1
|
Rico-Molina M, Ortega-Vidal J, Molina-Canteras J, Cobo J, Altarejos J, Salido S. Synthesis and hLDHA Inhibitory Activity of New Stiripentol-Related Compounds of Potential Use in Primary Hyperoxaluria. Int J Mol Sci 2024; 25:13266. [PMID: 39769031 PMCID: PMC11675970 DOI: 10.3390/ijms252413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Human lactate dehydrogenase A (hLDHA) is a homotetrameric isozyme involved in the conversion of glyoxylate into oxalate in the cytosol of liver cells (hepatocytes) and partially responsible for the overproduction of oxalate in patients with the rare disease called primary hyperoxaluria (PH). Recently, hLDHA inhibition has been validated as a safe therapeutic method to try to control the PH disease. Stiripentol (STP) is an approved drug used in the treatment of seizures associated with Dravet's syndrome (a severe form of epilepsy in infancy) which, in addition, has been drawing interest in recent years also for potentially treating PH, due to its hLDHA inhibitory activity. In this work, several new STP-related compounds have been synthesized and their hLDHA inhibitory activity has been compared to that of STP. The synthesis of these analogues to STP was accomplished using crossed-aldol condensation guided by lithium enolate chemistry and a successive regioselective reduction of the resulting α,β-unsaturated ketones. The target molecules were obtained as racemates, which were separated into their enantiomers by chiral HPLC. The absolute configurations of pure enantiomers were determined by the modified Mosher's method and electronic circular dichroism (ECD) spectroscopy. For the inhibitory effect over the hLDHA catalytic activity, a kinetic spectrofluorometric assay was used. All the new synthesized compounds turned out to be more active at 500 μM (46-72% of inhibition percentage) than STP (10%), which opens a new line of study on the possible capacity of these analogues to reduce urinary oxalate levels in vivo more efficiently.
Collapse
Affiliation(s)
- Mario Rico-Molina
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (M.R.-M.); or (J.O.-V.); (J.M.-C.); (J.C.); (S.S.)
| | - Juan Ortega-Vidal
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (M.R.-M.); or (J.O.-V.); (J.M.-C.); (J.C.); (S.S.)
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
| | - Juan Molina-Canteras
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (M.R.-M.); or (J.O.-V.); (J.M.-C.); (J.C.); (S.S.)
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (M.R.-M.); or (J.O.-V.); (J.M.-C.); (J.C.); (S.S.)
| | - Joaquín Altarejos
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (M.R.-M.); or (J.O.-V.); (J.M.-C.); (J.C.); (S.S.)
| | - Sofía Salido
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus of International Excellence in Agri-Food (ceiA3), 23071 Jaén, Spain; (M.R.-M.); or (J.O.-V.); (J.M.-C.); (J.C.); (S.S.)
| |
Collapse
|
2
|
Peng Y, Zheng Y, Xiong F, Zhang M, Wang Y, Luo J, Zeng W, Hui J, Deng W, Xu J, Miao Y, Xia R, Fang Y. Second transplantation after kidney graft loss in primary hyperoxaluria type 2: a pedigree study and mutation analysis. Ren Fail 2024; 46:2417743. [PMID: 39444286 PMCID: PMC11504218 DOI: 10.1080/0886022x.2024.2417743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Primary hyperoxaluria type 2 (PH2) is a rare disorder caused by GRHPR mutations. Research on the mutation spectrum and pedigree of PH2 helps in comprehending its pathogenesis and clinical outcomes, guiding clinical diagnosis and treatment. METHODS We report a case of PH2 with a three-generational pedigree. The GRHPR genotypes of the family members were confirmed by Sanger sequencing. Urine and blood samples were collected for biochemical analysis. Computational analysis was performed to assess the pathogenicity of the mutations. Cellular experiments based on site-directed mutagenesis were conducted to confirm the effect of mutations on GRHPR expression, activity, and subcellular localization. RESULTS The proband underwent her first kidney transplantation in 2015, and experienced recurrent urinary tract infections and urolithiasis postoperatively. Graft failure occurred in 2018. Whole exome sequencing identified compound heterozygous GRHPR mutations p.G160E/p.P203Rfs*7. The patient underwent a second kidney transplantation in 2019 and maintained good graft function with urine dilution measures. Notably, her brother and sister carried the same mutations; however, only the proband progressed to renal failure. Computational analysis suggested that p.G160E reduced the affinity of GRHPR for coenzymes. Cellular experiments indicated that p.G160E reduced GRHPR activity (p < 0.001), whereas p.P203Rfs*7 not only suppressed expression (p < 0.001) and reduced activity (p < 0.001), but also facilitated protein aggregation. Based on our results, the variant p.G160E was classified as 'pathogenic' according to ACMG guidelines. CONCLUSIONS Our findings suggest that treatment strategies for the long-term prevention of oxalate nephropathy should be developed for patients with PH2 receiving isolated kidney transplantation. Moreover, the pathogenicity of the compound heterozygous GRHPR mutations p.G160E/p.P203Rfs*7 was also validated.
