1
|
Kooman JP. The Revival of Sorbents in Chronic Dialysis Treatment. Semin Dial 2025; 38:54-61. [PMID: 38506130 PMCID: PMC11867157 DOI: 10.1111/sdi.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024]
Abstract
Interest in the use of sorbents in chronic dialysis treatment has undergone a revival in the last decades, for which two major factors are responsible. The first is the potential of sorbents as adjunct therapy for the removal of substances that are difficult to remove by conventional dialysis therapies. The second is their use in regeneration of dialysate, which is of pivotal importance in the design of portable or even wearable treatments, next to the potential for reducing water use during conventional dialysis treatment. Sorbent-enhanced dialysis with synthetic polymers was associated with a reduction in inflammatory parameters as compared to hemodialysis and even associated with improved survival in smaller studies, although this needs to be confirmed in large randomized trials. Incorporation of sorbents within a dialysis membrane (mixed matrix membrane) appears a promising way forward to reduce the complexity and costs of a dual therapy but needs to be tested in vivo. For regeneration of dialysate, at present, a combination of urease, zirconium-based sorbents, and activated charcoal is used. Next to sodium release by the sorbent in exchange for ammonium and the CO2 release by the hydrolysis of urea has been a bottleneck in the design of wearable devices, although short-term trials have been performed. Still, for widespread and flexible application of sorbent-assisted portable or wearable devices, a direct urea sorbent would be a major asset. In the near future, it will likely become apparent whether sorbent-assisted dialysis techniques are feasible for routine implementation in clinical practice.
Collapse
Affiliation(s)
- Jeroen Peter Kooman
- Division of Nephrology, Department of Internal MedicineMaastricht University Medical CentreMaastrichtThe Netherlands
| |
Collapse
|
2
|
Jayanti S, Rangan GK. Advances in Human-Centered Care to Address Contemporary Unmet Needs in Chronic Dialysis. Int J Nephrol Renovasc Dis 2024; 17:91-104. [PMID: 38525412 PMCID: PMC10961023 DOI: 10.2147/ijnrd.s387598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Advances in the treatment of kidney failure with chronic dialysis have stagnated over the past three decades, with over 50% of patients still managed by conventional in-hospital haemodialysis. In parallel, the demands of chronic dialysis medical care have changed and evolved due to a growing population that has higher frailty and multimorbidity. Thus, the gap between the needs of kidney failure patients and the healthcare capability to provide effective overall management has widened. To address this problem, healthcare policy has increasingly aligned towards a human-centred approach. The paradigm shift of human-centred approach places patients at the forefront of decision-making processes, ensuring that specific needs are understood and prioritised. Integration of human-centred approaches with patient care has been shown to improve satisfaction and quality of life. The aim of this narrative is to evaluate the current clinical challenges for managing kidney failure for dialysis providers; summarise current experiences and unmet needs of chronic dialysis patients; and finally emphasise how human-centred care has advanced chronic dialysis care. Specific incremental advances include implementation of renal supportive care; home-assisted dialysis; hybrid dialysis; refinements to dialysis methods; whereas emerging advances include portable and wearable dialysis devices and the potential for the integration of artificial intelligence in clinical practice.
Collapse
Affiliation(s)
- Sumedh Jayanti
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Chow CM, Persad AH, Karnik R. Effect of Membrane Permeance and System Parameters on the Removal of Protein-Bound Uremic Toxins in Hemodialysis. Ann Biomed Eng 2024; 52:526-541. [PMID: 37993752 PMCID: PMC10859350 DOI: 10.1007/s10439-023-03397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Inadequate clearance of protein-bound uremic toxins (PBUTs) during dialysis is associated with morbidities in chronic kidney disease patients. The development of high-permeance membranes made from materials such as graphene raises the question whether they could enable the design of dialyzers with improved PBUT clearance. Here, we develop device-level and multi-compartment (body) system-level models that account for PBUT-albumin binding (specifically indoxyl sulfate and p-cresyl sulfate) and diffusive and convective transport of toxins to investigate how the overall membrane permeance (or area) and system parameters including flow rates and ultrafiltration affect PBUT clearance in hemodialysis. Our simulation results indicate that, in contrast to urea clearance, PBUT clearance in current dialyzers is mass-transfer limited: Assuming that the membrane resistance is dominant, raising PBUT permeance from 3 × 10-6 to 10-5 m s-1 (or equivalently, 3.3 × increase in membrane area from ~ 2 to ~ 6 m2) increases PBUT removal by 48% (from 22 to 33%, i.e., ~ 0.15 to ~ 0.22 g per session), whereas increasing dialysate flow rates or adding adsorptive species have no substantial impact on PBUT removal unless permeance is above ~ 10-5 m s-1. Our results guide the future development of membranes, dialyzers, and operational parameters that could enhance PBUT clearance and improve patient outcomes.
