given the high cost and potential adverse effects of eculizumab, the question arises of when to stop therapy because of futility when patients with kidney-only manifestations remain dialysis dependent. In literature reports, eculizumab was stopped as early as after 3 weeks because the patient remained dialysis dependent. In this issue of CKJ, Inman et al. report on eculizumab-induced reversal of dialysis-dependent kidney failure from C3 glomerulonephritis, illustrating both the potential benefit of eculizumab for this complement-mediated disease and the need for lengthy therapy—dialysis independency was reached after 5 months of eculizumab. Indeed, there are reports of renal function recovery when eculizumab was initiated after 4 months on dialysis and of recovery of renal function 2.0–3.5 months after initiation of eculizumab in dialysis-dependent patients with C3 glomerulopathy or aHUS.
Collapse
Affiliation(s)
- Laura Rodriguez-Osorio
- IIS-Fundacion Jimenez Diaz, School of Medicine , Universidad Autonoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN , Madrid , Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine , Universidad Autonoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN , Madrid , Spain
| |
Collapse
|
42
|
De Vriese AS, Sethi S, Van Praet J, Nath KA, Fervenza FC. Kidney Disease Caused by Dysregulation of the Complement Alternative Pathway: An Etiologic Approach. J Am Soc Nephrol 2015; 26:2917-29. [PMID: 26185203 DOI: 10.1681/asn.2015020184] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases caused by genetic or acquired dysregulation of the complement alternative pathway (AP) are traditionally classified on the basis of clinical presentation (atypical hemolytic uremic syndrome as thrombotic microangiopathy), biopsy appearance (dense deposit disease and C3 GN), or clinical course (atypical postinfectious GN). Each is characterized by an inappropriate activation of the AP, eventuating in renal damage. The clinical diversity of these disorders highlights important differences in the triggers, the sites and intensity of involvement, and the outcome of the AP dysregulation. Nevertheless, we contend that these diseases should be grouped as disorders of the AP and classified on an etiologic basis. In this review, we define different pathophysiologic categories of AP dysfunction. The precise identification of the underlying abnormality is the key to predict the response to immune suppression, plasma infusion, and complement-inhibitory drugs and the outcome after transplantation. In a patient with presumed dysregulation of the AP, the collaboration of the clinician, the renal pathologist, and the biochemical and genetic laboratory is very much encouraged, because this enables the elucidation of both the underlying pathogenesis and the optimal therapeutic approach.
Collapse
Affiliation(s)
- An S De Vriese
- Division of Nephrology, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; and
| | | | - Jens Van Praet
- Division of Nephrology, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; and
| | - Karl A Nath
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Fernando C Fervenza
- Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
43
|
Payette A, Patey N, Dragon-Durey MA, Frémeaux-Bacchi V, Le Deist F, Lapeyraque AL. A case of C3 glomerulonephritis successfully treated with eculizumab. Pediatr Nephrol 2015; 30:1033-7. [PMID: 25796589 DOI: 10.1007/s00467-015-3061-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND C3 glomerulonephritis (C3GN) is a rare form of glomerulopathy that is characterized by predominant C3 deposits. Eculizumab, a humanized monoclonal C5 antibody, has recently emerged as a treatment option for C3GN. We report a C3GN patient successfully treated with eculizumab. CASE DIAGNOSIS/TREATMENT A 5-year-old boy who presented with proteinuria, hematuria, high ASO titers, and low C3 levels was initially diagnosed with post-streptococcal GN. His first kidney biopsy confirmed this diagnosis, but complement investigations identified three alternative pathway dysregulation factors: C3 nephritic factor, complement factor I heterozygous mutation (I398L), and anti-factor H autoantibodies (4,500 AU/ml). A second biopsy performed 11 months after initial presentation (nephrotic range proteinuria) showed a C3GN suggestive of isolated C3 deposits. Despite the use of intensive immunosuppressive therapy (rituximab, corticosteroids, mycophenolate), nephrotic-range proteinuria persisted and a third kidney biopsy showed the same C3GN pattern with more endocapillary proliferation. The serum C5b-9 level was elevated. Eculizumab was initiated and resulted in a significant decline of proteinuria (5.3 to 1.3 g/day) and an improvement in pathologic features. A transient interruption of eculizumab resulted in a rapid rise in proteinuria to 9.3 g/day, which decreased to 0.8 g/day after resumption of treatment. CONCLUSIONS The administration of anti-C5 antibodies may represent a valuable therapeutic option in patients with C3GN.
