1
|
Niedojadło K, Kupiecka M, Kołowerzo-Lubnau A, Lenartowski R, Niedojadło J, Bednarska-Kozakiewicz E. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. PROTOPLASMA 2020; 257:793-805. [PMID: 31916009 DOI: 10.1007/s00709-019-01463-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The transcriptional and posttranscriptional AGO-mediated control of gene expression may play important roles during male monocot gametophyte development. In this report, we demonstrated dynamic changes in the spatiotemporal distribution of AGO1 and AGO4, which are key proteins of the RNA-induced silencing complex (RISC) in Hyacinthus orientalis male gametophyte development. During maturation of the bicellular pollen grains and in vitro pollen tube growth, the pattern of AGO1 localization was correlated with previously observed transcriptional activity of the cells. During the period of high transcriptional activity, AGO1 is associated with chromatin while the clustered distribution of AGO1 in the interchromatin areas is accompanied by condensation of chromatin and the gradual transcriptional silencing of both cells in mature, dehydrated pollen. During pollen tube growth and the restarting of RNA synthesis in the vegetative nucleus, AGO1 is dispersed in the chromatin. Additionally, the gradual increase in the cytoplasmic pool of AGO1 in the elongating pollen tube indicates the activation of the posttranscriptional gene silencing (PTGS) pathway. During pollen tube growth in the generative cell and in the sperm cells, AGO1 is present mainly in the areas between highly condensed chromatin clusters. Changes in the distribution of AGO4 that indicated the possibility of spatiotemporal organization in the RNA-directed DNA methylation (RdDM) process (cytoplasmic and nuclear steps) were also observed during hyacinth male gametophyte development. Based on our findings, we propose that in the germinating pollen tube, the cytoplasmic assembly of AGO4/siRNA takes place and that the mature complexes could be transported to the nucleus to carry out their function during the next steps of pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.
| | - Małgorzata Kupiecka
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
2
|
Kozłowska M, Niedojadło K, Brzostek M, Bednarska-Kozakiewicz E. Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth. PLANT REPRODUCTION 2016; 29:251-263. [PMID: 27422435 PMCID: PMC4978762 DOI: 10.1007/s00497-016-0289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.
Collapse
Affiliation(s)
- Marlena Kozłowska
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Marta Brzostek
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
3
|
Kołowerzo-Lubnau A, Niedojadło J, Świdziński M, Bednarska-Kozakiewicz E, Smoliński DJ. Transcriptional activity in diplotene larch microsporocytes, with emphasis on the diffuse stage. PLoS One 2015; 10:e0117337. [PMID: 25671569 PMCID: PMC4324999 DOI: 10.1371/journal.pone.0117337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/22/2014] [Indexed: 12/22/2022] Open
Abstract
Manuscript provides insights into the biology of long-lived plants, different from Arabidopsis, tomato or grass species that are widely studied. In the European larch the diplotene stage lasts approximately 5 months and it is possible to divide it into several substages and to observe each of them in details. The diplotene stage is a period of intensive microsporocyte growth associated with the synthesis and accumulation of different RNA and proteins. Larch microsporocytes display changes in chromatin morphology during this stage, alternating between 4 short stages of chromatin condensation (contraction) and 5 longer diffusion (relaxation) stages. The occurrence of a diplotene diffusion stage has been observed in many plant species. Interestingly, they have also been observed during spermiogenesis and oogenesis in animals. The aim of this study was to examine whether chromatin relaxation during the diplotene is accompanied by the synthesis and maturation of mRNA. The results reveal a correlation between the diffusion and chromatin decondensation, transcriptional activity. We also found decreasing amount of poly(A) mRNA synthesis in the consecutive diffusion stages. During the early diffusion stages, mRNA is intensively synthesized. In the nuclei large amounts of RNA polymerase II, and high levels of snRNPs were observed. In the late diffusion stages, the synthesized mRNA is not directly subjected to translation but it is stored in the nucleus, and later transported to the cytoplasm and translated. In the last diffusion stage, the level of poly(A) RNA is low, but that of splicing factors is still high. It appears that the mRNA synthesized in early stages is used during the diplotene stage and is not transmitted to dyad and tetrads. In contrast, splicing factors accumulate and are most likely transmitted to the dyad and tetrads, where they are used after the resumption of intense transcription. Similar meiotic process were observed during oogenesis in animals. This indicates the existence of an evolutionarily conserved mechanism of chromatin-based regulation of gene expression during meiotic prophase I.