Collapse
Affiliation(s)
- Chun Man Chow
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames St, Cambridge, MA, 02142, USA
| | - Aaron H Persad
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Abstract
End-stage renal disease (ESRD) continues to be a disease process with a high rate of hospitalization and mortality. There has been little innovation in nephrology over the last few decades compared to revolutionary high-tech advancements in other areas like oncology and cardiovascular medicine. Kidney transplantation, the only available alternative to renal replacement therapy, is limited in its availability. It is essential to have advances in this field to improve the efficiency of currently available treatments and devise new therapies. The current description of renal replacement therapy is inappropriate as it only replaces the filtration function of the failed kidney without addressing its other vital metabolic, endocrinologic, and immunologic roles and portability. Hence, it is critical to have newer therapies focusing on total replacement and portability, not just clearance. This review will address the developments in hemodialysis therapy. Advances in hemodialysis therapy include hemodiafiltration, portable machines, wearable artificial kidneys, and bioartificial kidneys. Although promising, newer technologies in this direction are still far from clinical application. Several organizations and enterprises including the Kidney Health Initiative and Kidney X: The Kidney Innovation Accelerator, as well as The Advancing American Kidney Health Initiative, are working in tandem to develop new therapies that could customize the treatment of ESRD.
Collapse
Affiliation(s)
- Bijin Thajudeen
- Division of Nephrology, Banner University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, USA
| | - Dany Issa
- WG (Bill) Hefner VA Medical Center, 1601 Brenner Ave, Salisbury, NC 28144, USA
| | - Prabir Roy-Chaudhury
- UNC Kidney Center, University of North Carolina at Chapel Hill, 101 Manning Dr, Chapel Hill, NC 27514, USA
| |
Collapse
|
5
|
Narendran G, Walunj A, Kumar AM, Jeyachandran P, Awwad NS, Ibrahium HA, Gorji MR, Perumal DA. Experimental Demonstration of Compact Polymer Mass Transfer Device Manufactured by Additive Manufacturing with Hydrogel Integration to Bio-Mimic the Liver Functions. Bioengineering (Basel) 2023; 10:bioengineering10040416. [PMID: 37106603 PMCID: PMC10135587 DOI: 10.3390/bioengineering10040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
In this paper, we designed and demonstrated a stimuli-responsive hydrogel that mimics the mass diffusion function of the liver. We have controlled the release mechanism using temperature and pH variations. Additive manufacturing technology was used to fabricate the device with nylon (PA-12), using selective laser sintering (SLS). The device has two compartment sections: the lower section handles the thermal management, and feeds temperature-regulated water into the mass transfer section of the upper compartment. The upper chamber has a two-layered serpentine concentric tube; the inner tube carries the temperature-regulated water to the hydrogel using the given pores. Here, the hydrogel is present in order to facilitate the release of the loaded methylene blue (MB) into the fluid. By adjusting the fluid’s pH, flow rate, and temperature, the deswelling properties of the hydrogel were examined. The weight of the hydrogel was maximum at 10 mL/min and decreased by 25.29% to 10.12 g for the flow rate of 50 mL/min. The cumulative MB release at 30 °C increased to 47% for the lower flow rate of 10 mL/min, and the cumulative release at 40 °C climbed to 55%, which is 44.7% more than at 30 °C. The MB release rates considerably increased when the pH dropped from 12 to 8, showing that the lower pH had a major impact on the release of MB from the hydrogel. Only 19% of the MB was released at pH 12 after 50 min, and after that, the release rate remained nearly constant. At higher fluid temperatures, the hydrogels lost approximately 80% of their water in just 20 min, compared to a loss of 50% of their water at room temperature. The outcomes of this study may contribute to further developments in artificial organ design.