Collapse
Affiliation(s)
- Yushi Peng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingchun Zheng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mingming Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Luo
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Hui
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiling Fang
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Huang Y, Zhu W, Zhou J, Huang Q, Zeng G. Navigating the Evolving Landscape of Primary Hyperoxaluria: Traditional Management Defied by the Rise of Novel Molecular Drugs. Biomolecules 2024; 14:511. [PMID: 38785918 PMCID: PMC11117870 DOI: 10.3390/biom14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Primary hyperoxalurias (PHs) are inherited metabolic disorders marked by enzymatic cascade disruption, leading to excessive oxalate production that is subsequently excreted in the urine. Calcium oxalate deposition in the renal tubules and interstitium triggers renal injury, precipitating systemic oxalate build-up and subsequent secondary organ impairment. Recent explorations of novel therapeutic strategies have challenged and necessitated the reassessment of established management frameworks. The execution of diverse clinical trials across various medication classes has provided new insights and knowledge. With the evolution of PH treatments reaching a new milestone, prompt and accurate diagnosis is increasingly critical. Developing early, effective management and treatment plans is essential to improve the long-term quality of life for PH patients.
Collapse
Affiliation(s)
- Yueqi Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| | - Jia Zhou
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Qiulin Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Guohua Zeng
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| |
Collapse
|
4
|
Baltazar P, de Melo Junior AF, Fonseca NM, Lança MB, Faria A, Sequeira CO, Teixeira-Santos L, Monteiro EC, Campos Pinheiro L, Calado J, Sousa C, Morello J, Pereira SA. Oxalate (dys)Metabolism: Person-to-Person Variability, Kidney and Cardiometabolic Toxicity. Genes (Basel) 2023; 14:1719. [PMID: 37761859 PMCID: PMC10530622 DOI: 10.3390/genes14091719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Oxalate is a metabolic end-product whose systemic concentrations are highly variable among individuals. Genetic (primary hyperoxaluria) and non-genetic (e.g., diet, microbiota, renal and metabolic disease) reasons underlie elevated plasma concentrations and tissue accumulation of oxalate, which is toxic to the body. A classic example is the triad of primary hyperoxaluria, nephrolithiasis, and kidney injury. Lessons learned from this example suggest further investigation of other putative factors associated with oxalate dysmetabolism, namely the identification of precursors (glyoxylate, aromatic amino acids, glyoxal and vitamin C), the regulation of the endogenous pathways that produce oxalate, or the microbiota's contribution to oxalate systemic availability. The association between secondary nephrolithiasis and cardiovascular and metabolic diseases (hypertension, type 2 diabetes, and obesity) inspired the authors to perform this comprehensive review about oxalate dysmetabolism and its relation to cardiometabolic toxicity. This perspective may offer something substantial that helps advance understanding of effective management and draws attention to the novel class of treatments available in clinical practice.
