1
|
Sorić Hosman I, Cvitković Roić A, Vuković Brinar I, Gulin T, Ćorić M, Rogić D, Lončar Vrančić A, Lamot L. Cathelicidin in Urinary Tract Diseases: Diagnostic, Prognostic and Therapeutic Potential of an Evolutionary Conserved Antimicrobial Protein. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2015. [PMID: 39768895 PMCID: PMC11728125 DOI: 10.3390/medicina60122015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Despite being one of the most common infectious diseases, urinary tract infections (UTIs) still represent a challenge for clinicians to diagnose and treat, especially in the era of growing antibiotic resistance among uropathogenic bacteria. Recent studies investigating the pathophysiology of UTIs have discovered the prominent role of antimicrobial peptides in the urinary tract defense system. Cathelicidin is an evolutionary conserved antimicrobial peptide encoded by one single gene in humans. Except for being stored in neutrophil cytoplasmic granules, cathelicidin is produced by uroepithelial cells rapidly upon contact with a uropathogen, even before leukocytes invade the urinary tract. In addition to its bactericidal effect, cathelicidin acts as a chemoattractant for multiple immune cells and a potent inductor of numerous cytokine synthesis. Such a crucial role in the initial pathogenesis of a UTI makes cathelicidin a potential biomarker for an early UTI diagnosis. Indeed, multiple studies over the last two decades have proved the potential clinical utility of cathelicidin as a UTI diagnostic biomarker. Furthermore, since patients after the resolution of a UTI have been found to express a lower urinary cathelicidin level than healthy controls, decreased cathelicidin levels have been suggested as a risk factor for developing UTI recurrence. Therefore, measuring cathelicidin levels in urine might help in distinguishing patients with a higher risk for a recurrent UTI. Interestingly, except in UTIs, cathelicidin has also been evaluated in other urinary tract diseases and proposed as a biomarker for diagnosing severe vesicoureteral reflux (VUR) and for recognizing renal scar development in patients with VUR. Finally, a prominent role in UTI pathogenesis also makes cathelicidin an attractive therapeutic target for treating UTIs and, lately, different therapeutic agents up-regulating cathelicidin expression have been investigated in this matter. Therefore, the present review aims to summarize the current body of knowledge on the diagnostic, prognostic and therapeutic potential of cathelicidin in urinary tract diseases. For this purpose, three databases (Scopus, Medline and Web of Science) were extensively searched to cover all the published articles. This exhaustive review will update clinicians on the contemporary state of knowledge about the potential clinical utility of cathelicidin in urinary tract diseases and hopefully encourage further research, resulting in improvement in the current management of urinary tract diseases.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, 23000 Zadar, Croatia
| | - Andrea Cvitković Roić
- Department of Nephrology and Urology, Clinic for Pediatric Medicine Helena, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Vuković Brinar
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tonko Gulin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Nephrology and Dialysis, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Marijana Ćorić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Dunja Rogić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ana Lončar Vrančić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Lovro Lamot
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Naskar M, Choi HW. A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. Immune Netw 2024; 24:e31. [PMID: 39246616 PMCID: PMC11377947 DOI: 10.4110/in.2024.24.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.
Collapse
Affiliation(s)
- Manisha Naskar
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Hassan FF, Mushrif MH, Suleiman AA. Investigating novel antifungal strategies through molecular docking & dynamics simulations of oxidative stress response in Candida albicans. NETWORK MODELING ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2024; 13:31. [DOI: 10.1007/s13721-024-00464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 01/03/2025]
|
4
|
Canas JJ, Arregui SW, Zhang S, Knox T, Calvert C, Saxena V, Schwaderer AL, Hains DS. DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection. Life Sci Alliance 2024; 7:e202302462. [PMID: 38580392 PMCID: PMC10997819 DOI: 10.26508/lsa.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.
Collapse
Affiliation(s)
- Jorge J Canas
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel W Arregui
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Knox
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christi Calvert
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay Saxena
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Hains
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Wang W, Qiu Z, Li H, Wu X, Cui Y, Xie L, Chang B, Li P, Zeng H, Ding T. Patient-derived pathogenic microbe deposition enhances exposure risk in pediatric clinics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171703. [PMID: 38490424 DOI: 10.1016/j.scitotenv.2024.171703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Healthcare-associated infections (HAIs) pose significant risks to pediatric patients in outpatient settings. To prevent HAIs, understanding the sources and transmission routes of pathogenic microorganisms is crucial. This study aimed to identify the sources of opportunistic bacterial pathogens (OBPs) in pediatric outpatient settings and determine their transmission routes. Furthermore, assessing the public health risks associated with the core OBPs is important. We collected 310 samples from various sites in pediatric outpatient areas and quantified the bacteria using qPCR and CFU counting. We also performed 16S rRNA gene and single-bacterial whole-genome sequencing to profile the transmission routes and antibiotic resistance characteristics of OBPs. We observed significant variations in microbial diversity and composition among sampling sites in pediatric outpatient settings, with active communication of the microbiota between linked areas. We found that the primary source of OBPs in multi-person contact areas was the hand surface, particularly in pediatric patients. Five core OBPs, Staphylococcus epidermidis, Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus oralis, were mainly derived from pediatric patients and spread into the environment. These OBPs accumulated at multi-person contact sites, resulting in high microbial diversity in these areas. Transmission tests confirmed the challenging spread of these pathogens, with S. epidermidis transferring from the patient's hand to the environment, leading to an increased abundance and emergence of related strains. More importantly, S. epidermidis isolated from pediatric patients carried more antibiotic-resistance genes. In addition, two strains of multidrug-resistant A. baumannii were isolated from both a child and a parent, confirming the transmission of the five core OBPs centered around pediatric patients and multi-person contact areas. Our results demonstrate that pediatric patients serve as a significant source of OBPs in pediatric outpatient settings. OBPs carried by pediatric patients pose a high public health risk. To effectively control HAIs, increasing hand hygiene measures in pediatric patients and enhancing the frequency of disinfection in multi-person contact areas remains crucial. By targeting these preventive measures, the spread of OBPs can be reduced, thereby mitigating the risk of HAIs in pediatric outpatient settings.