Collapse
|
6
|
Stauss M, Htay H, Kooman JP, Lindsay T, Woywodt A. Wearables in Nephrology: Fanciful Gadgetry or Prêt-à-Porter? SENSORS (BASEL, SWITZERLAND) 2023; 23:1361. [PMID: 36772401 PMCID: PMC9919296 DOI: 10.3390/s23031361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Telemedicine and digitalised healthcare have recently seen exponential growth, led, in part, by increasing efforts to improve patient flexibility and autonomy, as well as drivers from financial austerity and concerns over climate change. Nephrology is no exception, and daily innovations are underway to provide digitalised alternatives to current models of healthcare provision. Wearable technology already exists commercially, and advances in nanotechnology and miniaturisation mean interest is also garnering clinically. Here, we outline the current existing wearable technology pertaining to the diagnosis and monitoring of patients with a spectrum of kidney disease, give an overview of wearable dialysis technology, and explore wearables that do not yet exist but would be of great interest. Finally, we discuss challenges and potential pitfalls with utilising wearable technology and the factors associated with successful implementation.
Collapse
Affiliation(s)
- Madelena Stauss
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Htay Htay
- Department of Renal Medicine, Singapore General Hospital, Singapore 169608, Singapore
| | - Jeroen P. Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Thomas Lindsay
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Alexander Woywodt
- Department of Nephrology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| |
Collapse
|
7
|
Oota-Ishigaki A, Yamane T, Sakota D, Kosaka R, Maruyama O, Nishida M. In vitro hemocompatibility investigation for the development of low-flow centrifugal blood pumps with less platelet clogging. Int J Artif Organs 2021; 45:431-437. [PMID: 34661490 DOI: 10.1177/03913988211052570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-flow blood pumps rated under 1 L/min are emerging for new medical applications, such as hemofiltration in acute use. In those pumps, platelet adhesion and aggregation have to be carefully considered because of clogging risk in the filter part. To find an acceptable hemocompatibility that can be applied to low-flow centrifugal blood pump design, the platelet aggregation index, clogging on a micromesh filter, and the hemolysis index were investigated using a low-flow blood pump designed for hemofiltration use. We conducted circulation testing in vitro using fresh porcine blood and two centrifugal pumps with different impeller inlet shapes. The Negative Log Platelet Aggregation Threshold Index (NL-PATI), which reflects the ability of residual platelets to aggregate, and flow rate were measured during reflux for 60 min, and the Normalized Index of Hemolysis (NIH (g/20 min)) was calculated. In addition, blood cell clogging after reflux was observed on the micromesh filter by SEM, and the adhesion rate was calculated. Our results showed that the platelet clogging on the micromesh filter occurred when the average NL-PATI was greater than 0.28 and the average NIH (g/20 min) was greater than 0.01. In contrast, platelet clogging on the micromesh was suppressed when NL-PATI was less than 0.17 and the NIH (g/20 min) was less than 0.003. These values might be used as acceptable hemocompatibility of low-flow centrifugal blood pumps with suppressed platelet clogging for hemofiltration pumps.