Collapse
Affiliation(s)
- Agnieszka Kołowerzo-Lubnau
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- * E-mail: (AKL); (DJS)
| | - Janusz Niedojadło
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Michał Świdziński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz J. Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- * E-mail: (AKL); (DJS)
| |
Collapse
|
4
|
Smoliński DJ, Kołowerzo A. mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte. Chromosoma 2011; 121:37-48. [PMID: 21909692 PMCID: PMC3260428 DOI: 10.1007/s00412-011-0339-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 11/07/2022]
Abstract
In microsporocytes of the European larch, we demonstrated the presence of several mRNAs in spherical nuclear bodies. In the nuclei of microsporocytes, we observed up to 12 bodies, ranging from 0.5 to 6 μm in diameter, during the prophase of the first meiotic division. Our previous studies revealed the presence of polyadenylated RNA (poly(A) RNA) in these bodies, but did not confirm the presence of nascent transcripts or splicing factors of the SR family. The lack of these molecules precludes the bodies from being the sites of synthesis and early maturation of primary transcripts (Kołowerzo et al., Protoplasma 236:13–19, 2009). However, the bodies serve as sites for the accumulation of splicing machinery, including the Sm proteins and small nuclear RNAs. Characteristic ultrastructures and the molecular composition of the nuclear bodies, which contain poly(A) RNA, are indicative of Cajal bodies (CBs). Here, we demonstrated the presence of several housekeeping gene transcripts—α-tubulin, pectin methylesterase, peroxidase and catalase, ATPase, and inositol-3-phosphate synthase—in CBs. Additionally, we observed transcripts of the RNA polymerase II subunits RPB2 and RPB10 RNA pol II and the core spliceosome proteins mRNA SmD1, SmD2, and SmE. The co-localization of nascent transcripts and mRNAs indicates that mRNA accumulation/storage, particularly in CBs, occurs in the nucleus of microsporocytes.
Collapse
Affiliation(s)
- Dariusz Jan Smoliński
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland.
| | | |
Collapse
|
5
|
Periodic expression of Sm proteins parallels formation of nuclear Cajal bodies and cytoplasmic snRNP-rich bodies. Histochem Cell Biol 2011; 136:527-41. [PMID: 21904826 PMCID: PMC3192945 DOI: 10.1007/s00418-011-0861-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 11/26/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a fundamental role in pre-mRNA processing in the nucleus. The biogenesis of snRNPs involves a sequence of events that occurs in both the nucleus and cytoplasm. Despite the wealth of biochemical information about the cytoplasmic assembly of snRNPs, little is known about the spatial organization of snRNPs in the cytoplasm. In the cytoplasm of larch microsporocytes, a cyclic appearance of bodies containing small nuclear RNA (snRNA) and Sm proteins was observed during anther meiosis. We observed a correlation between the occurrence of cytoplasmic snRNP bodies, the levels of Sm proteins, and the dynamic formation of Cajal bodies. Larch microsporocytes were used for these studies. This model is characterized by natural fluctuations in the level of RNA metabolism, in which periods of high transcriptional activity are separated from periods of low transcriptional activity. In designing experiments, the authors considered the differences between the nuclear and cytoplasmic phases of snRNP maturation and generated a hypothesis about the direct participation of Sm proteins in a molecular switch triggering the formation of Cajal bodies.
Collapse
|
6
|
Zienkiewicz K, Suwinska A, Niedojadło K, Zienkiewicz A, Bednarska E. Nuclear activity of sperm cells during Hyacinthus orientalis L. in vitro pollen tube growth. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1255-1269. [PMID: 21081664 PMCID: PMC3022407 DOI: 10.1093/jxb/erq354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 05/29/2023]
Abstract
In this study, the transcriptional state and distribution of RNA polymerase II, pre-mRNA splicing machinery elements, and rRNA transcripts were investigated in the sperm cells of Hyacinthus orientalis L. during in vitro pollen tube growth. During the second pollen mitosis, no nascent transcripts were observed in the area of the dividing generative cell, whereas the splicing factors were present and their pools were divided between newly formed sperm cells. Just after their origin, the sperm cells were shown to synthesize new RNA, although at a markedly lower level than the vegetative nucleus. The occurrence of RNA synthesis was accompanied by the presence of RNA polymerase II and a rich pool of splicing machinery elements. Differences in the spatial pattern of pre-mRNA splicing factors localization reflect different levels of RNA synthesis in the vegetative nucleus and sperm nuclei. In the vegetative nucleus, they were localized homogenously, whereas in the sperm nuclei a mainly speckled pattern of small nuclear RNA with a trimethylguanosine cap (TMG snRNA) and SC35 protein distribution was observed. As pollen tube growth proceeded, inhibition of RNA synthesis in the sperm nuclei was observed, which was accompanied by a gradual elimination of the splicing factors. In addition, analysis of rRNA localization indicated that the sperm nuclei are likely to synthesize some pool of rRNA at the later steps of pollen tube. It is proposed that the described changes in the nuclear activity of H. orientalis sperm cells reflect their maturation process during pollen tube growth, and that mature sperm cells do not carry into the zygote the nascent transcripts or the splicing machinery elements.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Flowering plant reproduction is characterized by double fertilization, in which two diminutive brother sperm cells initiate embryo and endosperm. The role of the male gamete, although studied structurally for over a century at various levels, is still being explored on a molecular and cellular level. The potential of the male to influence development has been historically underestimated and the reasons for this are obvious: limitations provided by maternal imprinting, the much greater cellular volume of female gametes and the general paucity of paternal effects. However, as more is known about molecular expression of chromatin-modifying proteins, ubiquitin pathway proteins and transcription factors in sperm cells, as well as their ability to achieve effect by intaglio expression, passing transcripts directly into translation, the role of the male is likely to expand. Much of the expression in the male germline that appears to be distinct from patterns of pollen vegetative cell expression may be the result of chromosomal level regulation of transcription.