Collapse
Affiliation(s)
- Wan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Zongyao Qiu
- Center for Disease Control and Prevention of Nanhai District, Foshan 528200, China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaorong Wu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lixiang Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bozhen Chang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Peipei Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Hong Zeng
- Center for Disease Control and Prevention of Nanhai District, Foshan 528200, China.
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
6
|
Marsh MC, Junquera GY, Stonebrook E, Spencer JD, Watson JR. Urinary Tract Infections in Children. Pediatr Rev 2024; 45:260-270. [PMID: 38689106 DOI: 10.1542/pir.2023-006017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Despite the American Academy of Pediatrics guidelines for the evaluation, treatment, and management of urinary tract infections (UTIs), UTI diagnosis and management remains challenging for clinicians. Challenges with acute UTI management stem from vague presenting signs and symptoms, diagnostic uncertainty, limitations in laboratory testing, and selecting appropriate antibiotic therapy in an era with increasing rates of antibiotic-resistant uropathogens. Recurrent UTI management remains difficult due to an incomplete understanding of the factors contributing to UTI, when to assess a child with repeated infections for kidney and urinary tract anomalies, and limited prevention strategies. To help reduce these uncertainties, this review provides a comprehensive overview of UTI epidemiology, risk factors, diagnosis, treatment, and prevention strategies that may help pediatricians overcome the challenges associated with acute and recurrent UTI management.
Collapse
Affiliation(s)
- Melanie C Marsh
- Division of Hospital Medicine, Department of Pediatrics, Advocate Aurora Atrium Health Systems, Chicago, IL
| | - Guillermo Yepes Junquera
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Infectious Diseases
| | - Emily Stonebrook
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Nephrology and Hypertension, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - John David Spencer
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Nephrology and Hypertension, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Joshua R Watson
- Center for Clinical Excellence, Nationwide Children's Hospital, Columbus, OH
- Division of Infectious Diseases
| |
Collapse
|
7
|
Gruba N, Sikora H, Ciesielska J, Rejmak W, Lesner A. Caspase-like activity is associated with bacterial infection of the urine in urinary tract diseases. Anal Biochem 2024; 688:115473. [PMID: 38280678 DOI: 10.1016/j.ab.2024.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Urinary tract infections (UTIs) are a serious public health problem. They can be caused by a number of pathogens, but the most common are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus. Bacterial infection is diagnosed by examining a urine sample. The presence of bacteria or white blood cells is determined under a microscope or a urine culture is performed. In this study, we used a panel of chromogenic substrates for the qualitative determination of specific enzyme activity in the urine of patients with confirmed bacterial infection and/or urinary tract disease. Healthy patients were used as a control group. It turned out that in the case of Escherichia coli infection, we observed the activity of the caspase subunit of the human 20S proteasome. We did not observe similar correlations for infections with other types of bacteria.
Collapse
Affiliation(s)
- Natalia Gruba
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland.
