1
|
Eble J, Köttgen A, Schultheiß UT. Monogenic Kidney Diseases in Adults With Chronic Kidney Disease (CKD). DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:689-695. [PMID: 38958599 PMCID: PMC12005384 DOI: 10.3238/arztebl.m2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND According to current evidence, every 10th to 11th adult with chronic kidney disease (CKD) has a monogenic disease of the kidney. METHODS This review is based on reported studies in which molecular genetic diagnostic techniques were used to investigate monogenic kidney diseases in adults with CKD. The studies were identified by a selective literature search using predefined criteria. RESULTS In 12 selected studies, diagnostic variants of 179 different genes were identified in 1467 out of 6607 study participants with CKD (22.2%). More than 60% of these variants affected 8 genes (PKD1, PKD2, COL4A3, COL4A4, COL4A5, UMOD, MUC1, HNF1B). Three diseases are associated with these genes: autosomal dominant polycystic kidney disease (ADPKD), Alport syndrome, and autosomal dominant tubulo-interstitial kidney disease (ADTKD). Physicians treating patients with CKD should be alert to the presence of any red flags, such as onset at a young age, a positive family history, or hematuria of unknown cause. When a genetic etiology is suspected, a specialized work-up is indicated, often including a molecular genetic investigation. A positive genetic finding usually leads to a modification of the patient's specific diagnosis and/or treatment. CONCLUSION Awareness of the high prevalence of monogenic kidney diseases in adults with CKD and alertness to their suggestive clinical features are crucial for the timely initiation of targeted diagnostic testing. The molecular genetic identification of these diseases is a prerequisite for appropriate patient management.
Collapse
Affiliation(s)
- Julian Eble
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Ulla T. Schultheiß
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
- Faculty of Medicine and Medical Center, Department of Medicine IV-Nephrology and Primary Care, University of Freiburg, Germany
- Synlab MVZ Humangenetik Freiburg GmbH, Germany
| |
Collapse
|
2
|
van Megen WH, de Baaij JHF, Churchill GA, Devuyst O, Hoenderop JGJ, Korstanje R. Genetic drivers of age-related changes in urinary magnesium excretion. Physiol Genomics 2024; 56:634-647. [PMID: 39037434 PMCID: PMC11460537 DOI: 10.1152/physiolgenomics.00119.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Medical Biosciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
3
|
Kołbuc M, Kołek MF, Motyka R, Bieniaś B, Habbig S, Burgmaier K, Prikhodina L, Papizh S, Tasic V, Okorn C, Szczepańska M, Kiliś-Pstrusińska K, Wasilewska A, Adamczyk P, Tkaczyk M, Pańczyk-Tomaszewska M, Miklaszewska M, Pawlaczyk K, Bukowska-Olech E, Jamsheer A, Jankauskiene A, König J, Cheong HI, Ahn YH, Kaspar S, Sikora P, Beck BB, Zaniew M. Development of a tool for predicting HNF1B mutations in children and young adults with congenital anomalies of the kidneys and urinary tract. Pediatr Nephrol 2024; 39:1847-1858. [PMID: 38196016 PMCID: PMC11026189 DOI: 10.1007/s00467-023-06262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND We aimed to develop a tool for predicting HNF1B mutations in children with congenital abnormalities of the kidneys and urinary tract (CAKUT). METHODS The clinical and laboratory data from 234 children and young adults with known HNF1B mutation status were collected and analyzed retrospectively. All subjects were randomly divided into a training (70%) and a validation set (30%). A random forest model was constructed to predict HNF1B mutations. The recursive feature elimination algorithm was used for feature selection for the model, and receiver operating characteristic curve statistics was used to verify its predictive effect. RESULTS A total of 213 patients were analyzed, including HNF1B-positive (mut + , n = 109) and HNF1B-negative (mut - , n = 104) subjects. The majority of patients had mild chronic kidney disease. Kidney phenotype was similar between groups, but bilateral kidney anomalies were more frequent in the mut + group. Hypomagnesemia and hypermagnesuria were the most common abnormalities in mut + patients and were highly selective of HNF1B. Hypomagnesemia based on age-appropriate norms had a better discriminatory value than the age-independent cutoff of 0.7 mmol/l. Pancreatic anomalies were almost exclusively found in mut + patients. No subjects had hypokalemia; the mean serum potassium level was lower in the HNF1B cohort. The abovementioned, discriminative parameters were selected for the model, which showed a good performance (area under the curve: 0.85; sensitivity of 93.67%, specificity of 73.57%). A corresponding calculator was developed for use and validation. CONCLUSIONS This study developed a simple tool for predicting HNF1B mutations in children and young adults with CAKUT.