Collapse
Affiliation(s)
- Pedro Baltazar
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Antonio Ferreira de Melo Junior
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Nuno Moreira Fonseca
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Miguel Brito Lança
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
| | - Ana Faria
- CHRC, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal;
| | - Catarina O. Sequeira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
| | - Luísa Teixeira-Santos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Emilia C. Monteiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Luís Campos Pinheiro
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Joaquim Calado
- Centro Hospitalar Universitário de Lisboa Central, E.P.E, 1150-199 Lisboa, Portugal; (P.B.); (N.M.F.); (M.B.L.); (L.C.P.); (J.C.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Cátia Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Judit Morello
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
| | - Sofia A. Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal; (A.F.d.M.J.); (C.O.S.); (L.T.-S.); (E.C.M.); (C.S.); (J.M.)
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| |
Collapse
|
5
|
Groothoff JW, Metry E, Deesker L, Garrelfs S, Acquaviva C, Almardini R, Beck BB, Boyer O, Cerkauskiene R, Ferraro PM, Groen LA, Gupta A, Knebelmann B, Mandrile G, Moochhala SS, Prytula A, Putnik J, Rumsby G, Soliman NA, Somani B, Bacchetta J. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol 2023; 19:194-211. [PMID: 36604599 DOI: 10.1038/s41581-022-00661-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/06/2023]
Abstract
Primary hyperoxaluria (PH) is an inherited disorder that results from the overproduction of endogenous oxalate, leading to recurrent kidney stones, nephrocalcinosis and eventually kidney failure; the subsequent storage of oxalate can cause life-threatening systemic disease. Diagnosis of PH is often delayed or missed owing to its rarity, variable clinical expression and other diagnostic challenges. Management of patients with PH and kidney failure is also extremely challenging. However, in the past few years, several new developments, including new outcome data from patients with infantile oxalosis, from transplanted patients with type 1 PH (PH1) and from patients with the rarer PH types 2 and 3, have emerged. In addition, two promising therapies based on RNA interference have been introduced. These developments warrant an update of existing guidelines on PH, based on new evidence and on a broad consensus. In response to this need, a consensus development core group, comprising (paediatric) nephrologists, (paediatric) urologists, biochemists and geneticists from OxalEurope and the European Rare Kidney Disease Reference Network (ERKNet), formulated and graded statements relating to the management of PH on the basis of existing evidence. Consensus was reached following review of the recommendations by representatives of OxalEurope, ESPN, ERKNet and ERA, resulting in 48 practical statements relating to the diagnosis and management of PH, including consideration of conventional therapy (conservative therapy, dialysis and transplantation), new therapies and recommendations for patient follow-up.
Collapse
Affiliation(s)
- Jaap W Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ella Metry
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Hospices Civils de Lyon, Lyon, France
| | - Reham Almardini
- Department of Pediatric Nephrology, Princes Rahma Children Teaching Hospital, Applied Balqa University, Medical School, Amman, Jordan
| | - Bodo B Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, Cologne, University Hospital of Cologne, Cologne, Germany
| | - Olivia Boyer
- Néphrologie Pédiatrique, Centre de Référence MARHEA, Institut Imagine, Université Paris Cité, Hôpital Necker - Enfants Malades, Paris, France
| | - Rimante Cerkauskiene
- Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pietro Manuel Ferraro
- Chronic Kidney Disease Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luitzen A Groen
- Department of Pediatric Urology, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Bertrand Knebelmann
- Faculté de Santé, UFR de Médecine, AP-HP Centre-Universite de Paris, Departement Néphrologie, Dialyse, Transplantation Adultes, Paris, France
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, Italy
| | | | - Agnieszka Prytula
- Department of Paediatric Nephrology and Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Jovana Putnik
- Department of Pediatric Nephrology, Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gill Rumsby