Collapse
Affiliation(s)
- Akiko Oota-Ishigaki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takashi Yamane
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Sakota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ryo Kosaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Osamu Maruyama
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masahiro Nishida
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Oota-Ishigaki A, Maruyama O, Sakota D, Kosaka R, Hijikata W, Nishida M. Quantitative investigation of platelet aggregation under high shear force for anti-platelet aggregation in vitro tests. Int J Artif Organs 2021; 44:687-693. [PMID: 34058917 DOI: 10.1177/03913988211020765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blood pumps are often used for hemofiltration in patients with renal failure. To design effective centrifugal blood pumps for hemofiltration, it is important to suppress clogging caused by platelet aggregation. However, the optimal conditions for conducting anti-platelet aggregation tests in vitro have not yet been established. This study aimed to quantify the effect of the shear loading value and shear loading time on platelet aggregation and determine the optimal conditions for anti-platelet aggregation testing in vitro. To quantitatively evaluate platelet aggregation in terms of the negative logarithm-platelet aggregation threshold index (NL-PATI), which reflects the propensity of residual platelets to aggregate after shear loading, the following parameters were examined: blood collection method (collected from porcine vein using a syringe or collected from a slaughterhouse), type of anticoagulant (sodium citrate or heparin), shear rate, and shear time. The results showed that platelet aggregation in porcine blood increased under a high shear load applied at shear rates of approximately 20,000 s-1 or higher for 30 s. Platelet aggregation propensity was 2-3 times higher in heparin-anticoagulated blood than in sodium citrate-anticoagulated blood. Moreover, platelet aggregation was 1.5-2 times more in blood collected from the slaughterhouse than in syringe-collected blood. Testing with an integrated shear time of 30 s or less in relation to the total blood volume may be effective for conducting in vitro circulation experiments using hemofiltration blood pumps. The conditions established in this study may be useful for hemocompatibility testing of cardiovascular devices based on NL-PATI.
Collapse
Affiliation(s)
- Akiko Oota-Ishigaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Osamu Maruyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Sakota
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ryo Kosaka
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | - Masahiro Nishida
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
ter Beek O, van Gelder M, Lokhorst C, Hazenbrink D, Lentferink B, Gerritsen K, Stamatialis D. In vitro study of dual layer mixed matrix hollow fiber membranes for outside-in filtration of human blood plasma. Acta Biomater 2021; 123:244-253. [PMID: 33450414 DOI: 10.1016/j.actbio.2020.12.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Hemodialysis mainly removes small water-soluble uremic toxins but cannot effectively remove middle molecules and protein-bound uremic toxins. Besides, the therapy is intermittent leading to fluctuating blood values and fluid status which adversely impacts patients' health. Prolonged hemodialysis (with adequate anticoagulation) could improve the removal of toxins and the development of portable and wearable artificial kidneys could offer more flexibility in the dialysis scheme. This would enhance patients' overall health, autonomy, mobility and flexibility, allowing patients to participate in social and economic life. However, the time that patients' blood is exposed to the dialyzer material is longer during prolonged hemodialysis, and blood clots could obstruct the fiber lumen, resulting in a decrease of the effective membrane surface area available for toxin removal. The outside-in filtration (OIF) mode, wherein blood flows through the inter-fiber space instead of through the fiber lumina, has been applied widely in blood oxygenators to prevent fiber clotting, but not in hemodialysis. In this study, we present for the first time the development of a mixed matrix membrane (MMM) for OIF of human blood plasma. This MMM combines diffusion and adsorption and consists of a polymeric membrane matrix with activated carbon (AC) particles on the inside layer, and a polymeric particle-free layer on the outer fiber layer. Our results show that in vitro MMM fibers for OIF demonstrate superior removal of the protein-bound uremic toxins, indoxyl sulfate and hippuric acid, compared to both earlier MMM fibers designed for inside-out filtration mode and commercial high-flux fibers. STATEMENT OF SIGNIFICANCE: Current hemodialysis therapy cannot effectively remove protein-bound toxins. Prolonged hemodialysis could improve toxin removal. However, during prolonged hemodialysis, blood clots could obstruct the fiber lumen, resulting in decreased effective membrane surface area available for toxin removal. We have prepared, for the first time, dual layer mixed matrix hollow fiber membranes (MMM) for outside-in filtration (OIF). The OIF mode wherein blood would flow through the inter-fiber space instead of through the fiber lumina could prevent fiber clotting. Moreover, the MMMs combine diffusion and adsorption to improve (protein-bound) toxin removal. We believe that the new design of our MMM fibers is an important contribution concerning the development of artificial kidney systems and the improvement of the health and well-being of patients with renal failure.