Collapse
Affiliation(s)
- Marcin Kołbuc
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland.
| | | | - Rafał Motyka
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Beata Bieniaś
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kathrin Burgmaier
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Larisa Prikhodina
- Division of Inherited & Acquired Kidney Diseases, Veltishev Research Clinical Institute for Pediatrics & Children Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Svetlana Papizh
- Division of Inherited & Acquired Kidney Diseases, Veltishev Research Clinical Institute for Pediatrics & Children Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Christine Okorn
- Department of Pediatric Nephrology, University Hospital Essen, Essen, Germany
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | | | - Anna Wasilewska
- Department of Pediatric Nephrology, University Hospital, Białystok, Poland
| | - Piotr Adamczyk
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | | | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
- Centers for Medical Genetics GENESIS, Poznań, Poland
| | - Augustina Jankauskiene
- Pediatric Center, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Hae Il Cheong
- Department of Pediatrics, Seoul Red Cross Hospital, Seoul, South Korea
| | - Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Sophie Kaspar
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Przemysław Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Bodo B Beck
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland.
| |
Collapse
|
4
|
Živná M, Kidd KO, Barešová V, Hůlková H, Kmoch S, Bleyer AJ. Autosomal dominant tubulointerstitial kidney disease: A review. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:309-324. [PMID: 36250282 PMCID: PMC9619361 DOI: 10.1002/ajmg.c.32008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023]
Abstract
The clinical characteristics of autosomal dominant tubulointerstitial kidney disease (ADTKD) include bland urinary sediment, slowly progressive chronic kidney disease (CKD) with many patients reaching end stage renal disease (ESRD) between age 20 and 70 years, and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD. Pathogenic variants in UMOD, MUC1, and REN are the most common causes of ADTKD. ADTKD-UMOD is also associated with hyperuricemia and gout. ADTKD-REN often presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-MUC1 patients present only with CKD. This review describes the pathophysiology, genetics, clinical manifestation, and diagnosis for ADTKD, with an emphasis on genetic testing and genetic counseling suggestions for patients.
Collapse
Affiliation(s)
- Martina Živná
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Kendrah O. Kidd
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| | - Veronika Barešová
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Helena Hůlková
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| | - Anthony J. Bleyer
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Wake Forest University School of MedicineSection on NephrologyWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Gitelman syndrome is a recessive salt-wasting disorder characterized by hypomagnesemia, hypokalemia, metabolic alkalosis and hypocalciuria. The majority of patients are explained by mutations and deletions in the SLC12A3 gene, encoding the Na+-Cl--co-transporter (NCC). Recently, additional genetic causes of Gitelman-like syndromes have been identified that should be considered in genetic screening. This review aims to provide a comprehensive overview of the clinical, genetic and mechanistic aspects of Gitelman(-like) syndromes. RECENT FINDINGS Disturbed Na+ reabsorption in the distal convoluted tubule (DCT) is associated with hypomagnesemia and hypokalemic alkalosis. In Gitelman syndrome, loss-of-function mutations in SLC12A3 cause impaired NCC-mediated Na+ reabsorption. In addition, patients with mutations in CLCKNB, KCNJ10, FXYD2 or HNF1B may present with a similar phenotype, as these mutations indirectly reduce NCC activity. Furthermore, genetic investigations of patients with Na+-wasting tubulopathy have resulted in the identification of pathogenic variants in MT-TI, MT-TF, KCNJ16 and ATP1A1. These novel findings highlight the importance of cell metabolism and basolateral membrane potential for Na+ reabsorption in the DCT. SUMMARY Altogether, these findings extend the genetic spectrum of Gitelman-like electrolyte alterations. Genetic testing of patients with hypomagnesemia and hypokalemia should cover a panel of genes involved in Gitelman-like syndromes, including the mitochondrial genome.