- Kintbury, UK, formerly Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust, London, UK
| | - Neveen A Soliman
- Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Bhaskar Somani
- Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Justine Bacchetta
- Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, INSERM 1033 Unit, Lyon 1 University, Bron, France
| |
Collapse
|
6
|
Alejo-Armijo A, Cuadrado C, Altarejos J, Fernandes MX, Salido E, Diaz-Gavilan M, Salido S. Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: A contribution to molecular therapies for primary hyperoxalurias. Bioorg Chem 2022; 129:106127. [PMID: 36113265 DOI: 10.1016/j.bioorg.2022.106127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
Human lactate dehydrogenase A (hLDHA) is one of the main enzymes involved in the pathway of oxalate synthesis in human liver and seems to contribute to the pathogenesis of disorders with endogenous oxalate overproduction, such as primary hyperoxaluria (PH), a rare life-threatening genetic disease. Recent published results on the knockdown of LDHA gene expression as a safe strategy to ameliorate oxalate build-up in PH patients are encouraging for an approach of hLDHA inhibition by small molecules as a potential pharmacological treatment. Thus, we now report on the synthesis and hLDHA inhibitory activity of a new family of compounds with 2,8-dioxabicyclo[3.3.1]nonane core (23-42), a series of twenty analogues to A-type proanthocyanidin natural products. Nine of them (25-27, 29-34) have shown IC50 values in the range of 8.7-26.7 µM, based on a UV spectrophotometric assay, where the hLDHA inhibition is measured according to the decrease in absorbance of the cofactor β-NADH (340 nm). Compounds 25, 29, and 31 were the most active hLDHA inhibitors. In addition, the inhibitory activities of those nine compounds against the hLDHB isoform were also evaluated, finding that all of them were more selective inhibitors of hLDHA versus hLDHB. Among them, compounds 32 and 34 showed the highest selectivity. Moreover, the most active hLDHA inhibitors (25, 29, 31) were evaluated for their ability to decrease the oxalate production by hyperoxaluric mouse hepatocytes (PH1, PH2 and PH3) in vitro, and the relative oxalate output at 24 h was 16% and 19 % for compounds 25 and 31, respectively, in Hoga1-/- mouse primary hepatocyte cells (a model for PH3). These values improve those of the reference compound used (stiripentol). Compounds 25 and 31 have in common the presence of two hydroxyl groups at rings B and D and an electron-withdrawing group (NO2 or Br) at ring A, pointing to the structural features to be taken into account in future structural optimization.
Collapse
Affiliation(s)
- Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Cristina Cuadrado
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquin Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Miguel X Fernandes
- Instituto Universitario de Bioorgánica, Universidad de La Laguna, 38206 La Laguna, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias & Center for Rare Diseases (CIBERER), 38320 Tenerife, Spain.
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | - Sofia Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Primary hyperoxaluria type 1 (PH1) is a rare genetic disorder that causes hepatic overproduction of oxalate and, often, nephrocalcinosis, nephrolithiasis, chronic kidney disease, and kidney failure. The purpose of the review is to provide an update on current emerging therapies for the treatment of PH1. RECENT FINDINGS Use of ribonucleic acid interference (RNAi) therapeutics that target the liver to block production of key enzymes along pathways that generate oxalate is a promising approach. Available evidence supports the efficacy of both Lumasiran (targeting glycolate oxidase) and Nedosiran (targeting hepatic lactate dehydrogenase (LDHa)) to reduce urinary oxalate excretion in PH1. The efficacy of alternative approaches including stiripentol (an anticonvulsant drug that also targets LDHa), lanthanum (a potential gastrointestinal oxalate binder), and Oxalobacter formigenes (a bacterium that can degrade oxalate within the gastrointestinal tract and may also increase its secretion from blood) are all also under study. Genetic editing tools including clustered regularly interspaced short palindromic repeats/Cas9 are also in preclinical study as a potential PH1 therapeutic. SUMMARY Novel treatments can reduce the plasma oxalate concentration and urinary oxalate excretion in PH1 patients. Thus, it is possible these approaches will reduce the need for combined kidney and liver transplantation to significantly decrease the morbidity and mortality of affected patients.
