1
|
Khairy HM, Senousy HH, Faragallah HM, Keshta AE, Elshobary ME. Dynamics of phytoplankton community in the Eastern Harbor and Qaitbay Bay, Alexandria, Egypt: Seasonal abundance and ecological insights. EGYPTIAN JOURNAL OF AQUATIC RESEARCH 2024; 50:309-317. [DOI: 10.1016/j.ejar.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
2
|
Ashour M, Mansour AT, Alkhamis YA, Elshobary M. Usage of Chlorella and diverse microalgae for CO 2 capture - towards a bioenergy revolution. Front Bioeng Biotechnol 2024; 12:1387519. [PMID: 39229458 PMCID: PMC11368733 DOI: 10.3389/fbioe.2024.1387519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
To address climate change threats to ecosystems and the global economy, sustainable solutions for reducing atmospheric carbon dioxide (CO2) levels are crucial. Existing CO2 capture projects face challenges like high costs and environmental risks. This review explores leveraging microalgae, specifically the Chlorella genus, for CO2 capture and conversion into valuable bioenergy products like biohydrogen. The introduction section provides an overview of carbon pathways in microalgal cells and their role in CO2 capture for biomass production. It discusses current carbon credit industries and projects, highlighting the Chlorella genus's carbon concentration mechanism (CCM) model for efficient CO2 sequestration. Factors influencing microalgal CO2 sequestration are examined, including pretreatment, pH, temperature, irradiation, nutrients, dissolved oxygen, and sources and concentrations of CO2. The review explores microalgae as a feedstock for various bioenergy applications like biodiesel, biooil, bioethanol, biogas and biohydrogen production. Strategies for optimizing biohydrogen yield from Chlorella are highlighted. Outlining the possibilities of further optimizations the review concludes by suggesting that microalgae and Chlorella-based CO2 capture is promising and offers contributions to achieve global climate goals.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Fish and Animal Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yousef A. Alkhamis
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Water and Environment Study Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mostafa Elshobary
- Department of Botany and microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Kandić I, Kragović M, Živković S, Knežević J, Vuletić S, Cvetković S, Stojmenović M. Kinetics and Mechanism of Cyanobacteria Cell Removal Using Biowaste-Derived Activated Carbons with Assessment of Potential Human Health Impacts. Toxins (Basel) 2024; 16:310. [PMID: 39057950 PMCID: PMC11281101 DOI: 10.3390/toxins16070310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Harmful cyanobacteria blooms and the escalating impact of cyanotoxins necessitates the effective removal of cyanobacteria from water ecosystems before they release cyanotoxins. In this study, cyanobacteria removal from water samples taken from the eutrophic Aleksandrovac Lake (southern Serbia) was investigated. For that purpose, novel activated carbons derived from waste biomass-date palm leaf stalk (P_AC), black alder cone-like flowers (A_AC), and commercial activated carbon from coconut shell (C_AC) as a reference were used. To define the best adsorption conditions and explain the adsorption mechanism, the influence of contact time, reaction volume, and adsorbent mass, as well as FTIR analysis of the adsorbents before and after cyanobacteria removal, were studied. The removal efficiency of P_AC and A_AC achieved for the applied concentration of 10 mg/mL after 15 min was ~99%, while for C_AC after 24 h was only ~92% for the same concentration. To check the safety of the applied materials for human health and the environment, the concentrations of potentially toxic elements (PTEs), the health impact (HI) after water purification, and the toxicity (MTT and Comet assay) of the materials were evaluated. Although the P_AC and A_AC achieved much better removal properties in comparison with the C_AC, considering the demonstrated genotoxicity and cytotoxicity of the P_AC and the higher HI value for the C_AC, only the A_AC was further investigated. Results of the kinetics, FTIR analysis, and examination of the A_AC mass influence on removal efficiency indicated dominance of the physisorption mechanism. Initially, the findings highlighted the superior performance of A_AC, with great potential to be globally commercialized as an effective cyanobacteria cell adsorbent.