Collapse
Affiliation(s)
- Karl P Schlingmann
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Bleyer AJ, Wolf MT, Kidd KO, Zivna M, Kmoch S. Autosomal dominant tubulointerstitial kidney disease: more than just HNF1β. Pediatr Nephrol 2022; 37:933-946. [PMID: 34021396 PMCID: PMC8722360 DOI: 10.1007/s00467-021-05118-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) refers to a group of disorders with a bland urinary sediment, slowly progressive chronic kidney disease (CKD), and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD in both children and adults. ADTKD-REN presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-UMOD is associated with gout and CKD that may present in adolescence and slowly progresses to kidney failure. HNF1β mutations often present in childhood with anatomic abnormalities such as multicystic or dysplastic kidneys, as well as CKD and a number of other extra-kidney manifestations. ADTKD-MUC1 is less common in childhood, and progressive CKD is its sole clinical manifestation, usually beginning in the late teenage years. This review describes the pathophysiology, genetics, clinical characteristics, diagnosis, and treatment of the different forms of ADTKD, with an emphasis on diagnosis. We also present data on kidney function in children with ADTKD from the Wake Forest Rare Inherited Kidney Disease Registry.
Collapse
Affiliation(s)
- Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Matthias T Wolf
- Pediatric Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-0936, USA
| | - Kendrah O Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zivna
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Cheng Y, Zhong DP, Ren L, Yang H, Tian CF. Unusual manifestations of young woman with MODY5 based on 17q12 recurrent deletion syndrome. BMC Endocr Disord 2022; 22:77. [PMID: 35346144 PMCID: PMC8962578 DOI: 10.1186/s12902-022-00989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young type 5 (MODY5) is a rare subtype of MODYs. It is caused by mutations of the hepatocyte nuclear factor 1 homeobox b gene (HNF1B). 17q12 recurrent deletion syndrome usually results in MODY5 because of the deletion of HNF1B. These patients often have other clinical manifestations besides diabetes. Refractory hypomagnesemia was a clue for further examination in this patient. But she lacked structural abnormalities of the genitourinary system and neurodevelopmental disorders that are common manifestations in patients with 17q12 recurrent deletion syndrome. Some atypical patients deserved attention. CASE PRESENTATION A 21-year-old young woman was admitted to our hospital for severe malnutrition and gastrointestinal symptoms. At age 20, she was diagnosed with type 2 diabetes mellitus (T2DM) and was administered oral antidiabetic drugs. Soon afterward, the patient discontinued the medication on her own accord and then went to the hospital again due to diabetic ketoacidosis. After insulin treatment, diabetic ketoacidosis was cured and blood glucose was controlled satisfactorily. But intractable nausea, vomiting, and persistent weight loss were stubborn. Further examination revealed that the patient had hypokalemia and hard rectification hypomagnesemia. Genetic testing revealed about 1.85 Mb heterozygous fragment deletion on chromosome 17 and deletion of exons 1-9 of HNF1B heterozygosity missing was approved. Finally, the patient was diagnosed MODY5. DISCUSSION AND CONCLUSIONS The 17q12 recurrent deletion syndrome is characterized by MODY5, structural or functional abnormalities of the kidney and urinary tract, and neurodevelopmental or neuropsychiatric disorders. This patient did not have any structural abnormalities of the genitourinary system and neuropsychiatric disorders, which is rare. She had experienced a period of misdiagnosis before being diagnosed with 17q12 recurrent deletion syndrome, and hypomagnesemia was an important clue for her diagnosis. Therefore, diabetic physicians should be alert to a special type of diabetes if patients have unexplained signs and symptoms. The absence of well-known features of HNF1B disease does not exclude MODY5.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China.