Collapse
|
10
|
Hollow fiber membranes for long-term hemodialysis based on polyethersulfone-SlipSkin™ polymer blends. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Kim JE, Kessler L, McCauley Z, Niiyama I, Boyle LN. Human factors considerations in designing a personalized mobile dialysis device: An interview study. APPLIED ERGONOMICS 2020; 85:103003. [PMID: 31929024 DOI: 10.1016/j.apergo.2019.103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 08/10/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Recent technical advances have enabled the creation of mobile dialysis device prototypes. These prototypes have been tested for their ability to allow an individual to be dialyzed continuously rather than sporadically. The most recent prototype of a mobile dialysis device aims at increased functionality, which suggests that human factors issues (e.g., efficiency, bulkiness, and weight) are now considered carefully. This study describes advances in the design of an Ambulatory Kidney to Improve Vitality (AKTIV), using an interview protocol during the early stages of product development to capture patients' and caregivers' reactions. The AKTIV has the potential to improve patients' quality of life and decrease mortality rates. The goal of our study is to examine patients' and caregivers' design preferences and feature considerations for an AKTIV. We interviewed 22 participants (age M = 57.50, SD = 13.30), of whom 12 were female and 16 were patients. A pre-interview survey was distributed to the participants, and semi-structured interviews were subsequently held. The pre-interview results show that the belt and backpack designs were preferred over the shoulder bag and distributed designs. The participants also indicated on their pre-interview forms that safety and accuracy were more important to them than attachment ease, comfort, compactness, or operational simplicity. Invisibility and mobility were frequently mentioned when determining the strengths of each of the five design types during the interviews. Finally, individual differences in preferences for the various design types and attributes were identified. The results from our study have important implications for improving efficiency, effectiveness, and user satisfaction in relation to AKTIV prototypes and products. The findings from this interview study will help to ensure engineers and clinicians have target parameters for redesigning the AKTIV.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA.
| | - Larry Kessler
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Zach McCauley
- Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA
| | - Itsumi Niiyama
- Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA
| | - Linda Ng Boyle
- Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Hill K, Walker SN, Salminen A, Chung HL, Li X, Ezzat B, Miller JJ, DesOrmeaux JPS, Zhang J, Hayden A, Burgin T, Piraino L, May MN, Gaborski TR, Roussie JA, Taylor J, DiVincenti L, Shestopalov AA, McGrath JL, Johnson DG. Second Generation Nanoporous Silicon Nitride Membranes for High Toxin Clearance and Small Format Hemodialysis. Adv Healthc Mater 2020; 9:e1900750. [PMID: 31943849 PMCID: PMC7041421 DOI: 10.1002/adhm.201900750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Conventional hemodialysis (HD) uses floor-standing instruments and bulky dialysis cartridges containing ≈2 m2 of 10 micrometer thick, tortuous-path membranes. Portable and wearable HD systems can improve outcomes for patients with end-stage renal disease by facilitating more frequent, longer dialysis at home, providing more physiological toxin clearance. Developing devices with these benefits requires highly efficient membranes to clear clinically relevant toxins in small formats. Here, the ability of ultrathin (<100 nm) silicon-nitride-based membranes to reduce the membrane area required to clear toxins by orders of magnitude is shown. Advanced fabrication methods are introduced that produce nanoporous silicon nitride membranes (NPN-O) that are two times stronger than the original nanoporous nitride materials (NPN) and feature pore sizes appropriate for middle-weight serum toxin removal. Single-pass benchtop studies with NPN-O (1.4 mm2 ) demonstrate the extraordinary clearance potential of these membranes (105 mL min-1 m-2 ), and their intrinsic hemocompatibility. Results of benchtop studies with nanomembranes, and 4 h dialysis of uremic rats, indicate that NPN-O can reduce the membrane area required for hemodialysis by two orders of magnitude, suggesting the performance and robustness needed to enable small-format hemodialysis, a milestone in the development of small-format hemodialysis systems.