Collapse
Affiliation(s)
| | - John C Lieske
- Division of Nephrology and Hypertension
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Moya-Garzon MD, Rodriguez-Rodriguez B, Martin-Higueras C, Franco-Montalban F, Fernandes MX, Gomez-Vidal JA, Pey AL, Salido E, Diaz-Gavilan M. New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur J Med Chem 2022; 237:114396. [DOI: 10.1016/j.ejmech.2022.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
|
9
|
Abstract
The primary hyperoxalurias are three rare inborn errors of the glyoxylate metabolism in the liver, which lead to massively increased endogenous oxalate production, thus elevating urinary oxalate excretion and, based on that, recurrent urolithiasis and/or progressive nephrocalcinosis. Frequently, especially in type 1 primary hyperoxaluria, early end-stage renal failure occurs. Treatment possibilities are scare, namely, hyperhydration and alkaline citrate medication. In type 1 primary hyperoxaluria, vitamin B6, though, is helpful in patients with specific missense or mistargeting mutations. In those vitamin B6 responsive, urinary oxalate excretion and concomitantly urinary glycolate is significantly decreased, or even normalized. In patients non-responsive to vitamin B6, RNA interference medication is now available. Lumasiran® is already available on prescription and targets the messenger RNA of glycolate oxidase, thus blocking the conversion of glycolate into glyoxylate, hence decreasing oxalate, but increasing glycolate production. Nedosiran blocks liver-specific lactate dehydrogenase A and thus the final step of oxalate production. Similar to vitamin B6 treatment, where both RNA interference urinary oxalate excretion can be (near) normalized and plasma oxalate decreases, however, urinary and plasma glycolate increases with lumasiran treatment. Future treatment possibilities are on the horizon, for example, substrate reduction therapy with small molecules or gene editing, induced pluripotent stem cell-derived autologous hepatocyte-like cell transplantation, or gene therapy with newly developed vector technologies. This review provides an overview of current and especially new and future treatment options.
Collapse
Affiliation(s)
| | - Cristina Martin-Higueras
- German Hyperoxaluria Center, Bonn, Germany.
- Institute of Biomedical Technologies, CIBERER, Campus de Ofra s/n 38200, University of La Laguna, Tenerife, Spain.
| |
Collapse
|
10
|
D’Ambrosio V, Ferraro PM. Lumasiran in the Management of Patients with Primary Hyperoxaluria Type 1: From Bench to Bedside. Int J Nephrol Renovasc Dis 2022; 15:197-206. [PMID: 35747094 PMCID: PMC9211742 DOI: 10.2147/ijnrd.s293682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Primary hyperoxaluria (PH) is a rare genetic disease caused by excessive hepatic production and elevated urinary excretion of oxalate that leads to recurrent nephrolithiasis, nephrocalcinosis and, eventually, kidney failure. As glomerular filtration rate declines, oxalate accumulates leading to systemic oxalosis, a debilitating condition with high morbidity and mortality. Although PH is usually diagnosed during infancy, it can present at any age with different phenotypes, ranging from mild symptoms to extremely debilitating manifestations. PH is an autosomal recessive disorder and, to date, three types have been identified: PH1, PH2 and PH3. PH1 is the most common and most aggressive type, accounting for almost 80% of primary hyperoxaluria diagnoses. Until 2020, general treatment for PH1 consisted mainly in high fluid intake, urine alkalization, surgical management of recurrent nephrolithiasis and eventually, if and when kidney failure occurred, intensive dialysis regimens and transplantation strategies (simultaneous or sequential liver-kidney transplant or isolated liver/kidney transplant in carefully selected patients). Specific treatment did and still consists in administration of pyridoxine hydrochloride, although it is only effective in a subset of PH1 patients. Lumasiran, a novel biological drug based on mRNA interference that has been recently approved in the US and European Union, showed promising results and is set to be a turning point in the management of PH1. This literature review aims to summarize the available evidence on PH1 treatment with lumasiran, in order to provide both pediatric and adult nephrologists and clinicians with the knowledge for the identification and management of PH1 patients suitable for treatment.