| | - Honorata Sikora
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Justyna Ciesielska
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Wiktoria Rejmak
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| | - Adam Lesner
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63 Street, PL 80-308, Gdańsk, Poland
| |
Collapse
|
8
|
Henry S, Lewis SM, Cyrill SL, Callaway MK, Chatterjee D, Hanasoge Somasundara AV, Jones G, He XY, Caligiuri G, Ciccone MF, Diaz IA, Biswas AA, Hernandez E, Ha T, Wilkinson JE, Egeblad M, Tuveson DA, Dos Santos CO. Host response during unresolved urinary tract infection alters female mammary tissue homeostasis through collagen deposition and TIMP1. Nat Commun 2024; 15:3282. [PMID: 38627380 PMCID: PMC11021735 DOI: 10.1038/s41467-024-47462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Exposure to pathogens throughout a lifetime influences immunity and organ function. Here, we explore how the systemic host-response to bacterial urinary tract infection (UTI) induces tissue-specific alterations to the mammary gland. Utilizing a combination of histological tissue analysis, single cell transcriptomics, and flow cytometry, we identify that mammary tissue from UTI-bearing mice displays collagen deposition, enlarged ductal structures, ductal hyperplasia with atypical epithelial transcriptomes and altered immune composition. Bacterial cells are absent in the mammary tissue and blood of UTI-bearing mice, therefore, alterations to the distal mammary tissue are mediated by the systemic host response to local infection. Furthermore, broad spectrum antibiotic treatment resolves the infection and restores mammary cellular and tissue homeostasis. Systemically, unresolved UTI correlates with increased plasma levels of the metalloproteinase inhibitor, TIMP1, which controls extracellular matrix remodeling and neutrophil function. Treatment of nulliparous and post-lactation UTI-bearing female mice with a TIMP1 neutralizing antibody, restores mammary tissue normal homeostasis, thus providing evidence for a link between the systemic host response during UTI and mammary gland alterations.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | - Steven Macauley Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | | | | | | | | | - Gina Jones
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Department of Cell Biology and Physiology. School of Medicine in St. Louis. Washington University, St. Louis, MO, USA
| | | | | | | | - Amelia Aumalika Biswas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- SUNY Downstate Health Sciences University, Neural and Behavior Science, Brooklyn, NY, USA
| | | | - Taehoon Ha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - John Erby Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mikala Egeblad
- Department of Cell Biology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
9
|
Isali I, Wong TR, Batur AF, Wu CHW, Schumacher FR, Pope R, Hijaz A, Sheyn D. Recurrent urinary tract infection genetic risk: a systematic review and gene network analysis. Int Urogynecol J 2024; 35:259-271. [PMID: 37917182 DOI: 10.1007/s00192-023-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS The development of recurrent urinary tract infections (rUTIs) is not completely understood. This review is aimed at investigating the connection between genetics and rUTIs and summarizing the results of studies that have documented variations in gene expression among individuals with rUTIs compared with healthy individuals. METHODS A systematic search was conducted in Cochrane, Ovid, and PubMed, limiting the results to articles published between 1 January 2000, and 5 July 2022. Only studies comparing the difference in gene expression between individuals with rUTI and healthy individuals utilizing molecular techniques to measure gene expression in blood or urine samples were included in this systematic review. Gene network and pathways analyses were performed using Cytoscape software, with input data obtained from our systematic review of differentially expressed genes in rUTIs. RESULTS Six studies met our criteria for inclusion. The selected studies used molecular biology methods to quantify gene expression data from blood specimens. The analysis revealed that gene expressions of CXCR1 and TLR4 decreased, whereas CXCR2, TRIF, and SIGIRR increased in patients with rUTI compared with healthy controls. The analysis demonstrated that the most significant pathways were associated with TLR receptor signaling and tolerance, I-kappa B kinase/NF-kappa B signaling, and MyD88-independent TLR signaling. CONCLUSIONS This systematic review uncovered gene expression variations in several candidate genes and identified a number of underlying biological pathways associated with rUTIs. These findings could shift the treatment and prevention strategies for rUTIs.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Thomas R Wong
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ali Furkan Batur
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Chen-Han Wilfred Wu
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel Pope
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - David Sheyn
- Department of Urology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
10
|
Anguita R, Prats-Ejarque G, Moussaoui M, Becknell B, Boix E. A Common Polymorphism in RNASE6 Impacts Its Antimicrobial Activity toward Uropathogenic Escherichia coli. Int J Mol Sci 2024; 25:604. [PMID: 38203775 PMCID: PMC10779065 DOI: 10.3390/ijms25010604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human Ribonuclease (RNase) 6 is a monocyte and macrophage-derived protein with potent antimicrobial activity toward uropathogenic bacteria. The RNASE6 gene is heterogeneous in humans due to the presence of single nucleotide polymorphisms (SNPs). RNASE6 rs1045922 is the most common non-synonymous SNP, resulting in a G to A substitution that determines an arginine (R) to glutamine (Q) transversion at position 66 in the protein sequence. By structural analysis we observed that R66Q substitution significantly reduces the positive electrostatic charge at the protein surface. Here, we generated both recombinant RNase 6-R66 and -Q66 protein variants and determined their antimicrobial activity toward uropathogenic Escherichia coli (UPEC), the most common cause of UTI. We found that the R66 variant, encoded by the major SNP rs1045922 allele, exhibited superior bactericidal activity in comparison to the Q66 variant. The higher bactericidal activity of R66 variant correlated with an increase in the protein lipopolysaccharide binding and bacterial agglutination abilities, while retaining the same enzymatic efficiency. These findings encourage further work to evaluate RNASE6 SNP distribution and its impact in UTI susceptibility.
Collapse
Affiliation(s)
- Raul Anguita
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.); (M.M.)
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.); (M.M.)
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.); (M.M.)
| | - Brian Becknell
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.); (M.M.)
| |
Collapse
|
11
|
Peng Z, Zhuang J, Shen B. The role of microbiota in tumorigenesis, progression and treatment of bladder cancer. MICROBIOME RESEARCH REPORTS 2023; 3:5. [PMID: 38455086 PMCID: PMC10917617 DOI: 10.20517/mrr.2023.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024]
Abstract
For decades, the urinary system was regarded as a sterile environment due to the absence of any bacterial growth in clinical standard urine cultures from healthy individuals. However, a diverse array of microbes colonizes the urinary system in small quantities, exhibiting a variable compositional signature influenced by differences in sex, age, and pathological state. Increasing pieces of evidence suggest microbiota exists in tumor tissue and plays a crucial role in tumor microenvironment based on research in multiple cancer models. Current studies about microbiota and bladder cancer have preliminarily characterized the bladder cancer-related microbiota, but how the microbiota influences the biological behavior of bladder cancer remains unclarified. This review summarizes the characteristics of microbiota in bladder cancer, aims to propose possible mechanisms that microbiota acts in tumorigenesis and progression of bladder cancer based on advances in gut microbiota, and discusses the potential clinical application of microbiota in bladder cancer.