Collapse
Affiliation(s)
- Irina Kandić
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| | - Milan Kragović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| | - Sanja Živković
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| | - Jelena Knežević
- Institute of Public Health of Serbia “Dr. Milan Jovanović Batut”, dr Subotića Starijeg 5, 11000 Belgrade, Serbia;
| | - Stefana Vuletić
- Department of Microbiology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (S.V.); (S.C.)
| | - Stefana Cvetković
- Department of Microbiology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (S.V.); (S.C.)
| | - Marija Stojmenović
- “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (I.K.); (M.K.); (S.Ž.)
| |
Collapse
|
4
|
Wang H, Hu X, Elshobary M, Sobhi M, Zhu F, Cui Y, Xu X, Ni J, El-Sheekh M, Huo S. Integrated partial nitrification and Tribonema minus cultivation for cost-effective ammonia recovery and lipid production from slaughterhouse wastewater. CHEMICAL ENGINEERING JOURNAL 2024; 492:152199. [DOI: 10.1016/j.cej.2024.152199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
5
|
Essa DI, Elshobary ME, Attiah AM, Salem ZE, Keshta AE, Edokpayi JN. Assessing phytoplankton populations and their relation to water parameters as early alerts and biological indicators of the aquatic pollution. ECOLOGICAL INDICATORS 2024; 159:111721. [DOI: 10.1016/j.ecolind.2024.111721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
6
|
Oduor NA, Munga CN, Imbayi LK, Botwe PK, Nyanjong EO, Muthama CM, Mise NA, Moosdorf N. Anthropogenic nutrients and phytoplankton diversity in Kenya's coastal waters: An ecological quality assessment of sea turtle foraging sites. MARINE POLLUTION BULLETIN 2024; 199:115897. [PMID: 38128251 DOI: 10.1016/j.marpolbul.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
We assessed ecological quality status (EQS) of coastal waters following claims of increasing sea turtle fibro-papillomatosis (FP) infections in Kenya, a disease hypothesized to be associated with 'poor' ecological health. We established widespread phosphate (P) and silicate (Si) limitation, dissolved ammonium contamination and an increase in potential harmful algal blooming species. Variations in the EQS was established in the sites depending on the indicators used and seasons. Generally, more sites located near hotels, tidal creeks, and estuarine areas showed 'poor', and 'bad' EQS during rainy period compared to dry season. Additionally, 90.1 % of the sites in 'poor' and 'bad' EQS based on dissolved inorganic nitrogen. Low dissolved oxygen, elevated temperature, salinity and ammonium, 'poor' EQS based on DIN, and potential bio-toxin-producing phytoplankton species characterized the FP prevalent areas, specifically during the dry season suggesting environmental stress pointing to the hypothesized connection between ecological and sea turtle health.
Collapse
Affiliation(s)
- Nancy A Oduor
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Eracoma Ltd, P.O. Box 48664, Nairobi, Kenya; Faculty of Mathematics and Natural Sciences, Kiel University (CAU), Germany.
| | - Cosmas N Munga
- Department of Environment and Health Sciences, Marine and Fisheries Programme, Technical University of Mombasa (TUM), P.O. Box 90420, 80100 Mombasa, Kenya
| | - Linet K Imbayi
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651, 80100 Mombasa, Kenya
| | - Paul K Botwe
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Department of Biological, Environmental, and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Ezekiel O Nyanjong
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651, 80100 Mombasa, Kenya
| | - Charles M Muthama
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute (KMFRI), P.O. Box 81651, 80100 Mombasa, Kenya
| | | | - Nils Moosdorf
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany; Faculty of Mathematics and Natural Sciences, Kiel University (CAU), Germany
| |
Collapse
|
7
|
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Hanelt D, Abomohra A. Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. FERMENTATION-BASEL 2023; 9:934. [DOI: 10.3390/fermentation9110934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
With the rising demands for renewable fuels, there is growing interest in utilizing abundant and sustainable non-edible biomass as a feedstock for bioethanol production. Macroalgal biomass contains a high content of carbohydrates in the form of special polysaccharides like alginate, agar, and carrageenan that can be converted to fermentable sugars. In addition, using seagrass as a feedstock for bioethanol production can provide a sustainable and renewable energy source while addressing environmental concerns. It is a resource-rich plant that offers several advantages for bioethanol production, including its high cellulose content, rapid growth rates, and abundance in coastal regions. To reduce sugar content and support efficient microbial fermentation, co-fermentation of macroalgae with seagrass (marine biomass) can provide complementary sugars and nutrients to improve process yields and economics. This review comprehensively covers the current status and future potential of fermenting macroalgal biomass and seagrass, as well as possible combinations for maximizing bioethanol production from non-edible energy crops. An overview is provided on the biochemical composition of macroalgae and seagrass, pretreatment methods, hydrolysis, and fermentation processes. Key technical challenges and strategies to achieve balanced co-substrate fermentation are discussed. The feasibility of consolidated bioprocessing to directly convert mixed feedstocks to ethanol is also evaluated. Based on current research, macroalgae-seagrass co-fermentation shows good potential to improve the bioethanol yields, lower the cost, and enable more optimal utilization of diverse marine biomass resources compared to individual substrates.