Collapse
Affiliation(s)
- Kayli Hill
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Samuel N Walker
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Alec Salminen
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Hung L Chung
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Xunzhi Li
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Bahie Ezzat
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua J Miller
- SiMPore, Inc., 150 Lucius Gordon Drive, Suite 110, West Henrietta, Henrietta, NY, 14586, USA
| | - Jon-Paul S DesOrmeaux
- SiMPore, Inc., 150 Lucius Gordon Drive, Suite 110, West Henrietta, Henrietta, NY, 14586, USA
| | - Jingkai Zhang
- The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Andrew Hayden
- SiMPore, Inc., 150 Lucius Gordon Drive, Suite 110, West Henrietta, Henrietta, NY, 14586, USA
| | - Tucker Burgin
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Lindsay Piraino
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Marina N May
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas R Gaborski
- Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - James A Roussie
- SiMPore, Inc., 150 Lucius Gordon Drive, Suite 110, West Henrietta, Henrietta, NY, 14586, USA
| | - Jeremy Taylor
- Department of Nephrology, University of Rochester, Rochester, NY, 14627, USA
| | - Louis DiVincenti
- Department of Comparative Medicine, University of Rochester, Rochester, NY, 14627, USA
| | | | - James L McGrath
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| | - Dean G Johnson
- Biomedical Engineering Department, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
13
|
ter Beek O, Pavlenko D, Suck M, Helfrich S, Bolhuis-Versteeg L, Snisarenko D, Causserand C, Bacchin P, Aimar P, van Oerle R, Wetzels R, Verhezen P, Henskens Y, Stamatialis D. New membranes based on polyethersulfone – SlipSkin™ polymer blends with low fouling and high blood compatibility. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Gologorsky RC, Roy S. Ultrafiltration for management of fluid overload in patients with heart failure. Artif Organs 2019; 44:129-139. [DOI: 10.1111/aor.13549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Rebecca C. Gologorsky
- Department of Surgery University of California, San Francisco‐East Bay Oakland California
- Department of Bioengineering and Therapeutic Sciences University of California San Francisco California
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences University of California San Francisco California
| |
Collapse
|
15
|
Geremia I, Bansal R, Stamatialis D. In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of uremic toxins from human plasma. Acta Biomater 2019; 90:100-111. [PMID: 30953798 DOI: 10.1016/j.actbio.2019.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023]
Abstract
For a single hemodialysis session nearly 500 L of water are consumed for obtaining pyrogen-free dialysis fluid. However, many efforts are required to avoid biofilm formation in the system and risk of contamination can persist. Water scarcity and inadequate water purification facilities worsen contamination risk in developing countries. Here, we investigated the application of an activated carbon (AC)/polyethersulfone/polyvinylpyrrolidone mixed matrix membrane (MMM) for achieving for the first time endotoxin-free dialysate and high removal of uremic toxins from human plasma with a single membrane. The MMM, thanks to sorbent AC, can remove approximately 10 times more endotoxins from dialysis fluid compared to commercial fibers. Pyrogens transport through the MMM was investigated analyzing inflammation in THP-1 monocytes incubated with samples from the dialysis circuit, revealing safety-barrier properties of the MMM. Importantly, endotoxins from dialysate and protein-bound toxins from human plasma can be removed simultaneously without compromising AC adsorption capacity. We estimated that only 0.15 m2 of MMM is needed to totally remove the daily production of the protein-bound toxins indoxyl sulfate and hippuric acid and to completely remove endotoxins in a wearable artificial kidney (WAK) device. Our results could open up new possibilities for dialysis therapy with low water consumption including WAK and where purity and scarcity of water are limiting factors for hemodialysis treatment. STATEMENT OF SIGNIFICANCE: Hemodialysis is a life-sustaining extracorporeal treatment for renal disease, however the production of pyrogen-free dialysate is very costly and water demanding. Biofilm formation in the system worsens bacteria contamination risk. Pyrogens could be transferred into the patients' blood and trigger inflammation. Here, we show for the first time that a mixed matrix membrane composed of polyethersulfone/polyvinylpyrrolidone and activated carbon can achieve simultaneous complete removal of endotoxins from dialysate and high removal of uremic toxins from human plasma without compromising activated carbon adsorption capacity. The mixed matrix membrane could find future applications for simultaneous blood purification and dialysate depyrogenation thus lowering water consumption as for wearable artificial kidney devices and where purity and scarcity of water hamper hemodialysis treatment.