Collapse
Affiliation(s)
- Viola D’Ambrosio
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
11
|
Bacchetta J, Lieske JC. Primary hyperoxaluria type 1: novel therapies at a glance. Clin Kidney J 2022; 15:i17-i22. [PMID: 35592618 PMCID: PMC9113449 DOI: 10.1093/ckj/sfab245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare and severe autosomal recessive disease of oxalate metabolism, resulting from a mutation in the AGXT gene that encodes the hepatic peroxisomal enzyme alanine–glyoxylate aminotransferase (AGT). Until recently, treatment of PH1 was supportive, consisting of intensive hyperhydration, use of crystallization inhibitors (citrate and neutral phosphorus), in a subset of responsive PH1 patients’ pharmacologic doses of vitamin B6 (pyridoxine), and kidney and liver transplantation when patients progressed to kidney failure. Treatment approaches have been similar for PH2 caused by mutations in hepatic glyoxylate reductase/hydroxypyruvate reductase (GR/HPR), although pyridoxine does not have any benefit in this group. PH3 is caused by mutations of mitochondrial 4-hydroxy-2-oxoglutarate aldolase (HOGA1) and was the most recently described. Kidney failure appears less common in PH3, although kidney stones occur as frequently as in PH1 and PH2. Oxalate metabolism in the liver is complex. Novel therapies based on RNA interference (RNAi) have recently emerged to modulate these pathways, designed to deplete substrate for enzymes upstream and decrease/avoid oxalate production. Two hepatic enzymes have been targeted to date in PH: glycolate oxidase (GO) with lumasiran and lactate dehydrogenase A (LDH-A) with nedosiran. Lumasiran was approved for the treatment of PH1 in 2020 by both the European Medicines Agency and the Food and Drug Administration, whilst clinical trials with nedosiran are ongoing. Results with the two RNAi therapies demonstrate a significant reduction of urinary oxalate excretion in PH1 patients, but long-term data on efficacy (preservation of kidney function, decreased stone events) and safety remain to be established. Nevertheless, the hepatically targeted RNAi approach represents a potential ‘game changer’ in the field of PH1, bringing hope to families and patients that they may be able to avoid liver and/or kidney transplantation in the future and suffer fewer stone events, perhaps with less strict therapeutic regimens. Pharmacological compounds directly inhibiting GO or LDH are also under development and could be of special interest in developing countries where RNAi therapies may not be readily available in the near future. Approaches to manipulate the intestinal microbiome with a goal to increase oxalate degradation or to stimulate secretion of oxalate into the intestine from plasma are also under development. Overall, we appear to be entering a new phase of PH treatment, with an array of promising approaches emerging that will need optimization and evaluation to establish long-term efficacy and safety.
Collapse
Affiliation(s)
- Justine Bacchetta
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence des Maladies Rénales Rares Néphrogones, Filières Maladies Rares ORKID et ERK-Net, CHU de Lyon, Bron, France
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Gang X, Liu F, Mao J. Lumasiran for primary hyperoxaluria type 1: What we have learned? Front Pediatr 2022; 10:1052625. [PMID: 36704142 PMCID: PMC9871624 DOI: 10.3389/fped.2022.1052625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive genetic disorder caused by mutations in the AGXT gene. The hepatic peroxisomal enzyme alanine glyoxylate aminotransferase (AGT) defects encoded by the AGXT gene increase oxalate production, resulting in nephrocalcinosis, nephrolithiasis, chronic kidney disease, and kidney failure. Traditional pharmacological treatments for PH1 are limited. At present, the treatment direction of PH1 is mainly targeted therapy which refer to a method that targeting the liver to block the pathway of the production of oxalate. Lumasiran (OxlumoTM, developed by Alnylam Pharmaceuticals), an investigational RNA interference (RNAi) therapeutic agent, is the first drug approved for the treatment of PH1, which was officially approved by the US Food and Drug Administration and the European Union in November 2020. It is also the only drug that has been shown to decrease harmful oxalate. Currently, there are 5 keys completed and ongoing clinical trials of lumasiran in PH1. Through the three phase III trials that completed the primary analysis period, lumasiran has been shown to be effective in reducing oxalate levels in urine and plasma in different age groups, such as children, adults, and patients with advanced kidney disease, including those on hemodialysis. In addition to clinical trials, cases of lumasiran treatment for PH1 have been reported in small infants, twin infants, and children diagnosed with PH1 after kidney transplantation. These reports confirm the effectiveness and safety of lumasiran. All adverse events were of mild to moderate severity, with the most common being mild, transient injection-site reactions. No deaths or severe adverse events were reported. This article reviews PH1 and lumasiran which is the only approved therapeutic drug, and provide new options and hope for the treatment of PH1.
