1
|
Masannagari P, Rajashekaraiah V. Attenuation of Oxidative Stress in Erythrocytes Stored with Vitamin C and l-Carnitine in Additive Solution-7. Biopreserv Biobank 2024; 22:497-505. [PMID: 38452159 DOI: 10.1089/bio.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Background: Blood transfusion has advanced toward component therapy for specific requirements during trauma and surgery. Oxidative stress is induced in erythrocytes during storage. Hence, antioxidants as additives can be employed to counteract oxidative stress and enhance antioxidant defenses. Therefore, this study investigates the combinatorial effects of vitamin C and l-carnitine on erythrocytes during storage. Methodology: Erythrocyte samples were categorized into control and experimental groups-vitamin C (10 mM) and l-carnitine (10 mM) and stored under blood bank conditions (at 4°C) for 35 days. Hemoglobin (Hb), antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT] and glutathione peroxidase [GPX]), lipid peroxidation products (conjugate dienes and thiobarbituric acid reactive substances [TBARSs]), protein oxidation products, metabolic markers (glucose, lactate dehydrogenase), glutathione (GSH), superoxides, and hemolysis were assessed at weekly intervals. Results: SOD activity increased on day 7 in the controls, whereas it increased on days 7 and 14 in the experimental groups. CAT activity increased on day 35 in both the groups. GPX activity increased on day 7 in the controls. Hb levels decreased on days 14 and 35 in the controls and on day 35 in the experimental groups. Hemolysis increased from day 7 onward in both the groups. Protein oxidation products were maintained throughout the storage. GSH levels increased on day 21 in the controls and on days 14 and 21 in the experimental groups. Superoxides and conjugate dienes decreased from day 14 in both the groups. TBARSs decreased on day 7 in the experimental groups. Conclusion: Vitamin C and l-carnitine have synergistically enhanced the efficacy of stored erythrocytes in terms of Hb, antioxidant enzymes, and lipid peroxidation.
Collapse
Affiliation(s)
- Pallavi Masannagari
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), Bangalore, India
| | - Vani Rajashekaraiah
- Department of Biotechnology, School of Sciences, JAIN (Deemed-to-be University), Bangalore, India
| |
Collapse
|
2
|
Chang D, Kong F, Jiang W, Li F, Zhang C, Ding H, Kang Y, Li W, Huang C, Zhou X, Zhang X, Jiao H, Kang Y, Shang X, Zhang B. Effects of L-carnitine Administration on Sperm and Sex Hormone Levels in a Male Wistar Rat Reproductive System Injury Model in a High-Altitude Hypobaric Hypoxic Environment. Reprod Sci 2023; 30:2231-2247. [PMID: 36633830 PMCID: PMC10310634 DOI: 10.1007/s43032-022-00948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/14/2022] [Indexed: 01/13/2023]
Abstract
The plateau environment impacts male reproductive function, causing decreased sperm quality and testosterone levels. L-carnitine can improve the semen microenvironment. However, the role of L-carnitine in a high-altitude environment remains unclear. In our study, we investigated the effects of L-carnitine administration in a male Wistar rat reproductive system injury model in the context of a simulated high-altitude environment. Rats were randomly divided into a normal control group (group A1, A2-low dose and A3-high dose) and high-altitude model groups (group B, C-low dose and D-high dose) with 20 rats in each group. With the exception of the normal control group exposed to normoxic conditions, the other groups were maintained in a hypobaric oxygen chamber that simulated an altitude of 6000 m for 28 days. In the experimental period, the low-dose groups (A2 and C) were administered 50 mg/kg L-carnitine via intraperitoneal injection once a day, and the high-dose groups (A3 and D) were given 100 mg/kg. After the feeding period, blood samples were collected to assess blood gas, serum hormone levels and oxidative stress. Sperm from the epididymis were collected to analyse various sperm parameters. After obtaining the testicular tissue, the morphological and pathological changes were observed under a light microscope and transmission electron microscopy (TEM). The impact of the simulated high-altitude environment on the rat testis tissue is obvious. Specifically, a decreased testicular organ index and altered indices of arterial blood gas and serum sex hormone levels caused testicular tissue morphological damage, reduced sperm quality, increased sperm deformity rate and altered malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) concentrations. The results demonstrate that L-carnitine can be administered as a preventive intervention to reduce the reproductive damage caused by high-altitude hypobaric and hypoxic environments and improve semen quality in a rat model.