| | - Da-Peng Zhong
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| | - Li Ren
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| | - Hang Yang
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| | - Chen-Fu Tian
- Department of Endocrinology, The General Hospital of Western Theater Command PLAJinniu DistrictSichuan Province, No. 270 Rongdu Avenue, Chengdu, 610083, People's Republic of China
| |
Collapse
|
8
|
Hyperuricemia Is an Early and Relatively Common Feature in Children with HNF1B Nephropathy but Its Utility as a Predictor of the Disease Is Limited. J Clin Med 2021; 10:jcm10153265. [PMID: 34362049 PMCID: PMC8346958 DOI: 10.3390/jcm10153265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Hyperuricemia is recognized as an important feature of nephropathy, associated with a mutation in the hepatocyte nuclear factor-1B (HNF1B) gene, and could serve as a useful marker of the disease. However, neither a causal relationship nor its predictive value have been proven. The purpose of this study was to assess this in children with renal malformations, both with (mut+) and without HNF1B mutations (mut-). Methods: We performed a retrospective analysis of clinical characteristics of pediatric patients tested for HNF1B mutations, collected in a national registry. Results: 108 children were included in the study, comprising 43 mut+ patients and 65 mut- subjects. Mean sUA was higher and hyperuricemia more prevalent (42.5% vs. 15.4%) in HNF1B carriers. The two groups were similar with respect to respect to age, sex, anthropometric parameters, hypertension, and renal function. Renal function, fractional excretion of uric acid and parathyroid hormone level were independent predictors of sUA. The potential of hyperuricemia to predict mutation was low, and addition of hyperuricemia to a multivariate logistic regression model did not increase its accuracy. Conclusions: Hyperuricemia is an early and common feature of HNF1B nephropathy. A strong association of sUA with renal function and parathyroid hormone limits its utility as a reliable marker to predict HNF1B mutation among patients with kidney anomalies.
Collapse
|
9
|
Motyka R, Kołbuc M, Wierzchołowski W, Beck BB, Towpik IE, Zaniew M. Four Cases of Maturity Onset Diabetes of the Young (MODY) Type 5 Associated with Mutations in the Hepatocyte Nuclear Factor 1 Beta (HNF1B) Gene Presenting in a 13-Year-Old Boy and in Adult Men Aged 33, 34, and 35 Years in Poland. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e928994. [PMID: 33526762 PMCID: PMC7869582 DOI: 10.12659/ajcr.928994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Case series Patients: Male, 13-year-old • Male, 33-year-old • Male, 34-year-old • Male, 35-year-old Final Diagnosis: HNF1B nephropathy • HNF1B-MODY type 5 Symptoms: Diabetic ketoacidosis • elevated liver enzymes • hyperglycemia • hyperuricemia • hypomagnesemia • positive family history • renal cysts • renal magnesium wasting • weigh loss Medication:— Clinical Procedure: Genetic analysis • islet autoantibodies Specialty: Endocrinology and Metabolic • Nephrology
Collapse
Affiliation(s)
- Rafał Motyka
- University of Zielona Góra, Zielona Góra, Poland
| | - Marcin Kołbuc
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | | | - Bodo B Beck
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Iwona Ewa Towpik
- Department of Internal Medicine, Univiersity of Zielona Góra, Zielona Góra, Poland
| | - Marcin Zaniew
- Department of Pediatrics, Univiersity of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|