Collapse
Affiliation(s)
- Xuan Gang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
13
|
Perazella MA, Herlitz LC. The Crystalline Nephropathies. Kidney Int Rep 2021; 6:2942-2957. [PMID: 34901567 PMCID: PMC8640557 DOI: 10.1016/j.ekir.2021.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Crystalline nephropathies are a unique form of kidney disease characterized by the histologic finding of intrarenal crystal deposition. The intrinsic nature of some molecules and ions combined with a favorable tubular fluid physiology leads to crystal precipitation and deposition within the tubular lumens. Crystal deposition promotes kidney injury through tubular obstruction and both direct and indirect cytotoxicities. Further kidney injury develops from inflammation triggered by these crystals. From a clinical standpoint, the crystalline nephropathies are associated with abnormal urinalysis and urinary sediment findings, tubulopathies, acute kidney injury (AKI), and/or chronic kidney disease (CKD). Urine sediment examination is often helpful in alerting clinicians to the possibility of crystal-related kidney injury. The identification of crystals within the kidneys on biopsy by pathologists prompts clinicians to evaluate patients for medication-related kidney injury, dysproteinemia-related malignancies, and certain inherited disorders. This review will focus on the clinical and pathologic aspects of these 3 categories of crystalline nephropathies.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Section of Nephrology, Department of Medicine, VA Medical Center, West Haven, Connecticut, USA
| | - Leal C Herlitz
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol 2021; 19:137-146. [PMID: 34880452 PMCID: PMC8652378 DOI: 10.1038/s41585-021-00543-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Primary hyperoxalurias are a devastating family of diseases leading to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and combined transplantation of the kidney and liver, of which the liver is the primary source of oxalate production. However, transplantation is associated with many potential complications, including operative risks, graft rejection, post-transplant organ failure, as well as lifelong immunosuppressive medications and their adverse effects. New therapeutics being developed for primary hyperoxalurias take advantage of biochemical knowledge about oxalate synthesis and metabolism, and seek to specifically target these pathways with the goal of decreasing the accumulation and deposition of oxalate in the body. Primary hyperoxalurias are a devastating family of diseases that eventually lead to end-stage renal disease. In this Review, Shee and Stoller discuss current treatment paradigms for primary hyperoxalurias, new therapeutics and their mechanisms of action, and future directions for novel research in the field. Primary hyperoxalurias (PHs) are a devastating family of rare, autosomal-recessive genetic disorders that lead to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and inevitably transplantation of the kidney and liver, which is associated with high morbidity and the need for lifelong immunosuppression. New therapeutics being developed for PHs take advantage of biochemical knowledge about oxalate synthesis and metabolism to specifically target these pathways, with the goal of decreasing the accumulation and deposition of plasma oxalate in the body. New therapeutics can be divided into classes, and include substrate reduction therapy, intestinal oxalate degradation, chaperone therapy, enzyme restoration therapy and targeting of the inflammasome. Lumasiran, a mRNA therapeutic targeting glycolate oxidase, was the first primary hyperoxaluria-specific therapeutic approved by the European Medicines Agency and the FDA in 2020. Future work includes further clinical trials for promising therapeutics in the pipeline, identification of biomarkers of response to PH-directed therapy, optimization of drug development and delivery of new therapeutics.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA, USA.
| | | |
Collapse
|
15
|
Shee K, Ahn J, Hamouche F, Mena J, Chi T, Stoller ML. Nedosiran Dramatically Reduces Serum Oxalate in Dialysis-Dependent Primary Hyperoxaluria 1: A Compassionate Use Case Report. Urology 2021; 156:e147-e149. [PMID: 33774044 DOI: 10.1016/j.urology.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Primary hyperoxaluria 1 (PH1) is a devastating condition involving recurrent urolithiasis, early end-stage renal disease and multisystemic deposition of calcium oxalate crystals. Treatment options for PH1 are limited, inevitably requiring transplantation, usually combined kidney and liver transplant. Here we report successful compassionate use of Nedosiran, an RNA interference targeting lactate dehydrogenase, in an index patient. Monthly Nedosiran injections led to dramatically decreased plasma oxalate levels, decreased frequency of weekly hemodialysis sessions from 6 to 3, and deferral of combined kidney and liver transplant. Nedosiran represents a novel and impactful potential therapeutic for PH1 patients with end-stage renal disease.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA.