Collapse
Affiliation(s)
- Dehui Chang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Feiyan Kong
- Second Department of Surgery, Beijing Fengtai Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Jiang
- Air Force Hangzhou Secret Service Rehabilitation Center, Convalescent Section First of Convalescent Zone Second, Hangzhou, Zhejiang, China
| | - Fudong Li
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chunlei Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Haoshuai Ding
- The First Affiliated Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yindong Kang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Weiping Li
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Chuang Huang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xin Zhou
- The First Affiliated Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoli Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Hongmei Jiao
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Yafen Kang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Bin Zhang
- Department of Urology, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Proskurnina E, Martynov D, Yakushkin A, Zelenkova I. Non-enzymatic antioxidant blood plasma profile in the period of high training loads in elite speed skaters at the altituda. SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
4
|
Elucidation for coordination features of N-(benzothiazol-2-yl)-3-oxo-3-(2-(3-phenylallylidene)hydrazineyl)propanamide on Co2+, Ni2+and Cu2+: Structural description, DFT geometry optimization, cyclic voltammetry and biological inspection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Zhang G, Zhou Y, Cao Z, Cheng X, Yue X, Zhao T, Zhao M, Zhao Y, Fan M, Zhu L. Preliminary Intermittent Hypoxia Training Alleviates the Damage of Sustained Normobaric Hypoxia on Human Hematological Indexes and Cerebral White Matter. High Alt Med Biol 2022; 23:273-283. [PMID: 35486840 DOI: 10.1089/ham.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zhang, Guangbo, Yanzhao Zhou, Zhengtao Cao, Xiang Cheng, Xiangpei Yue, Tong Zhao, Ming Zhao, Yongqi Zhao, Ming Fan, and Lingling Zhu. Preliminary intermittent hypoxia training alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral white matter. High Alt Med Biol. 00:000-000, 2022. Study Objectives: We aimed to examine the effects of preliminary intermittent hypoxia training (IHT) on human hematological indexes and cerebral white matter (WM) after exposure to a simulated altitude of 4,300 m. Methods: We recruited 20 young healthy volunteers. Participants were then randomized to either the IHT group (n = 10) or the control group (n = 10). We measured the physiological function of the control group at sea level and after exposure to a simulated altitude of 4,300 m, respectively. The IHT group performed the above tests at three time points: before and after hypoxia training, and after exposure to a simulated altitude of 4,300 m, respectively. Results: We found that mean SpO2 during day 10 of hypoxia training showed a significant increase compared with mean SpO2 on day 1 (88.3% ± 1.5% vs. 90.0% ± 1.6%, p < 0.05), and erythrocyte P50 of post-training was significantly increased compared with pretraining (37.8 ± 2.9 mmHg vs. 45.9 ± 6.4 mmHg, p < 0.05). Mean SpO2 measures after acute exposure to high altitude exhibited a significant difference, with the IHT group showing significantly greater SpO2 than the control group (73.8% ± 3.7% vs. 77.4% ± 3.2%, p < 0.05), and the Lake Louise Score was also lower than the control group (2.55 ± 2.1 vs. 6.67 ± 2.5, p < 0.05). After daily IHT, brain-derived neurotrophic factor plasma levels of participants in the IHT group did not change but significantly increased in response to high-altitude hypoxia (103.5% ± 70.4% vs. 29.7% ± 73.2%, p < 0.05). Interleukin-10 (IL-10) plasma level did not change before and after IHT in the IHT group, whereas the IL-10 plasma level of the control group after high-altitude exposure was significantly higher. Furthermore, we found that fractional anisotropy values in the left corticospinal tract and splenium of the corpus callosum in the IHT group were significantly higher than those in the control group after high-altitude hypoxia. Conclusions: These results demonstrate that IHT alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral WM.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Neurology, Kangjixintu Hospital, Renqiu, China
| | - Yanzhao Zhou
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhengtao Cao
- Department of Biomedical Engineering, Air Force Medical Center, PLA, Beijing, China
| | - Xiang Cheng
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiangpei Yue
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zakari FO, Ayo JO, Rekwot PI, Samuel FU. Daytime Evaluation of Oxidative Stress and Behavioural Parameters of Donkeys (Equus asinus) During The Hot-Dry and Cold-Dry (Harmattan) Season in a Tropical Savannah. J APPL ANIM WELF SCI 2021; 25:256-274. [PMID: 33856940 DOI: 10.1080/10888705.2021.1894146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the study was to evaluate oxidative stress and behavioural responses of donkeys during the cold-dry and hot-dry seasons. Thirty donkeys divided into three groups of ten donkeys each according to their age served as experimental subjects. During each season, behavioural and blood parameters of the donkeys were evaluated three times with an interval of one week at 06:00 h, 12:00 h and 18:00 h (GMT+1). During the hot-dry season, the peak dry-bulb temperature (DBT) value of 36.00 ± 1.00°C was recorded at 12:00 h, indicating that the season induced heat stress. The time spent feeding demonstrated diurnal fluctuations in adult, yearling and foal donkeys, with the highest time occurring at 12:00 h in both seasons. The malondialdehyde (MDA) concentrations in adults (2.34 ± 0.14 nMol/L), yearlings (2.28 ± 0.19 nMol/L) and foals (3.48 ± 0.17 nMol/L) during the hot-dry season were significantly (P < 0.05) higher, when compared to the corresponding values (0.96 ± 0.09, 1.18 ± 0.10 and 1.82 ± 0.10 nMol/L, respectively) recorded during the cold-dry season. At 0.3% NaCl-concentration, the percentage haemolysis obtained during the hot-dry season in adult (90.33 ± 0.49%), yearling (91.24 ± 0.88%) and foal (97.44 ± 0.24%) donkeys were significantly (P < 0.05) higher than the corresponding values (78.53 ± 0.98, 78.67 ± 0.58 and 88.23 ± 0.47%, respectively), recorded during the cold-dry season. In conclusion, the hot-dry season induced heat stress in the donkeys, resulting in a decrease in time spent on feeding and oxidative stress, as evidenced by high erythrocyte MDA concentration and percentage haemolysis.