Collapse
Affiliation(s)
- Mohamed E. H. Osman
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atef M. Abo-Shady
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|
8
|
Yun HS, Lee JH, Choo YS, Pak JH, Kim HS, Kim YS, Yoon HS. Environmental Factors Associated with the Eukaryotic Microbial Diversity of Ulleungdo Volcanic Island in South Korea. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261721100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Zunino J, La Colla NS, Brendel AS, Alfonso MB, Botté SE, Perillo GME, Piccolo MC. Water quality analysis based on phytoplankton and metal indices: a case study in the Sauce Grande River Basin (Argentina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79053-79066. [PMID: 35701704 DOI: 10.1007/s11356-022-21349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The increasing landscape alterations due to anthropogenic activities is of global concern since it affects aquatic ecosystems, often resulting in compromise of the ecological integrity and the water quality. In this sense, the evaluation, monitoring, and prediction of the aquatic ecosystem quality becomes an important research subject. This study presents the first integrated water quality assessment of the Sauce Grande River Basin, in Argentina, based on the spatial distribution of the phytoplankton community, the physicochemical parameters, and the metal concentrations (Cd, Cu, Cr, Fe, Mn, Ni, Pb, and Zn) found in the particulate fraction. According to the trophic indices and the phytoplankton abundance, composition, and diversity, the water quality showed significant deterioration in the lower basin after the Sauce Grande lake. The trophic state index indicated that water was oligotrophic in over 75% of the sampling sites, increasing downstream, where two sites were characterized as mesotrophic, and one described as hypertrophic. The phytoplankton community was dominated by diatoms in zones with low anthropogenic impact and conductivity, whereas high densities of Euglenophyta, Chlorophyta, and Cyanobacteria were found in the middle-lower basin, associated with higher organic matter and eutrophication. The conductivity, turbidity, and most metal concentrations also increased towards the downstream area, even exceeding recommended levels for the metals Cu, Cr, Mn, and Pb in the middle and lower reaches of the basin (Cu: 3.5 µg L-1; Cr: 2.4 µg L-1; Pb: 1.2 µg L-1; Mn 170 µg L-1). This study generates a database for the water quality of the Sauce Grande River Basin and sets an example of how the water quality varies along a basin that crosses different topographic environments, land covers, and anthropogenic influences.
Collapse
Affiliation(s)
- Josefina Zunino
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina.
| | - Noelia S La Colla
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Andrea S Brendel
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina
| | - Maria B Alfonso
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina
| | - Sandra E Botté
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina
| | - Gerardo M E Perillo
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Geología, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina
| | - Maria C Piccolo
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Argentino de Oceanografía (IADO-CONICET-UNS), Bahía Blanca, Buenos Aires, Argentina
- Departamento de Geografía Y Turismo, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
10
|
Temporal phytoremediation potential for heavy metals and bacterial abundance in drainage water. Sci Rep 2022; 12:8223. [PMID: 35581245 PMCID: PMC9114410 DOI: 10.1038/s41598-022-11951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Drainage water in developing countries has a high abundance of pathogenic bacteria and high levels of toxic and mutagenic pollutants. Remediation of drainage water is important in water-poor counties, especially with the growing need to secure sustainability of safe water resources to fulfill increasing demands for agriculture. Here, we assess the efficiency of macrophyte Pistia stratiotes to remediate a polluted drain in Egypt, rich in macronutrients, heavy metals, and different types of pathogenic and non-pathogenic bacteria. Drainage water was sampled monthly, for a year, to assess seasonal changes in bacterial abundance, water physicochemical properties (transparency, temperature, dissolved oxygen, EC, pH, N, P, and K), and heavy metals contents (Pb, Zn, and Co) in a polluted drain dominated with P. stratiotes. The ability of P. stratiotes to rhizofiltrate the three heavy metals was calculated. The results showed seasonal variations in the plant rhizofiltration potential of Co and Salmonella abundance. The highest values of dissolved oxygen (12.36 mg/L) and macronutrient elements (N and P) were attained in the winter. The counts of total coliform, fecal coliform, fecal streptococci, and in Salmonella spp. were the highest in the summer. P. stratiotes accumulated Pb more than Zn and Co. The highest levels of rhizofiltration were in summer for Pb and Co and in the autumn for Zn. Canonical correspondence analysis (CCA) showed that the variation in the bacterial abundance and plant rhizofiltration potential was strongly and significantly affected by water-dissolved oxygen. Moreover, the rhizofiltration potential of Pb and Co showed a positive correlation with water N. Overall, P. stratiotes could be proposed as a potential biomonitor for heavy metals in polluted water.