| | - Justin Ahn
- Department of Urology, UCSF, San Francisco, CA
| | | | - Jorge Mena
- Department of Urology, UCSF, San Francisco, CA
| | - Thomas Chi
- Department of Urology, UCSF, San Francisco, CA
| | | |
Collapse
|
16
|
Belostotsky R, Frishberg Y. Novel therapeutic approaches for the primary hyperoxalurias. Pediatr Nephrol 2021; 36:2593-2606. [PMID: 33156410 DOI: 10.1007/s00467-020-04817-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Loss-of-function mutations in three genes, involved in the metabolic pathway of glyoxylate, result in increased oxalate production and its crystallization in the form of calcium oxalate. This leads to three forms of primary hyperoxaluria-an early-onset inherited kidney disease with wide phenotypic variability ranging from isolated kidney stone events to stage 5 chronic kidney disease in infancy. This review provides a description of metabolic processes resulting in oxalate overproduction and summarizes basic therapeutic approaches. Unfortunately, current treatment of primary hyperoxaluria does not allow the prevention of loss of kidney function or to substantially diminish other symptoms in most patients. However, latest breakthroughs in biotechnology provide new promising directions for drug development. Some of them have already progressed to the level of clinical trials; others are just at the stage of proof of concept. Here we review the most advanced technologies including those that have been harnessed as possible therapeutic modalities.
Collapse
Affiliation(s)
- Ruth Belostotsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, 12 Bait Street, 9103102, Jerusalem, Israel
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, 12 Bait Street, 9103102, Jerusalem, Israel. .,Hebrew University School of Medicine, Jerusalem, Israel.
| |
Collapse
|
17
|
Treatment with stiripentol in a patient with primary hyperoxaluria type 1: lesson for the clinical nephrologist. J Nephrol 2021; 35:1049-1051. [PMID: 34283403 DOI: 10.1007/s40620-021-01116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023]
|
18
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
19
|
Devresse A, Cochat P, Godefroid N, Kanaan N. Transplantation for Primary Hyperoxaluria Type 1: Designing New Strategies in the Era of Promising Therapeutic Perspectives. Kidney Int Rep 2020; 5:2136-2145. [PMID: 33305106 PMCID: PMC7710835 DOI: 10.1016/j.ekir.2020.09.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disease caused by the functional defect of alanine-glyoxylate aminotransferase that results in the overproduction of oxalate. It can be devastating especially for kidneys, leading to end-stage renal disease (ESRD) during the first 2 to 3 decades of life in most patients. Consequently, many PH1 patients need kidney transplantation. However, because PH1 is caused by a liver enzyme deficiency, the only cure of the metabolic defect is liver transplantation. Thus, current transplant strategies to treat PH1 patients with ESRD include dual liver-kidney transplantation. However, the morbidity and mortality associated with liver transplantation make these strategies far from optimal. Fortunately, a therapeutic revolution is looming. Indeed, innovative drugs are being currently tested in clinical trials, and preliminary data show impressive efficacy to reduce the hepatic overproduction of oxalate. Hopefully, with these therapies, liver transplantation will no longer be necessary. However, some patients with progressing renal disease or those who will be diagnosed with PH1 at an advanced stage of chronic kidney disease will ultimately need kidney transplantation. Here we review the current knowledge on this subject and discuss the future of kidney transplant management in PH1 patients in the era of novel therapies.
Collapse
Affiliation(s)
- Arnaud Devresse
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Cochat
- Service de Néphrologie Rhumatologie Dermatologie Pédiatriques, Centre de Référence des Maladies Rénales Rares, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon et Université Claude-Bernard Lyon 1, Lyon, France
- EPICIME Epidémiologie Pharmacologie Investigation Clinique Information Médicale de l'Enfant, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Godefroid
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Division of Pediatric Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nada Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|