Collapse
Affiliation(s)
- Friday Ocheja Zakari
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Joseph Olusegun Ayo
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
7
|
Gaur P, Prasad S, Kumar B, Sharma SK, Vats P. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:601-615. [PMID: 33156424 DOI: 10.1007/s00484-020-02037-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Homeostasis between pro-oxidants and anti-oxidants is necessary for aerobic life, which if perturbed and shifted towards pro-oxidants results in oxidative stress. It is generally agreed that reactive oxygen species (ROS) production is accelerated with mountainous elevation, which may play a role in spawning serious health crisis. Exposure to increasing terrestrial altitude leads to a reduction in ambient O2 availability in cells producing a series of hypoxic oxidative stress reactions and altering the redox balance in humans. Enormous literature on redox signaling drove research activity towards understanding the role of oxidative stress under normal and challenging conditions like high-altitude hypoxia which grounds for disturbed redox signaling. Excessive ROS production and accumulation of free radicals in cells and tissues can cause various pulmonary, cardiovascular, and metabolic pathophysiological conditions. In order to counteract this oxidative stress and maintain the balance of pro-oxidants and anti-oxidants, an anti-oxidant system exists in the human body, which, however, gets surpassed by elevated ROS levels, but can be strengthened through the use of anti-oxidant supplements. Such cumulative studies of fundamentals on a global concept like oxidative stress and role of anti-oxidants can act as a foundation to further smoothen for researchers to study over health, disease, and other pathophysiological conditions. This review highlights the interconnection between high altitude and oxidative stress and the role of anti-oxidants to protect cells from oxidative damages and to lower the risk of altitude-associated sickness.
Collapse
Affiliation(s)
- Priya Gaur
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007,, India
| | - Bhuvnesh Kumar
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007,, India.
| | - Praveen Vats
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India.
| |
Collapse
|
8
|
Malacrida S, Giannella A, Ceolotto G, Reggiani C, Vezzoli A, Mrakic-Sposta S, Moretti S, Turner R, Falla M, Brugger H, Strapazzon G. Transcription Factors Regulation in Human Peripheral White Blood Cells during Hypobaric Hypoxia Exposure: an in-vivo experimental study. Sci Rep 2019; 9:9901. [PMID: 31289332 PMCID: PMC6617471 DOI: 10.1038/s41598-019-46391-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/27/2019] [Indexed: 01/10/2023] Open
Abstract
High altitude is a natural laboratory, within which the clinical study of human physiological response to hypobaric hypoxia (HH) is possible. Failure in the response results in progressive hypoxemia, inflammation and increased tissue oxidative stress (OxS). Thus, investigating temporal changes in key transcription factors (TFs) HIF-1α, HIF-2α, NF-κB and NRF2 mRNA levels, relative to OxS and inflammatory markers, may reveal molecular targets which contrast deleterious effects of hypoxia. Biological samples and clinical data from 15 healthy participants were collected at baseline and after rapid, passive ascent to 3830 m (24 h and 72 h). Gene expression was assessed by qPCR and ROS generation was determined by EPR spectroscopy. Oxidative damage and cytokine levels were estimated by immuno or enzymatic methods. Hypoxia transiently enhanced HIF-1α mRNA levels over time reaching a peak after 24 h. Whereas, HIF-2α and NRF2 mRNA levels increased over time. In contrast, the NF-κB mRNA levels remained unchanged. Plasma levels of IL-1β and IL-6 also remained within normal ranges. ROS production rate and markers of OxS damage were significantly increased over time. The analysis of TF-gene expression suggests that HIF-1α is a lead TF during sub-acute HH exposure. The prolongation of the HH exposure led to a switch between HIF-1α and HIF-2α/NRF2, suggesting the activation of new pathways. These results provide new insights regarding the temporal regulation of TFs, inflammatory state, and ROS homeostasis involved in human hypoxic response, potentially also relevant to the mediation of diseases that induce a hypoxic state.