Collapse
Affiliation(s)
| | | | - Bing Shen
- Correspondence to: Prof. Bing Shen, Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 85 Wu Jin Road, Hongkou District, Shanghai 200080, China. E-mail:
| |
Collapse
|
12
|
Ruiz-Rosado JDD, Cortado H, Kercsmar M, Li B, Ballash G, Cotzomi-Ortega I, Sanchez-Zamora YI, Gupta S, Ching C, Boix E, Jackson AR, Spencer JD, Becknell B. Human Ribonuclease 6 Has a Protective Role during Experimental Urinary Tract Infection. J Innate Immun 2023; 15:865-875. [PMID: 37980892 PMCID: PMC10699853 DOI: 10.1159/000534736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
Mounting evidence suggests that antimicrobial peptides and proteins (AMPs) belonging to the RNase A superfamily have a critical role in defending the bladder and kidney from bacterial infection. RNase 6 has been identified as a potent, leukocyte-derived AMP, but its impact on urinary tract infection (UTI) in vivo has not been demonstrated. To test the functional role of human RNase 6, we generated RNASE6 transgenic mice and studied their susceptibility to experimental UTI. In addition, we generated bone marrow-derived macrophages to study the impact of RNase 6 on antimicrobial activity within a cellular context. When subjected to experimental UTI, RNASE6 transgenic mice developed reduced uropathogenic Escherichia coli (UPEC) burden, mucosal injury, and inflammation compared to non-transgenic controls. Monocytes and macrophages were the predominant cellular sources of RNase 6 during UTI, and RNASE6 transgenic macrophages were more proficient at intracellular UPEC killing than non-transgenic controls. Altogether, our findings indicate a protective role for human RNase 6 during experimental UTI.
Collapse
Affiliation(s)
- Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Hanna Cortado
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Birong Li
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Gregory Ballash
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Israel Cotzomi-Ortega
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Yuriko I. Sanchez-Zamora
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Sudipti Gupta
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Christina Ching
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Department of Urology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Ashley R. Jackson
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - John David Spencer
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Brian Becknell
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
13
|
Kao CY, Zhang YZ, Yang DC, Chen PK, Teng CH, Lin WH, Wang MC. Characterization of host and escherichia coli strains causing recurrent urinary tract infections based on molecular typing. BMC Microbiol 2023; 23:90. [PMID: 36997841 PMCID: PMC10061793 DOI: 10.1186/s12866-023-02820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Escherichia coli is the leading pathogen responsible for urinary tract infection (UTI) and recurrent UTI (RUTI). Few studies have dealt with the characterization of host and bacteria in RUTI caused by E. coli with genetically identical or different strains. This study aimed to investigate the host and bacterial characteristics of E. coli RUTI based on molecular typing. RESULTS Patients aged 20 years or above who presented with symptoms of UTI in emergency department or outpatient clinics between August 2009 and December 2010 were enrolled. RUTI was defined as patients had 2 or more infections in 6 months or 3 or more in 12 months during the study period. Host factors (including age, gender, anatomical/functional defect, and immune dysfunction) and bacterial factors (including phylogenicity, virulence genes, and antimicrobial resistance) were included for analysis. There were 41 patients (41%) with 91 episodes of E. coli RUTI with highly related PFGE (HRPFGE) pattern (pattern similarity > 85%) and 58 (59%) patients with 137 episodes of E. coli RUTI with different molecular typing (DMT) pattern, respectively. There was a higher prevalence of phylogenetic group B2 and neuA and usp genes in HRPFGE group if the first episode of RUTI caused by HRPFGE E. coli strains and all episodes of RUTI caused by DMT E. coli strains were included for comparison. The uropathogenic E. coli (UPEC) strains in RUTI were more virulent in female gender, age < 20 years, neither anatomical/ functional defect nor immune dysfunction, and phylogenetic group B2. There were correlations among prior antibiotic therapy within 3 months and subsequent antimicrobial resistance in HRPFGE E. coli RUTI. The use of fluoroquinolones was more likely associated with subsequent antimicrobial resistance in most types of antibiotics. CONCLUSIONS This study demonstrated that the uropathogens in RUTI were more virulent in genetically highly-related E. coli strains. Higher bacterial virulence in young age group (< 20 years) and patients with neither anatomical/functional defect nor immune dysfunction suggests that virulent UPEC strains are needed for the development of RUTI in healthy populations. Prior antibiotic therapy, especially the fluoroquinolones, within 3 months could induce subsequent antimicrobial resistance in genetically highly-related E. coli RUTI.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zheng Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Deng-Chi Yang
- Department of Geriatrics and Gerontology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| |
Collapse
|
14
|
Colceriu MC, Aldea PL, Răchișan AL, Clichici S, Sevastre-Berghian A, Mocan T. Vesicoureteral Reflux and Innate Immune System: Physiology, Physiopathology, and Clinical Aspects. J Clin Med 2023; 12:jcm12062380. [PMID: 36983379 PMCID: PMC10058356 DOI: 10.3390/jcm12062380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Vesicoureteral reflux represents one of the most concerning topics in pediatric nephrology due to its frequency, clinical expression with the potential to evolve into chronic kidney disease, and last but not least, its socio-economic implications. The presence of vesicoureteral reflux, the occurrence of urinary tract infections, and the development of reflux nephropathy, hypertension, chronic kidney disease, and finally, end-stage renal disease represent a progressive spectrum of a single physiopathological condition. For the proper management of these patients with the best clinical outcomes, and in an attempt to prevent the spread of uropathogens' resistance to antibacterial therapy, we must better understand the physiopathology of urinary tract infections in patients with vesicoureteral reflux, and at the same time, we should acknowledge the implication and response of the innate immune system in this progressive pathological condition. The present paper focuses on theoretical aspects regarding the physiopathology of vesicoureteral reflux and the interconditionality between urinary tract infections and the innate immune system. In addition, we detailed aspects regarding cytokines, interleukins, antimicrobial peptides, and proteins involved in the innate immune response as well as their implications in the physiopathology of reflux nephropathy. New directions of study should focus on using these innate immune system effectors as diagnostic and therapeutic tools in renal pathology.