Collapse
|
8
|
Distinct localization of histone H3 methylation in the vegetative nucleus of lily pollen. Cell Biol Int 2010; 34:253-9. [PMID: 19947918 DOI: 10.1042/cbi20090124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation.
Collapse
|
9
|
Gou X, Yuan T, Wei X, Russell SD. Gene expression in the dimorphic sperm cells of Plumbago zeylanica: transcript profiling, diversity, and relationship to cell type. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:33-47. [PMID: 19500307 DOI: 10.1111/j.1365-313x.2009.03934.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plumbago zeylanica produces cytoplasmically dimorphic sperm cells that target the egg and central cell during fertilization. In mature pollen, the larger sperm cell contains numerous mitochondria, is associated with the vegetative nucleus (S(vn)), and fuses preferentially with the central cell, forming endosperm. The other, plastid-enriched sperm cell (S(ua)) fuses with the egg cell, forming the zygote and embryo. Sperm expressed genes were investigated using ESTs produced from each sperm type; differential expression was validated through suppression subtractive hybridization, custom microarrays, real-time RT-PCR and in situ hybridization. The expression profiles of dimorphic sperm cells reflect a diverse and broad complement of genes, including high proportions of conserved and unknown genes, as well as distinct patterns of expression. A number of genes were highly up-regulated in the male germ line, including some genes that were differentially expressed in either the S(ua) or the S(vn). Differentially up-regulated genes in the egg-targeted S(ua) showed increased expression in transcription and translation categories, whereas the central cell-targeted S(vn) displayed expanded expression in the hormone biosynthesis category. Interestingly, the up-regulated genes expressed in the sperm cells appeared to reflect the expected post-fusion profiles of the future embryo and endosperm. As sperm cytoplasm is known to be transmitted during fertilization in this plant, sperm-contributed mRNAs are probably transported during fertilization, which could influence early embryo and endosperm development.
Collapse
Affiliation(s)
- Xiaoping Gou
- Department of Botany, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
10
|
Kołowerzo A, Smoliński DJ, Bednarska E. Poly(A) RNA a new component of Cajal bodies. PROTOPLASMA 2009; 236:13-9. [PMID: 19415452 DOI: 10.1007/s00709-009-0042-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/23/2009] [Indexed: 05/10/2023]
Abstract
In European larch microsporocytes, spherical structures 0.5 to 6 microm in diameter are present in which poly(A) RNA accumulates. There were one to several bodies per cell and they were often present in the vicinity of the nucleolus. No nascent transcripts were observed within them. Splicing factors of the SR family, including protein SC35, which participates in bringing the 3' and 5' sites closer in the splicing reaction, were also not observed. The absence of the above-mentioned elements within bodies containing poly(A) RNA disqualifies them as sites of synthesis and preliminary stages of primary transcript maturation. However, they contained abundant elements of the splicing machinery commonly occurring in Cajal bodies, i.e., Sm proteins or small nuclear RNA (snRNA). The molecular composition as well as the characteristic ultrastructure of bodies containing poly(A) RNA proves that these were Cajal bodies. This is the first report of such poly(A) RNA localization.
Collapse
Affiliation(s)
- Agnieszka Kołowerzo
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, Toruń, 87-100, Poland
| | | | | |
Collapse
|
11
|
snRNP: Rich Nuclear Bodies in Hyacinthus orientalis L. Microspores and Developing Pollen Cells. Int J Cell Biol 2009; 2009:209303. [PMID: 20111623 PMCID: PMC2809418 DOI: 10.1155/2009/209303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/19/2009] [Accepted: 04/14/2009] [Indexed: 01/07/2023] Open
Abstract
The aim of the present work was the characterization of nuclear bodies in the microspore and developing pollen cells of Hyacinthus orientalis L.. The combination of Ag-NOR, immunofluorescence and immunogold techniques was used in this study. The obtained results showed the presence of highly agyrophylic extranucleolar bodies in microspore and developing pollen cells, which were finally identified
as Cajal bodies. In all cases, a strong accumulation of snRNP-indicating molecules including TMG cap, Sm
proteins and U2 snRNA, was observed in the examined nuclear bodies. In contrast to their number the
size of the identified structures did not change significantly during pollen development. In the microspore
and the vegetative cell of pollen grains CBs were more numerous than in the generative cell. At later
stages of pollen development, a drastic decrease in CB number was observed and, just before anthesis, a
complete lack of these structures was indicated in both pollen nuclei. On the basis of these results, as well as our previous studies, we postulate a strong relationship between Cajal body numbers and the levels of
RNA synthesis and splicing machinery elements in microspore and developing pollen cells.
Collapse
|
12
|
Intracellular organization of the pre-mRNA splicing machinery during Hyacinthus orientalis L. pollen development. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|