1
|
Abdalgader T, Zheng Z, Banerjee M, Zhang L. The timeline of overseas imported cases acts as a strong indicator of dengue outbreak in mainland China. CHAOS (WOODBURY, N.Y.) 2024; 34:083106. [PMID: 39213011 DOI: 10.1063/5.0204336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The emergence of dengue viruses in new, susceptible human populations worldwide is increasingly influenced by a combination of local and global human movements and favorable environmental conditions. While various mathematical models have explored the impact of environmental factors on dengue outbreaks, the significant role of human mobility both internationally and domestically in transmitting the disease has been less frequently addressed. In this context, we introduce a modeling framework that integrates the effects of international travel-induced imported cases, climatic conditions, and local human movements to assess the spatiotemporal dynamics of dengue transmission. Utilizing the generation matrix method, we calculate the basic reproduction number and its sensitivity to various model parameters. Through numerical simulations using data on climate, human mobility, and reported dengue cases in mainland China, our model demonstrates a good agreement with observed data upon validation. Our findings reveal that while climatic conditions are a key driver for the rapid dengue transmission, human mobility plays a crucial role in its local spread. Importantly, the model highlights the significant impact of imported cases from overseas on the initiation of dengue outbreaks and their contribution to increasing the disease incidence rate by 34.6%. Furthermore, the analysis identifies that dengue cases originating from regions, such as Cambodia and Myanmar internationally, and Guangzhou and Xishuangbanna domestically, have the potential to significantly increase the disease burden in mainland China. These insights emphasize the critical need to include data on imported cases and domestic travel patterns in disease outbreak models to improve the precision of predictions, thereby enhancing dengue prevention, surveillance, and response strategies.
Collapse
Affiliation(s)
- Tarteel Abdalgader
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
- Department of Mathematics, Faculty of Education, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - Zhoumin Zheng
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Xu C, Xu J, Wang L. Long-term effects of climate factors on dengue fever over a 40-year period. BMC Public Health 2024; 24:1451. [PMID: 38816722 PMCID: PMC11141019 DOI: 10.1186/s12889-024-18869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Dengue fever stands as one of the most extensively disseminated mosquito-borne infectious diseases worldwide. While numerous studies have investigated its influencing factors, a gap remains in long-term analysis, impeding the identification of temporal patterns, periodicity in transmission, and the development of effective prevention and control strategies. Thus, we aim to analyze the periodicity of dengue fever incidence and explore the association between various climate factors and the disease over an extended time series. METHODS By utilizing monthly dengue fever cases and climate data spanning four decades (1978-2018) in Guangdong province, China, we employed wavelet analysis to detect dengue fever periodicity and analyze the time-lag relationship with climate factors. Additionally, Geodetector q statistic was employed to quantify the explanatory power of each climate factor and assess interaction effects. RESULTS Our findings revealed a prolonged transmission period of dengue fever over the 40-year period, transitioning from August to November in the 1970s to nearly year-round in the 2010s. Moreover, we observed lags of 1.5, 3.5, and 3 months between dengue fever and temperature, relative humidity, and precipitation, respectively. The explanatory power of precipitation, temperature, relative humidity, and the Oceanic Niño Index (ONI) on dengue fever was determined to be 18.19%, 12.04%, 11.37%, and 5.17%, respectively. Dengue fever exhibited susceptibility to various climate factors, with notable nonlinear enhancement arising from the interaction of any two variables. Notably, the interaction between precipitation and humidity yielded the most significant effect, accounting for an explanatory power of 75.32%. CONCLUSIONS Consequently, future prevention and control strategies for dengue fever should take into account these climate changes and formulate corresponding measures accordingly. In regions experiencing the onset of high temperatures, humidity, and precipitation, it is imperative to initiate mosquito prevention and control measures within a specific window period of 1.5 months.
Collapse
Affiliation(s)
- Chengdong Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Jingyi Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, China
| |
Collapse
|
3
|
Cheng Q, Jing Q, Collender PA, Head JR, Li Q, Yu H, Li Z, Ju Y, Chen T, Wang P, Cleary E, Lai S. Prior water availability modifies the effect of heavy rainfall on dengue transmission: a time series analysis of passive surveillance data from southern China. Front Public Health 2023; 11:1287678. [PMID: 38106890 PMCID: PMC10722414 DOI: 10.3389/fpubh.2023.1287678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions, potentially due to the neglect of prior water availability in mosquito breeding sites as an effect modifier. Methods In this study, we addressed this research gap by considering the impact of prior water availability for the first time. We measured prior water availability as the cumulative precipitation over the preceding 8 weeks and utilized a distributed lag non-linear model stratified by the level of prior water availability to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China. Results Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 [95% credible interval (CI): 1.02-1.83] occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Discussion These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.
Collapse
Affiliation(s)
- Qu Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinlong Jing
- Department of Infectious Diseases, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Philip A. Collender
- Division of Environmental Health Sciences, School of Public Health, , University of California, Berkeley, Berkeley, CA, United States
| | - Jennifer R. Head
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Qi Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yang Ju
- School of Architecture and Urban Planning, Nanjing University, Nanjing, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Eimear Cleary
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Cheng Q, Jing Q, Collender PA, Head JR, Li Q, Yu H, Li Z, Ju Y, Chen T, Wang P, Cleary E, Lai S. Prior water availability modifies the effect of heavy rainfall on dengue transmission: a time series analysis of passive surveillance data from southern China. RESEARCH SQUARE 2023:rs.3.rs-3302421. [PMID: 37693392 PMCID: PMC10491345 DOI: 10.21203/rs.3.rs-3302421/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions. Methods In this study, we use a distributed lag non-linear model to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China, stratified by prior water availability. Results Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 (95% credible interval (CI): 1.02-1.83) occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Conclusions These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.