Collapse
Affiliation(s)
- Alexis Payette
- Department of Pediatrics, Division of Nephrology, CHU Sainte Justine and University of Montreal, 3175 Côte Sainte Catherine, H3T1C5, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Bomback AS. Eculizumab in the treatment of membranoproliferative glomerulonephritis. Nephron Clin Pract 2014; 128:270-6. [PMID: 25402185 DOI: 10.1159/000368592] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A major shift in our understanding of the membranoproliferative glomerulonephritis (MPGN) lesion is the focus on which components of the complement pathway are involved in mediating renal injury. Hence, MPGN is no longer classified solely by ultrastructural findings on biopsy but instead divided into immune complex-mediated lesions versus complement-mediated lesions. This emphasis on complement, in turn, leads to interest in therapies that target complement as potential disease-modifying agents. Eculizumab, the first available anticomplement therapy, blocks at the level of C5 and has revolutionized the treatment of complement-mediated diseases such as paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Whether this agent will work equally well for the far more heterogeneous complement-mediated MPGN lesions, also known as C3 glomerulopathy, remains unclear. To date, the experience and published data on using eculizumab in MPGN suggests this agent will work for some, but not all, patients with this pathologic lesion.
Collapse
Affiliation(s)
- Andrew S Bomback
- Department of Medicine, Division of Nephrology, Columbia University Medical Center, New York, N.Y., USA
| |
Collapse
|
45
|
Barbour TD, Ruseva MM, Pickering MC. Update on C3 glomerulopathy. Nephrol Dial Transplant 2014; 31:717-25. [PMID: 25326473 PMCID: PMC4848753 DOI: 10.1093/ndt/gfu317] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
C3 glomerulopathy refers to a disease process in which abnormal control of complement activation, degradation or deposition results in predominant C3 fragment deposition within the glomerulus and glomerular damage. Recent studies have improved our understanding of its pathogenesis. The key abnormality is uncontrolled C3b amplification in the circulation and/or along the glomerular basement membrane. Family studies in which disease segregates with structurally abnormal complement factor H-related (CFHR) proteins demonstrate that abnormal CFHR proteins are important in some types of C3 glomerulopathy. This is currently thought to be due to the ability of these proteins to antagonize the major negative regulator of C3 activation, complement factor H (CFH), a process termed ‘CFH de-regulation’. Recent clinicopathological cohort studies have led to further refinements in case definition, culminating in a 2013 consensus report, which provides recommendations regarding investigation and treatment. Early clinical experience with complement-targeted therapeutics, notably C5 inhibitors, has also now been published. Here, we summarize the latest developments in C3 glomerulopathy.
Collapse
Affiliation(s)
- Thomas D Barbour
- Centre for Complement and Inflammation Research (CCIR), Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Marieta M Ruseva
- Centre for Complement and Inflammation Research (CCIR), Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research (CCIR), Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
46
|
Meyers KE, Liapis H, Atta MG. American Society of Nephrology clinical pathological conference. Clin J Am Soc Nephrol 2014; 9:818-28. [PMID: 24651072 DOI: 10.2215/cjn.12481213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A 13-year-old girl presented with proteinuria and acute kidney failure. She was born at full term via cesarean delivery (due to nuchal cord), but there were no other prenatal or perinatal complications. In early childhood the patient had two hospitalizations at ages 4.5 and 9 years, respectively, the latter for pneumonia. She had no history of symptoms of kidney disease. She came to the hospital at age 12 years for routine bilateral molar extractions. She was treated with oral antibiotics and discharged after the procedure without complications. At age 13 years, 10 months after the molar extraction, she was seen by a pediatrician because of puffiness and increased BP. She had had respiratory symptoms 2 weeks before presentation. The pediatrician prescribed furosemide and amlodipine. A few days later, the patient returned to the pediatrician's office because of hand, ankle, and facial swelling and malaise. The pediatrician recommended hospitalization and the patient was admitted at this time.
Collapse
Affiliation(s)
- Kevin E Meyers
- The Children Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania;, †Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, ‡Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|