Collapse
Affiliation(s)
- Marius-Cosmin Colceriu
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Paul Luchian Aldea
- Department of Community Medicine, Discipline of Public Health and Management, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andreea-Liana Răchișan
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Functional Biosciences, Discipline of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Abstract
Symptoms of urinary tract infection (UTI) in young children are nonspecific and urine sampling is challenging. A safe and rapid diagnosis of UTI can be achieved with new biomarkers and culture of clean-catch urine, reserving catheterization or suprapubic aspiration for severely ill infants. Most guidelines recommend ultrasound assessment and use of risk factors to direct further management of children at risk of kidney deterioration. The increasing knowledge of the innate immune system will add new predictors and treatment strategies to the management of UTI in children. Long-term outcome is good for the majority, but individuals with severe scarring can develop hypertension and decline in kidney function.
Collapse
Affiliation(s)
- Per Brandström
- Department of Pediatrics, Clinical Science Institute, Sahlgrenska Academy, University of Gothenburg, Gothenburg 416 85, Sweden; Pediatric Uro-Nephrologic Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg 416 85, Sweden.
| | - Sverker Hansson
- Department of Pediatrics, Clinical Science Institute, Sahlgrenska Academy, University of Gothenburg, Gothenburg 416 85, Sweden; Pediatric Uro-Nephrologic Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg 416 85, Sweden
| |
Collapse
|
16
|
Meštrović Popovič K, Povalej Bržan P, Langerholc T, Marčun Varda N. The Impact of Lactobacillus Plantarum PCS26 Supplementation on the Treatment and Recurrence of Urinary Tract Infections in Children-A Pilot Study. J Clin Med 2022; 11:jcm11237008. [PMID: 36498583 PMCID: PMC9736295 DOI: 10.3390/jcm11237008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections (UTI) are frequent bacterial infections in childhood. Considering the known beneficial effects of probiotics in the gastrointestinal field, they could also help to alleviate UTIs. In our clinical pilot study, we sought to verify the positive effects of the specific probiotic strain on the course and prevention of UTI in children. Thirty children with UTIs were enrolled and sequentially sampled into two groups (placebo/control and probiotic/test) in a double-blind, randomized, placebo-controlled clinical pilot study. We chose Lactobacillus plantarum PCS 26 (Lp26) derived from local Slovenian cheese in Pathogen Combat Project, which showed a good in vitro antimicrobial effect on Escherichia coli (E. coli). Several parameters were followed to look for differences between both groups in the acute phase of the UTI and after 6 months of taking probiotic or placebo supplementation. Our results showed no statistically significant differences between both groups; however, two children in the placebo group suffered a recurrence of febrile UTI within 6 months of the follow-up period, while there were no recurrences of UTI in the probiotic group. In the test group, the number of febrile days after the initiation of antibiotics with probiotics was shorter, although not reaching statistical significance (p = 0.084). According to our results, probiotics might be helpful in alleviating UTI symptoms and in UTI prevention. Further research with a larger sample size is warranted. Additionally, basic scientific studies for the selection of proper immunobiotic strains of probiotics should be performed.