Collapse
|
11
|
Barakat KM, El-Sayed HS, Khairy HM, El-Sheikh MA, Al-Rashed SA, Arif IA, Elshobary ME. Effects of ocean acidification on the growth and biochemical composition of a green alga ( Ulva fasciata) and its associated microbiota. Saudi J Biol Sci 2021; 28:5106-5114. [PMID: 34466088 PMCID: PMC8381011 DOI: 10.1016/j.sjbs.2021.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
In marine ecosystems, fluctuations in surface-seawater carbon dioxide (CO2), significantly influence the whole metabolism of marine algae, especially during the early stages of macroalgal development. In this study, the response of the green alga Ulva fasciata for elevating ocean acidification was investigated using four levels of pCO2 ~ 280, 550, 750 and 1050 µatm. Maximum growth rate (6.6% day-1), protein (32.43 %DW) and pigment (2.9 mg/g) accumulation were observed at pCO2-550 with an increase of ~2-fold compared to control. On the other hand, lipid and carbohydrate contents recorded their maximum production (4.23 and 46.96 %DW, respectively) at pCO2-750 while control showed 3.70 and 42.37 %DW, respectively. SDS-PAGE showed the presence of unique bands in response to pCO2, especially at 550 µatm. Dominant associated bacteria was shifted from Halomonas hydrothermalis of control to Vibrio toranzoniae at pCO2-1050. These findings suggest that ocean acidification at 550 µatm might impose noticeable effects on growth, protein, pigments, and protein profile of U. fasciata, which could be a good source for fish farming. While, pCO2-750 was recommended for energetic purpose, due to its high lipid and carbohydrate contents.
Collapse
Affiliation(s)
| | - Heba S. El-Sayed
- National Institute of Oceanography and Fisheries (NOIF), Cairo, Egypt
| | - Hanan M. Khairy
- National Institute of Oceanography and Fisheries (NOIF), Cairo, Egypt
| | - Mohamed A. El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah A. Al-Rashed
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Arif
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
12
|
El-Sheekh MM, Bases EA, El-Shenody RA, El Shafay SM. Lipid extraction from some seaweeds and evaluation of its biodiesel production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
El‐Khodary GM, El‐Sayed HS, Khairy HM, El‐Sheikh MA, Qi X, Elshobary ME. Comparative study on growth, survival and pigmentation of Solea aegyptiacalarvae by using four different microalgal species with emphasize on water quality and nutritional value. AQUACULTURE NUTRITION 2021; 27:615-629. [DOI: 10.1111/anu.13211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Affiliation(s)
| | - Heba S. El‐Sayed
- Fish Reproduction Laboratory Aquaculture Division National Institute of Oceanography and Fisheries (NIOF) Egypt
| | - Hanan M. Khairy
- Hydrobiology Laboratory Marine Environmental Division National Institute of Oceanography and Fisheries (NIOF) Egypt
| | - Mohamed A. El‐Sheikh
- Botany & Microbiology Department College of Science King Saud University Riyadh Saudi Arabia
| | - Xianghui Qi
- School of Food & Biological Engineering Jiangsu University Zhenjiang China
| | - Mostafa E. Elshobary
- School of Food & Biological Engineering Jiangsu University Zhenjiang China
- Department of Botany Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
14
|
Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2021; 46:3135-3159. [DOI: 10.1016/j.ijhydene.2020.06.251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Huo S, Basheer S, Liu F, Elshobary M, Zhang C, Qian J, Xu L, Arslan M, Cui F, Zan X, Zhu F, Zou B, Ding Q, Ma H. Bacterial intervention on the growth, nutrient removal and lipid production of filamentous oleaginous microalgae Tribonema sp. ALGAL RES 2020; 52:102088. [DOI: 10.1016/j.algal.2020.102088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|