Collapse
Affiliation(s)
- Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy. .,Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Alessandra Giannella
- Department of Medicine-DIMED, Campus Biomedico Pietro D'Abano, University of Padova, Padova, Italy
| | - Giulio Ceolotto
- Department of Medicine-DIMED, Campus Biomedico Pietro D'Abano, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessandra Vezzoli
- Institute of Bioimaging and Molecular Physiology, National Council of Research, Segrate (Milan), Italy
| | - Simona Mrakic-Sposta
- Institute of Bioimaging and Molecular Physiology, National Council of Research, Segrate (Milan), Italy
| | - Sarah Moretti
- Institute of Bioimaging and Molecular Physiology, National Council of Research, Segrate (Milan), Italy
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Department of Neurology, General Hospital of Bolzano, Bolzano, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| |
Collapse
|
9
|
Abstract
Objective: Plasma acts as a good indicator of oxidative stress in blood. L-Carnitine is an antioxidant that reduces metabolic stress in cells, thereby providing a protective effect against oxidative stress (OS). L-Carnitine as an additive in storage has not been explored. Thus, this study attempts to analyze the role of L-carnitine in blood storage solution, citrate phosphate dextrose adenine (CPDA)-1, through OS markers including antioxidant enzymes, lipid peroxidation, and protein oxidation. Materials and Methods: Blood was collected from male Wistar rats and stored in CPDA-1 solution with L-carnitine (10 mM, 30 mM, and 60 mM: groups LC 10, LC 30, and LC 60, respectively) and without L-carnitine (control group). Plasma was isolated every 5th day and the OS markers were analyzed. Results: Superoxide dismutase (SOD) and sulfhydryl (SH) increased over storage in controls, LC 30, and LC 60. Catalase increased in LC 30 and LC 60 during storage. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PrC) levels in all groups increased initially and reduced towards the end of storage. SOD and SH levels were maintained while TBARS and PrC levels increased in LC 10. Conclusion: L-Carnitine was beneficial in terms of increased antioxidant capacity and SH and decreased lipid peroxidation. This forms the basis for further studies on L-carnitine as a constituent in storage solutions.
Collapse
Affiliation(s)
- Carl Hsieh
- Jain University, Center for Post Graduate Studies, Department of Biotechnology, Bangalore, India
| | - Vani Rajashekharaiah
- Jain University, Center for Post Graduate Studies, Department of Biotechnology, Bangalore, India
| |
Collapse
|
10
|
Zhang XY, Zhang XJ, Xv J, Jia W, Pu XY, Wang HY, Liang H, Lu DX. Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats. Eur J Pharmacol 2017; 818:300-305. [PMID: 29106903 DOI: 10.1016/j.ejphar.2017.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022]
Abstract
This study investigated whether crocin exerted neuroprotective effects against acute hypobaric hypoxia at high altitude in vivo and determined the underlying mechanisms. Male Sprague-Dawley rats were randomly assigned to a normoxic group,a hypoxic group, and three crocin groups at three different doses. The rats were transferred from 50m to 4200m for 3 days after treatment with crocin for 3 days. The learning and memory of the rat were evaluated with the Morris water maze test. Transmission electron microscope (TEM) was used to analyze the changes in the ultrastructure of hippocampal neurons. Peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and sirtuin-1 (SIRT1) levels were determined using immunohistochemical staining and western blotting. The escape latency of the crocin group was shorter than that of the hypoxic group, while the frequency of the rats reaching the platform was significantly higher in the crocin group. The structures of nerve cells and mitochondria were destroyed in the hypoxic group, but were repaired in the crocin groups. The expressions of PGC-1α and SIRT1 were decreased in the hypoxic group, but were increased in the crocin group. All the effects improved by crocin were dose-dependent. Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits in rats, accompanied by repairing the structures of hippocampal neurons and improving PGC-1α and SIRT1 levels.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China.
| | - Xian-Jun Zhang
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China
| | - Jin Xv
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China
| | - Wei Jia
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China
| | - Xiao-Yan Pu
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China
| | - Hai-Yan Wang
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China
| | - Hong Liang
- Department of Basic Medicine Science, Medical College of Qinghai University, Xining 810001, China
| | - Dian-Xiang Lu
- Research center of high altitude medicine, Qinghai University Medical College, Xining 810000, China
| |
Collapse
|
11
|
Quindry J, Dumke C, Slivka D, Ruby B. Impact of extreme exercise at high altitude on oxidative stress in humans. J Physiol 2016; 594:5093-104. [PMID: 26453842 PMCID: PMC5023697 DOI: 10.1113/jp270651] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude.