Collapse
Affiliation(s)
- Katarina Meštrović Popovič
- General Hospital Celje, Oblakova 5 (omit Splošna bolnišnica Celje), SI-3000 Celje, Slovenia
- Correspondence: ; Tel.: +386-34233504
| | - Petra Povalej Bržan
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, SI-2311 Hoče, Slovenia
| | - Nataša Marčun Varda
- Department of Pediatrics, University Medical Centre Maribor, Ljubljanska cesta 2, SI-2000 Maribor, Slovenia
| |
Collapse
|
17
|
Xu B, Liu M, Liu Y, Zuo J. Risk Factors of Urinary Pathogenic Bacteria Infection after Benign Prostatic Hyperplasia Surgery and Curative Effect Analysis of Shuangdong Capsule Intervention. Emerg Med Int 2022; 2022:4069787. [PMID: 36119915 PMCID: PMC9477594 DOI: 10.1155/2022/4069787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common and frequently occurring disease in clinics, with the main manifestations including frequent micturition, urinary incontinence, dysuria, and endless urination. Transurethral resection of the prostate (TURP) is the main treatment for BPH, but some patients are prone to urinary tract infection after surgery, which affects the prognosis. Therefore, it is of great significance to study the pathogenic characteristics and risk factors of postoperative urinary-derived pathogenic bacteria infection in patients with BPH for the prevention and treatment of postoperative infection. In addition, the treatment of patients with this disease is also the focus of clinical attention. Long-term massive application of antibiotics can induce drug-resistant mutations of bacteria, so it is urgent to find an efficient and safe therapeutic scheme in clinics. However, traditional Chinese medicine (TCM) has a long history of treating urinary tract infections. Therefore, Shuangdong capsule, a traditional Chinese medicine preparation, was selected for the combined treatment in this study. The results showed that age, concomitant diabetes mellitus, and preoperative prophylactic application of antibiotics were the independent risk factors for postoperative urine-derived pathogenic infection in BPH patients. Clinical intervention for BPH patients with concomitant risk factors should be emphasized in clinical practice. The combined use of Shuangdong capsule and conventional western medicine can improve the clinical symptoms and inflammatory reactions of postoperative urine-derived pathogenic infection in BPH patients. Due to its exact curative effect and high safety, it is worthy of promotion. The clinical study registration number is M2022019.
Collapse
Affiliation(s)
- Bing Xu
- The Third Affiliated Hospital, Department of Urology Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421900, China
| | - Ming Liu
- The Third Affiliated Hospital, Department of Urology Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421900, China
| | - Yonghui Liu
- The Third Affiliated Hospital, Department of Urology Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421900, China
| | - Jianhong Zuo
- The Third Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan 421900, China
| |
Collapse
|
18
|
Sorić Hosman I, Cvitković Roić A, Lamot L. A Systematic Review of the (Un)known Host Immune Response Biomarkers for Predicting Recurrence of Urinary Tract Infection. Front Med (Lausanne) 2022; 9:931717. [PMID: 35860746 PMCID: PMC9289160 DOI: 10.3389/fmed.2022.931717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recurrent urinary tract infections (rUTI) represent a major healthcare and economic burden along with a significant impact on patient’s morbidity and quality of life, even in the absence of well-known risk factors, such as vesicoureteral reflux. Despite numerous attempts to find a suitable therapeutic option, there is no clear benefit of any currently available intervention for prevention of UTI recurrence and its long-term consequences such as hypertension, renal scarring and/or insufficiency. The common treatment practice in many centers around the globe involves the use of continuous low-dose antibiotic prophylaxis, irrespective of various studies indicating increased microbial resistance against the prophylactic drug, leading to prolonged duration and escalating the cost of UTI treatment. Moreover, the rapid appearance of multi-drug resistant uropathogens is threatening to transform UTI to untreatable disease, while impaired host-microbiota homeostasis induced by a long-term use of antibiotics predisposes patients for various autoimmune and infectious diseases. New biomarkers of the increased risk of UTI recurrence could therefore assist in avoiding such outcomes by revealing more specific patient population which could benefit from additional interventions. In this light, the recent findings suggesting a crucial role of urothelial innate immunity mechanisms in protection of urinary tract from invading uropathogens might offer new diagnostic, prognostic and even therapeutic opportunities. Uroepithelial cells detect uropathogens via pattern recognition receptors, resulting in activation of intracellular signaling cascade and transcription factors, which ultimately leads to an increased production and secretion of chemokines, cytokines and antimicrobial peptides into the urinary stream. Emerging evidence suggest that the disturbance of a single component of the urinary tract innate immunity system might increase susceptibility for rUTI. The aim of the current review is to update clinicians and researchers on potential biomarkers of host immune response alterations predisposing for rUTI and propose those well worth exploring further. For this purpose, over a hundred original papers were identified through an extensive PubMed and Scopus databases search. This comprehensive review might enrich the current clinical practice and fill the unmet clinical needs, but also encourage the development of therapeutic agents that would facilitate urinary bacterial clearance by enhancing the host immune response.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Andrea Cvitković Roić
- Department of Nephrology and Urology, Clinic for Pediatric Medicine Helena, Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
- *Correspondence: Lovro Lamot,
| |
Collapse
|
19
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Schmitz J, Brauns N, Hüsing AM, Flechsig M, Glomb T, Bräsen JH, Haller H, von Vietinghoff S. Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. Eur J Immunol 2022; 52:1258-1272. [DOI: 10.1002/eji.202149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/20/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica Schmitz
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Nicolas Brauns
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Anne M. Hüsing
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Martina Flechsig
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Thorsten Glomb
- Core Facility Transcriptomics Hannover Medical School Hannover Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Hermann Haller
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
- Nephrology Section First Medical Clinic University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| |
Collapse
|
21
|
Bender K, Schwartz LL, Cohen A, Vasquez CM, Murtha MJ, Eichler T, Thomas JP, Jackson A, Spencer JD. Expression and function of human ribonuclease 4 in the kidney and urinary tract. Am J Physiol Renal Physiol 2021; 320:F972-F983. [PMID: 33818125 PMCID: PMC8174806 DOI: 10.1152/ajprenal.00592.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are essential host defense mechanisms that prevent urinary tract infections. Recent studies have demonstrated that peptides in the ribonuclease A superfamily have antimicrobial activity against uropathogens and protect the urinary tract from uropathogenic Escherichia coli (UPEC). Little is known about the antibacterial function or expression of ribonuclease 4 (RNase 4) in the human urinary tract. Here, we show that full-length recombinant RNase 4 peptide and synthetic amino-terminal RNase 4 peptide fragment have antibacterial activity against UPEC and multidrug-resistant (MDR)-UPEC. RNASE4 transcript expression was detected in human kidney and bladder tissue using quantitative real-time PCR. Immunostaining or in situ hybridization localized RNase 4 expression to proximal tubules, principal and intercalated cells in the kidney's collecting duct, and the bladder urothelium. Urinary RNase 4 concentrations were quantified in healthy controls and females with a history of urinary tract infection. Compared with controls, urinary RNase 4 concentrations were significantly lower in females with a history of urinary tract infection. When RNase 4 was neutralized in human urine or silenced in vitro using siRNA, urinary UPEC replication or attachment to and invasion of urothelial and kidney medullary cells increased. These data show that RNase 4 has antibacterial activity against UPEC, is expressed in the human urinary tract, and can contribute to host defense against urinary tract infections.NEW & NOTEWORTHY Ribonuclease 4 (RNase 4) is a newly identified host defense peptide in the human kidney and bladder. RNase 4 kills uropathogenic Escherichia coli (UPEC) and multidrug-resistant UPEC. RNase 4 prevents invasive UPEC infection and suppressed RNase 4 expression may be a risk factor for more severe or recurrent urinary tract infection.