Collapse
Affiliation(s)
- Qu Cheng
- Huazhong University of Science and Technology
| | - Qinlong Jing
- Guangzhou Center for Disease Control and Prevention
| | | | | | - Qi Li
- Huazhong University of Science and Technology
| | - Hailan Yu
- Huazhong University of Science and Technology
| | | | | | | | - Peng Wang
- Huazhong University of Science and Technology
| | | | | |
Collapse
|
5
|
Motlogeloa O, Fitchett JM. Climate and human health: a review of publication trends in the International Journal of Biometeorology. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02466-8. [PMID: 37129619 PMCID: PMC10153057 DOI: 10.1007/s00484-023-02466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The climate-health nexus is well documented in the field of biometeorology. Since its inception, Biometeorology has in many ways become the umbrella under which much of this collaborative research has been conducted. Whilst a range of review papers have considered the development of biometeorological research and its coverage in this journal, and a few have reviewed the literature on specific diseases, none have focused on the sub-field of climate and health as a whole. Since its first issue in 1957, the International Journal of Biometeorology has published a total of 2183 papers that broadly consider human health and its relationship with climate. In this review, we identify a total of 180 (8.3%, n = 2183) of these papers that specifically focus on the intersection between meteorological variables and specific, named diagnosable diseases, and explore the publication trends thereof. The number of publications on climate and health in the journal increases considerably since 2011. The largest number of publications on the topic was in 2017 (18) followed by 2021 (17). Of the 180 studies conducted, respiratory diseases accounted for 37.2% of the publications, cardiovascular disease 17%, and cerebrovascular disease 11.1%. The literature on climate and health in the journal is dominated by studies from the global North, with a particular focus on Asia and Europe. Only 2.2% and 8.3% of these studies explore empirical evidence from the African continent and South America respectively. These findings highlight the importance of continued research on climate and human health, especially in low- and lower-middle-income countries, the populations of which are more vulnerable to climate-sensitive illnesses.
Collapse
Affiliation(s)
- Ogone Motlogeloa
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer M Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
6
|
Bhatia S, Bansal D, Patil S, Pandya S, Ilyas QM, Imran S. A Retrospective Study of Climate Change Affecting Dengue: Evidences, Challenges and Future Directions. Front Public Health 2022; 10:884645. [PMID: 35712272 PMCID: PMC9197220 DOI: 10.3389/fpubh.2022.884645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change is unexpected weather patterns that can create an alarming situation. Due to climate change, various sectors are affected, and one of the sectors is healthcare. As a result of climate change, the geographic range of several vector-borne human infectious diseases will expand. Currently, dengue is taking its toll, and climate change is one of the key reasons contributing to the intensification of dengue disease transmission. The most important climatic factors linked to dengue transmission are temperature, rainfall, and relative humidity. The present study carries out a systematic literature review on the surveillance system to predict dengue outbreaks based on Machine Learning modeling techniques. The systematic literature review discusses the methodology and objectives, the number of studies carried out in different regions and periods, the association between climatic factors and the increase in positive dengue cases. This study also includes a detailed investigation of meteorological data, the dengue positive patient data, and the pre-processing techniques used for data cleaning. Furthermore, correlation techniques in several studies to determine the relationship between dengue incidence and meteorological parameters and machine learning models for predictive analysis are discussed. In the future direction for creating a dengue surveillance system, several research challenges and limitations of current work are discussed.
Collapse
Affiliation(s)
- Surbhi Bhatia
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Dhruvisha Bansal
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Seema Patil
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Sharnil Pandya
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
| | - Qazi Mudassar Ilyas
- Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sajida Imran
- Department of Computer Engineering, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Wu Y, Huang C. Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management. BIOLOGY 2022; 11:biology11030370. [PMID: 35336744 PMCID: PMC8945209 DOI: 10.3390/biology11030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Vector-borne diseases are among the most rapidly spreading infectious diseases and are widespread all around the world. In China, many types of vector-borne diseases have been prevalent in different regions, which is a serious public health problem with significant association with meteorological factors and weather events. Under the background of current severe climate change, the outbreaks and transmission of vector-borne diseases have been proven to be impacted greatly due to rapidly changing weather conditions. This study summarizes research progress on the association between climate conditions and all types of vector-borne diseases in China. A total of seven insect-borne diseases, two rodent-borne diseases, and a snail-borne disease were included, among which dengue fever is the most concerning mosquito-borne disease. Temperature, rainfall, and humidity have the most significant effect on vector-borne disease transmission, while the association between weather conditions and vector-borne diseases shows vast differences in China. We also make suggestions about future research based on a review of current studies. Abstract Vector-borne diseases have posed a heavy threat to public health, especially in the context of climate change. Currently, there is no comprehensive review of the impact of meteorological factors on all types of vector-borne diseases in China. Through a systematic review of literature between 2000 and 2021, this study summarizes the relationship between climate factors and vector-borne diseases and potential mechanisms of climate change affecting vector-borne diseases. It further examines the regional differences of climate impact. A total of 131 studies in both Chinese and English on 10 vector-borne diseases were included. The number of publications on mosquito-borne diseases is the largest and is increasing, while the number of studies on rodent-borne diseases has been decreasing in the past two decades. Temperature, precipitation, and humidity are the main parameters contributing to the transmission of vector-borne diseases. Both the association and mechanism show vast differences between northern and southern China resulting from nature and social factors. We recommend that more future research should focus on the effect of meteorological factors on mosquito-borne diseases in the era of climate change. Such information will be crucial in facilitating a multi-sectorial response to climate-sensitive diseases in China.
Collapse
Affiliation(s)
- Yurong Wu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
- School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
- School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
- Institute of Healthy China, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|