Collapse
Affiliation(s)
- John Quindry
- School of Kinesiology, Auburn University, Auburn, AL, USA.
| | - Charles Dumke
- Department of Health and Human Performance, University of Montana, Missoula, MT, USA
| | - Dustin Slivka
- School of Health, Physical Education and Recreation, University of Nebraska at Omaha, Omaha, NE, USA
| | - Brent Ruby
- Department of Health and Human Performance, University of Montana, Missoula, MT, USA
- Montana Centre for Work Physiology and Exercise Metabolism, University of Montana, Missoula, MT, USA
| |
Collapse
|
12
|
Prospects of Vitamin C as an Additive in Plasma of Stored Blood. Adv Hematol 2015; 2015:961049. [PMID: 26345502 PMCID: PMC4546735 DOI: 10.1155/2015/961049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/26/2015] [Indexed: 01/26/2023] Open
Abstract
There is a dire necessity to improve blood storage and prolong shelf-life of blood. Very few studies have focused on oxidative stress (OS) in blood and its influence on plasma with storage. This study attempts to (i) elucidate the continuous changes occurring in plasma during storage through oxidant levels and antioxidant status and (ii) evaluate the influence of vitamin C (VC) as an additive during blood storage. Blood was drawn from male Wistar rats and stored for 25 days at 4°C. Blood samples were divided into control and experimental groups. Plasma was isolated every 5 days and the OS markers, antioxidant enzymes, lipid peroxidation, and protein oxidation products, were studied. Catalase activity increased in all groups with storage. Lipid peroxidation decreased in VC (10) but was maintained in VC (30) and VC (60). Although there were variations in all groups, carbonyls were maintained towards the end of storage. Advanced oxidation protein products (AOPP) increased in VC (30) and were maintained in VC (10) and VC (60). Sulfhydryls were maintained in all groups. Vitamin C could not sufficiently attenuate OS and hence, this opens the possibilities for further studies on vitamin C in combination with other antioxidants, in storage solutions.
Collapse
|
13
|
Chen CY, Hou CW, Bernard JR, Chen CC, Hung TC, Cheng LL, Liao YH, Kuo CH. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt Med Biol 2015; 15:371-9. [PMID: 25251930 DOI: 10.1089/ham.2013.1114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; p<0.05) and the decline of parasympathetic (PNS) activity was significantly prevented in RC group (Placebo: -51% vs. RC: -41%; p<0.05). Red blood cell, hematocrit, and hemoglobin levels were elevated in both groups to a comparable extent after high altitude training (p<0.05), whereas the erythropoietin (EPO) level remained higher in the Placebo group (∼48% above RC values; p<0.05). The provision of an RC supplement during altitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training.
Collapse
Affiliation(s)
- Chung-Yu Chen
- 1 Department of Exercise and Health Sciences, University of Taipei , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Olaifa F, Ayo JO, Ambali SF, Rekwot PI. Hemato-biochemical responses to packing in donkeys administered ascorbic acid during the harmattan season. J Vet Med Sci 2015; 77:133-8. [PMID: 23154452 PMCID: PMC4363013 DOI: 10.1292/jvms.12-0038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed to investigate the effect of ascorbic acid (AA) in reducing hemato-biochemical changes in pack donkeys during the cold-dry (harmattan) season. Six experimental donkeys administered orally AA (200 mg/kg) and six control donkeys not administered ascorbic acid were subjected to packing. Blood samples were collected from all donkeys for hematological and biochemical analyses. In the control donkeys, packed cell volume (PCV), erythrocyte count and hemoglobin concentration (Hb) decreased significantly (P<0.05) at the end of packing. In the experimental donkeys, there was no significant difference between the pre- and post-packing values of PCV, erythrocyte count and Hb. In the control donkeys, the neutrophil and neutrophil:lymphocyte ratio increased significantly (P<0.05) post packing, but in the experimental donkeys, the pre- and post-packing values were not significantly different. The eosinophil count increased significantly (P<0.05) in experimental and control donkeys post packing. In conclusion, packing exerted significant adverse effects on the hematological parameters ameliorated by AA administration. AA may modulate neutrophilia and induce a considerable alteration of erythroid markers in donkeys subjected to packing during the harmattan season.
Collapse
Affiliation(s)
- Folashade Olaifa
- Department of Veterinary Physiology and Pharmacology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | |
Collapse
|
15
|
Ljubisavljevic S. Oxidative Stress and Neurobiology of Demyelination. Mol Neurobiol 2014; 53:744-758. [PMID: 25502298 DOI: 10.1007/s12035-014-9041-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/30/2014] [Indexed: 12/25/2022]
Abstract
Despite a large amount of research which aims at defining the pathophysiology of human demyelination (i.e., multiple sclerosis), etiological bases of disease have been unknown so far. The point of intersection of all assumed etiological factors, which are mainly based upon immunological cascades, is neuroinflammation. The precise definition of the place and role of all pathogenetic factors in the occurrence and development of the disease is of crucial importance for understanding the clinical nature and for finding more effective therapeutic options. There are few studies whose results give more precise data about the role and the importance of other factors in neuroinflammation, besides immunological ones, with regard to clinical and paraclinical correlates of the disease. The review integrates results found in previously performed studies which have evaluated oxidative stress participation in early and late neuroinflammation. The largest number of studies indicates that the use of antioxidants affects the change of neuroinflammation course under experimental conditions, which is reflected in the reduction of the severity and the total reversibility in clinical presentation of the disease, the faster achieving of remission, and the delayed and slow course of neuroinflammation. Therapies based on the knowledge of redox biology targeting free radical generation hold great promise in modulation of the neuroinflammation and its clinical presentations.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, Nis, 18000, Serbia.
- Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, Nis, 18000, Serbia.
| |
Collapse
|
16
|
Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1181-97. [PMID: 25231353 DOI: 10.1152/ajpregu.00208.2014] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia (IH) has been the subject of considerable research in recent years, and triggers a bewildering array of both detrimental and beneficial effects in multiple physiological systems. Here, we review the extensive literature concerning IH and its impact on the respiratory, cardiovascular, immune, metabolic, bone, and nervous systems. One major goal is to define relevant IH characteristics leading to safe, protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of IH, it is essential to define critical characteristics of the IH protocol under investigation, including potentially the severity of hypoxia within episodes, the duration of hypoxic episodes, the number of hypoxic episodes per day, the pattern of presentation across time (e.g., within vs. consecutive vs. alternating days), and the cumulative time of exposure. Not surprisingly, severe/chronic IH protocols tend to be pathogenic, whereas any beneficial effects are more likely to arise from modest/acute IH exposures. Features of the IH protocol most highly associated with beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes and the number of episodes per day. Modest hypoxia (9-16% inspired O2) and low cycle numbers (3-15 episodes per day) most often lead to beneficial effects without pathology, whereas severe hypoxia (2-8% inspired O2) and more episodes per day (48-2,400 episodes/day) elicit progressively greater pathology. Accumulating evidence suggests that "low dose" IH (modest hypoxia, few episodes) may be a simple, safe, and effective treatment with considerable therapeutic potential for multiple clinical disorders.
Collapse
Affiliation(s)
- Angela Navarrete-Opazo
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
17
|
Ljubisavljevic S, Stojanovic I, Cvetkovic T, Vojinovic S, Stojanov D, Stojanovic D, Stefanovic N, Pavlovic D. Erythrocytes' antioxidative capacity as a potential marker of oxidative stress intensity in neuroinflammation. J Neurol Sci 2013; 337:8-13. [PMID: 24269090 DOI: 10.1016/j.jns.2013.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 11/25/2022]
Abstract
The study is designed to assess the oxidative stress intensity in erythrocytes obtained from patients in different clinical phenotypes of neuroinflammation, defined as clinically isolated syndrome (CIS) and relapsing-remitting multiple sclerosis (RRMS). Advanced oxidation protein products (AOPP), malondialdehyde (MDA) and superoxide dismutase (SOD) activity were measured and compared with patients' clinical severity (expanded disability status scale-EDSS), radiological findings (gadolinium enhancement lesion volume-Gd+) and disease duration (DD). AOPP, MDA values and SOD activity were significantly higher in both study patients than in the control group (p < 0.05). While AOPP and MDA approached higher values in RRMS, compared to the CIS group (p > 0.05, p < 0.05, respectively), SOD activity showed higher values in CIS than in RRMS patients (p < 0.05). Both study patients with higher EDSS, higher number of total radiological lesions and longer DD, had higher AOPP and MDA content (p < 0.05, p > 0.05). SOD activity was lower in both study patients with higher EDSS, higher number of total radiological lesions and longer DD (p < 0.05, p > 0.05). There were positive correlations between AOPP and DD and EDSS in CIS patients (p < 0.01), and MDA levels and DD, EDSS and Gd+ in CIS, as well as with EDSS in RRMS patients (p < 0.01). There were negative correlations between SOD activity and DD and EDSS in both study patients (p < 0.01), as well as, between SOD activity and Gd+ in CIS patients (p < 0.01). The measured erythrocytes' biomarkers might represent one of the important biomarkers for the evaluation of the oxidative status of neuroinflammation and disease severity, especially in its early phase, defined as CIS.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, 18000 Nis, Serbia; Institute for Pathophysiology, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia.