Collapse
Affiliation(s)
- Kristin Bender
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Laura L Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Ariel Cohen
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Claudia Mosquera Vasquez
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Matthew J Murtha
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
| | - Tad Eichler
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
| | - Jason P Thomas
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Jackson
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, Ohio
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Clinical and Translational Research, Columbus, Ohio
- The Ohio State University College of Medicine, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
22
|
Mishra R, Krishnamoorthy P, Kumar H. MicroRNA-30e-5p Regulates SOCS1 and SOCS3 During Bacterial Infection. Front Cell Infect Microbiol 2021; 10:604016. [PMID: 33585275 PMCID: PMC7873556 DOI: 10.3389/fcimb.2020.604016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Host innate immunity is the major player against continuous microbial infection. Various pathogenic bacteria adopt the strategies to evade the immunity and show resistance toward the various established therapies. Despite the advent of many antibiotics for bacterial infections, there is a substantial need for the host-directed therapies (HDTs) to combat the infection. HDTs are recently being adopted to be useful in eradicating intracellular bacterial infection. Changing the innate immune responses of the host cells alters pathogen's ability to reside inside the cell. MicroRNAs are the small non-coding endogenous molecules and post-transcriptional regulators to target the 3'UTR of the messenger RNA. They are reported to modulate the host's immune responses during bacterial infections. Exploiting microRNAs as a therapeutic candidate in HDTs upon bacterial infection is still in its infancy. Here, initially, we re-analyzed the publicly available transcriptomic dataset of macrophages, infected with different pathogenic bacteria and identified significant genes and microRNAs common to the differential infections. We thus identified and miR-30e-5p, to be upregulated in different bacterial infections which enhances innate immunity to combat bacterial replication by targeting key negative regulators such as SOCS1 and SOCS3 of innate immune signaling pathways. Therefore, we propose miR-30e-5p as one of the potential candidates to be considered for additional clinical validation toward HDTs.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Pandikannan Krishnamoorthy
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.,WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Gupta S, Nicassio L, Junquera GY, Jackson AR, Fuchs M, McLeod D, Alpert S, Jayanthi VR, DaJusta D, McHugh KM, Becknell B, Ching CB. Impact of successful pediatric ureteropelvic junction obstruction surgery on urinary HIP/PAP and BD-1 levels. J Pediatr Urol 2020; 16:592.e1-592.e7. [PMID: 32278658 PMCID: PMC7529730 DOI: 10.1016/j.jpurol.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In the pediatric patient whose ureteropelvic junction obstruction (UPJO) is not always symptomatic, imaging is the most common means of detecting surgical success. There is interest, however, in other means of post-operative monitoring. A panel of antimicrobial peptides (AMPs) has been previously found to be elevated in UPJO, but the impact of surgical correction on these AMPs is unknown. OBJECTIVE To determine if elevated levels of candidate urinary AMP biomarkers of urinary tract obstruction decrease following UPJO repair. STUDY DESIGN Pediatric patients undergoing surgical correction of an UPJO were recruited for participation. Bladder urine from uninfected consenting/assenting patients was collected immediately prior to surgery and then at least 6 months afterward. Based on prior studies demonstrating significant elevation of beta defensin 1 (BD-1), hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), cathelicidin (LL-37), and neutrophil gelatinase-associated lipocalin (NGAL) in patients with UPJO versus control patients, we performed enzyme-linked immunosorbent assays on these four AMPs to compare their expression before and after surgical intervention. If found to significantly decrease, AMP levels were compared to healthy controls. AMP levels were normalized to urine creatinine. Results were analyzed with paired t test or Wilcoxon test using Graphpad software. Correlation was calculated using Pearson or Spearman correlation. A p-value of <0.05 was considered significant. RESULTS 13 UPJO patients were included in this study; 9 were male (69%). Age at surgery was a median of 4.3 years (average 6.1, range 0.4-18.4 years). Follow-up urine samples were collected a median of 27.4 months after surgery (average 27.4; range 7.8-45.3 months). All 13 patients had clinical improvement and/or signs of improved hydronephrosis on post-operative imaging. HIP/PAP and BD-1 significantly decreased in post-surgical samples compared to pre-surgical samples (p = 0.02 and 0.01, respectively); NGAL and LL-37 did not significantly change. Overall, HIP/PAP decreased in 12 patients (92%) and BD-1 decreased in 11 patients (85%). BD-1 levels after successful repair were not different from healthy controls (p = 0.06). DISCUSSION Urinary biomarkers of obstruction should detect significant obstructive pathology as well as reflect its resolution. This would enable their use in post-operative monitoring and augment current methods of determining successful surgical outcome through imaging. CONCLUSIONS The AMPs HIP/PAP and BD-1 are significantly elevated in UPJO but then significantly decrease after pyeloplasty, with BD-1 returning to healthy control levels. As a result, these AMPs could serve as markers of successful surgical intervention.