Collapse
|
16
|
How can we advance in renal replacement therapy techniques? Nefrologia 2019; 39:372-378. [PMID: 30846291 DOI: 10.1016/j.nefro.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 08/25/2018] [Indexed: 11/21/2022] Open
Abstract
End-Stage Renal Disease (ESRD) is one of the major causes of morbidity and mortality worldwide. Although the incidence of ESRD is relatively stable, the prevalence of maintenance dialysis is increasing, and it is expected to reach a staggering 5439 million patients worldwide by 2030. Despite the great technological evolution that has taken place in recent years, most patients are still treated with in-centre haemodialysis and their prognosis remains far from desirable. Since 1980, there has been an increasing interest in the development of a portable device for renal replacement therapy (RRT), which ultimately led to the creation of the Wearable Artificial Kidney (WAK) and the Wearable Ultrafiltration (WUF) system. Portable RRT devices may be acceptable alternatives that deal with several unmet clinical needs of ESRD patients. So far, 3 important human studies with WAK and WUF have been carried out and, although these devices require considerable technological improvement, their safety and efficacy in solute clearance and fluid removal is undeniable. In this article, we review the evolution of the WAK and the WUF and the main clinical trials performed, highlighting some of their technical features. Some of the main possible clinical advantages that could be achieved with these devices, as well as some economic aspects, are also pointed out. In the future, all renal replacement therapy techniques should evolve to perfectly match the clinical and personal needs of each patient, allowing for an improved health-related quality of life.
Collapse
|
17
|
Castro AC, Neri M, Nayak Karopadi A, Lorenzin A, Marchionna N, Ronco C. Wearable artificial kidney and wearable ultrafiltration device vascular access-future directions. Clin Kidney J 2018; 12:300-307. [PMID: 30976412 PMCID: PMC6452182 DOI: 10.1093/ckj/sfy086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 11/21/2022] Open
Abstract
Background Since 2005, three human clinical trials have been performed with the Wearable Artificial Kidney (WAK) and Wearable Ultrafiltration (WUF) device. The lack of an adequate vascular access (VA) has been pointed out as the main limitation to their implementation. Based on the current level of understanding, we will make the first conceptual proposal of an adequate VA suitable for the WAK and the WUF. Methods All the literature related to WAK and WUF was reviewed. Based on eight main publications the VA major characteristics were defined: a mean blood flow of 100 mL/min; the capability to allow prolonged and frequent dialysis treatments, without interfering in activities of daily living (ADL); safe and convenient connection/disconnection systems; reduced risk of biofilm formation and coagulation; high biocompatibility. A research was done in order to answer to each necessary technological prerequisites. Results The use of a device similar to a CVC with a 5Fr lumen, seems to be the most feasible option. Totally subcutaneous port devices, like the LifeSite(R) or Dialock (R) systems can be a solution to allow WAK or WUF to operate continuously while patients carry out their ADL. Recently, macromolecules that reduce the risk of thrombosis and infection and are integrated into a CVC have been developed and have the capability of overcoming these major limitations. Conclusion With an adequate VA, portable HD devices can be acceptable options to address several unmet clinical needs of HD patients.
Collapse
Affiliation(s)
- Ana Coutinho Castro
- Department of Nephrology, Dialysis and Transplantation, Centro Hospitalar do Porto, Porto, Portugal
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
- Correspondence and offprint requests to: Ana Coutinho Castro; E-mail:
| | - Mauro Neri
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Akash Nayak Karopadi
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Dr Nayak Dialysis Centre, Hyderabad, India
| | - Anna Lorenzin
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Nicola Marchionna
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Transplantation, Ospedale San Bortolo, Vicenza, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Transplantation, Ospedale San Bortolo, Vicenza, Italy
| |
Collapse
|