| | - Ivana Stojanovic
- Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Tatjana Cvetkovic
- Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Slobodan Vojinovic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, 18000 Nis, Serbia
| | - Dragan Stojanov
- Center for Radiology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, 18000 Nis, Serbia
| | - Dijana Stojanovic
- Institute for Pathophysiology, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Nikola Stefanovic
- Department for Pharmacy, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Dusica Pavlovic
- Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000 Nis, Serbia
| |
Collapse
|
18
|
Aengwanich W, Suttajit M. Effect of polyphenols extracted from tamarind (Tamarindus indica L.) seed coat on pathophysiological changes and red blood cell glutathione peroxidase activity in heat-stressed broilers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2013; 57:137-143. [PMID: 22434485 DOI: 10.1007/s00484-012-0540-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to determine the effect of polyphenols extracted from the tamarind seed coat (PETSC) on glutathione peroxidase (GPx) activity, red blood cell parameters and bilirubin in heat-stressed broilers. One hundred forty-seven broilers, 18-days old were divided into two groups. In group 1, broilers were maintained at an environmental temperature of 26 ± 2 °C throughout the experimental period. In group 2, the broilers were maintained at 38 ± 2 °C (cyclic temperature: 26 ± 2 °C; -38 ± 2 °C; and -26 ± 2 °C, and broilers were maintained at 38 ± 2 °C for 6 h/ day) and received PETSC at a concentration of 0, 100, 200, 300, 400 or 500 mg/kg in their diet ad libitum. Parameters were investigated on days 1, 7, 14 and 21 of the experimental period. Results showed that GPx activity of heat-stressed broilers that received 100 mg/kg of PETSC in their diet was lower (P < 0.05) than that in broilers fed the other concentrations. The mean total red blood cell count and hemoglobin concentration of heat-stressed broilers that received 100 mg/kg PETSC was higher (P < 0.05) than those in broilers in group 1 and those fed the other concentrations. The mean bilirubin level in the excreta of heat-stressed broilers that received 100 mg/kg of PETSC was lower (P < 0.05) than that in broilers that received 0, 300, 400 and 500 mg/kg of PETSC. This showed that PETSC could reduce GPx activity and bilirubin in feces, and increase red blood cell parameters in heat-stressed broilers.
Collapse
Affiliation(s)
- Worapol Aengwanich
- Stress and Oxidative Stress in Animal Research Unit, Faculty of Veterinary Medicine and Animal Science, Mahasarakham University, Maha Sarakham 44000, Thailand.
| | | |
Collapse
|
19
|
Martinez-Bello VE, Sanchis-Gomar F, Martinez-Bello D, Olaso-Gonzalez G, Gomez-Cabrera MC, Viña J. Vitamin C supplementation does not improve hypoxia-induced erythropoiesis. High Alt Med Biol 2012; 13:269-74. [PMID: 23270444 DOI: 10.1089/ham.2012.1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypoxia induces reactive oxygen species production. Supplements with antioxidant mixtures can compensate for the decline in red cell membrane stability following intermittent hypobaric hypoxia by decreasing protein and lipid oxidation. We aimed to determine whether supplementation with vitamin C is implicated in the regulation of erythropoiesis and in the oxygen-carrying capacity of the blood, and also whether antioxidant supplementation prevents the oxidative stress associated to intermittent hypoxia. Twenty-four male Wistar rats were randomly divided into four experimental groups: normoxia control (n=6), normoxia + vitamin C (n=6), hypoxia control (12 h pO(2) 12%/12 h pO(2) 21%) (n=6), and hypoxia + vitamin C (n=6). Animals were supplemented with vitamin C at a dose of 250 mg·kg(-1)·day(-1) for 21 days. Red blood cell count, hemoglobin, hematocrit, reticulocytes, erythropoietin, and oxidative stress parameters such as malondialdehyde and protein oxidation in plasma were analyzed at two different time points: basal sample (day zero) and final sample (day 21). Similar RBC, Hb, Hct, and Epo increments were observed in both hypoxic groups regardless of the vitamin C supplementation. There was no change on MDA levels after intermittent hypoxic exposure in any experimental group. However, we found an increase in plasma protein oxidation in both hypoxic groups. Vitamin C does not affect erythropoiesis and protein oxidation in rats submitted to intermittent hypoxic exposure.
Collapse
Affiliation(s)
- Vladimir E Martinez-Bello
- Faculty of Medicine, Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Sanchis-Gomar F, Viña J, Lippi G. Intermittent hypobaric hypoxia applicability in myocardial infarction prevention and recovery. J Cell Mol Med 2012; 16:1150-4. [PMID: 22151473 PMCID: PMC4365893 DOI: 10.1111/j.1582-4934.2011.01508.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intermittent hypobaric hypoxia (IHH) has been the focus of important research in cardioprotection, and it has been associated with several mechanisms. Intermittent hypobaric hypoxia inhibits prolyl hydroxylases (PHD) activity, increasing the stabilization of hypoxia-inducible factor-1 (HIF-1) and activating crucial adaptative genes. It has been hence suggested that IHH might be a simple intervention, which may offer a thoughtful benefits to patients with acute myocardial infarction and no complications. Nevertheless, several doubts exist as to whether IHH is a really safe technique, with little to no complications in post-myocardial infarction patients. Intermittent hypobaric hypoxia might produce instead unfavourable changes such as impairment of vascular hemodynamics and hypertensive response, increased risk of hemoconcentration and thrombosis, cardiac rhythm perturbations, coronary artery disease and heart failure, insulin resistance, steatohepatitis and even high-altitude pulmonary oedema in susceptible or nonacclimatized patients. Although intermittent and chronic exposures seem effective in cardioprotection, IHH safety issues have been mostly overlooked, so that assorted concerns should be raised about the opportunity to use IHH in the post-myocardial infarction period. Several IHH protocols used in some studies were also aggressive, which would hamper their widespread introduction within the clinical practice. As such, further research is needed before IHH can be widely advocated in myocardial infarction prevention and recovery.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Faculty of Medicine, Department of Physiology, University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