Collapse
Affiliation(s)
- Sudipti Gupta
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lauren Nicassio
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Guillermo Yepes Junquera
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ashley R Jackson
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Molly Fuchs
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daryl McLeod
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Seth Alpert
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Venkata R Jayanthi
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel DaJusta
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kirk M McHugh
- Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Division of Pediatric Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Division of Pediatric Urology, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
24
|
Moazzezy N, Asadi Karam MR, Rafati S, Bouzari S, Oloomi M. A Synthetic Peptide 2Abz 23S 29 Reduces Bacterial Titer and Induces Pro-Inflammatory Cytokines in a Murine Model of Urinary Tract Infection. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2797-2807. [PMID: 32764879 PMCID: PMC7381768 DOI: 10.2147/dddt.s259937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023]
Abstract
Introduction A urinary tract infection (UTI), which is often caused by uropathogenic E. coli (UPEC) strains, affects many people worldwide annually. UPEC causes the production of pro-inflammatory cytokines by the bladder epithelial cells; however, it has been proven that the UPEC can inhibit the early activation of the innate immune system. Methods This study aimed to examine the antibacterial and immunomodulatory effects of different doses of truncated alpha-defensins (human neutrophil peptide (HNP)-1) analog 2Abz23S29 on the mouse UTI model. Experimentally uropathogenic E. coli CFT073-infected mice were treated with low-dose 2Abz23S29 (250µg/mL), high-dose 2Abz23S29 (750µg/mL), ciprofloxacin (cip) (800µg/mL), or high-dose 2Abz23S29plus cip once a day 24 h post-infection. The 2Abz23S29 and cip treatment were given for two consecutive days. Results The in vivo results showed that fewer UPEC were recovered from the bladders of mice treated transurethrally with 2Abz23S29. Moreover, low-dose 2Abz23S29 significantly decreased the level of the interleukin-6 (IL-6), whereas high-dose 2Abz23S29 increased pro-inflammatory cytokines including IL-6, macrophage inflammatory protein/2 (MIP/2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in infected bladders of mice. Besides, the levels of cytokines IL-6 and MIP/2 in infected mice treated with a combination of high-dose 2Abz23S29 and cip were significantly higher than the untreated mice. In contrast, CFT073-infected mice treated with a combination of high-dose 2Abz23S29 and cip showed no changes in cytokines TNF-α and IL-1β levels, indicating that ciprofloxacin may play an anti-inflammatory role. Conclusion Collectively, apart from the direct antibacterial role of 2Abz23S29, our data illustrated that 2Abz23S29 modulates pro-inflammatory cytokine production of bladder in a dose-dependent manner, which has implications for the development of new anti-infective agents.
Collapse
Affiliation(s)
- Neda Moazzezy
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Sima Rafati
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Becknell B, Ching C, Spencer JD. The Responses of the Ribonuclease A Superfamily to Urinary Tract Infection. Front Immunol 2019; 10:2786. [PMID: 31849967 PMCID: PMC6901906 DOI: 10.3389/fimmu.2019.02786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
The lower urinary tract is routinely exposed to microbes residing in the gastrointestinal tract, yet the urothelium resists invasive infections by gut microorganisms. This infection resistance is attributed to innate defenses in the bladder urothelium, kidney epithelium, and resident or circulating immune cells. In recent years, surmounting evidence suggests that these cell types produce and secrete soluble host defense peptides, including members of the Ribonuclease (RNase) A Superfamily, to combat invasive bacterial challenge. While some of these peptides, including RNase 4 and RNase 7, are abundantly produced by epithelial cells, the expression of others, like RNase 3 and RNase 6, increase at infection sites with immune cell recruitment. The objective of this mini-review is to highlight recent evidence showing the biological importance and responses of RNase A Superfamily members to infection in the kidney and bladder.
Collapse
Affiliation(s)
- Brian Becknell
- Nephrology and Urology Research Affinity Group, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Center of Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Nephrology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Christina Ching
- Nephrology and Urology Research Affinity Group, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Center of Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Urology, Nationwide Children's Hospital, Columbus, OH, United States
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Center of Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Nephrology, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|