21
|
Vijayapadma V, Ramyaa P, Pavithra D, Krishnasamy R. Protective effect of lutein against benzo(a)pyrene-induced oxidative stress in human erythrocytes. Toxicol Ind Health 2012; 30:284-93. [PMID: 22903177 DOI: 10.1177/0748233712457439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was carried out to evaluate the in vitro antioxidant properties and protective effect of lutein in human erythrocyte against benzo(a)pyrene (B(a)P). It is a well-known environmental carcinogen that produces free radicals under normal metabolic circumstances. B(a)P reacts with cellular macromolecules and produces oxidation of protein, lipid and DNA. Lutein is a carotenoid possessing antioxidant, anticarcinogenic and anti-inflammatory properties. In the present investigation, the protective effect of lutein was assessed in vitro against B(a)P-induced oxidative stress by monitoring antioxidant enzymes, lipid peroxidation (LPO), protein carbonyl content, total sulfhydryl (SH) and nonprotein SH groups and methemoglobin in five groups of erythrocytes that include (i) control group, (ii) vehicle control group, (iii) B(a)P-exposed group, (iv) lutein-exposed group and (v) B(a)P coincubation with lutein group. It was observed that the activities of antioxidant enzymes and SH groups were significantly decreased in B(a)P-treated group when compared with control group. LPO level and protein carbonyl and methemoglobin contents were increased in B(a)P-treated group when compared with control group. The erythrocyte that was coincubated with B(a)P and lutein showed significant increase in the antioxidant enzyme activities and a significant reduction in the level of LPO, methemoglobin and protein carbonyl contents when compared with B(a)P-treated group. The results of the present investigation suggest that lutein possess protective effect against B(a)P-induced oxidative stress, possibly by combating oxidative stress by its free radical scavenging activity.
Collapse
Affiliation(s)
- Viswanadha Vijayapadma
- 1Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
22
|
Troudi A, Soudani N, Amara IB, Bouaziz H, Ayadi FM, Zeghal N. Oxidative damage in erythrocytes of adult rats and their suckling pups exposed to gibberellic acid. Toxicol Ind Health 2011; 28:820-30. [DOI: 10.1177/0748233711425068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gibberellic acid (GA3) is a plant growth regulator used in agriculture worldwide. The present study investigated the propensity of GA3 to induce hematological disorders. Pregnant Wistar rats were randomly divided into two groups: group I served as controls; group II received orally GA3 (200 ppm) from the 14th day of pregnancy until day 14 after delivery. GA3 reduced the number of red blood cells, hemoglobin concentration, and hematocrit in suckling rats, while these parameters remained unchanged in their mothers. White blood cells increased in mothers and were unchanged in their pups. Several studies have associated these hematological disorders with oxidative stress. In fact, GA3 treatment revealed in erythrocytes a significant increase in malondialdehyde levels and a decrease in antioxidant enzyme activities such as superoxide dismutase, catalase, and glutathione peroxidase. Moreover, a significant decline was observed in acetylcholinesterase activity, glutathione, nonprotein thiols, and vitamin C levels.
Collapse
Affiliation(s)
- Afef Troudi
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | - Nejla Soudani
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | | | - Hanen Bouaziz
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | | | - Najiba Zeghal
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| |
Collapse
|
23
|
Asha Devi S, Shiva Shankar Reddy CS, Subramanyam MVV. Peroxyl-induced oxidative stress in aging erythrocytes of rat. Biogerontology 2011; 12:283-92. [PMID: 21359656 DOI: 10.1007/s10522-011-9323-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/13/2011] [Indexed: 11/30/2022]
Abstract
This study aims at determining the possible changes in intracellular calcium (Ca (i) (2+) ), plasma membrane calcium ATPase (PMCA) activity and phosphatidylserine (PS) along with glutathione (GSH) level in response to an oxidant challenge in vitro. Erythrocytes were isolated on Percoll and incubated with 2, 2'azobis (2-aminopropane) hydrochloride (AAPH) as well as with vitamin C preceding AAPH incubation. Membrane integrity in terms of hemolysis was negatively related to acetylcholine esterase (AChE) activity with the extent of reduction under OS being higher in the old erythrocyte than in the young. A divergent pattern was seen towards lower PMCA and higher (Ca (i) (2+) ) in the young and old cells. However, the PMCA activity in the stressed young cell was high when pre-treated with vitamin C. PS externalization in the young under OS is perhaps analogous to normal aging, with vitamin C preventing premature death. These findings suggest that young erythrocytes may benefit from vitamin C in therapies addressed towards the mechanisms underlying the reduced effects of OS.
Collapse
Affiliation(s)
- S Asha Devi
- Department of Zoology, Laboratory of Gerontology, Bangalore University, Bangalore, 560 056, India.
| | | | | |
Collapse
|