1
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
2
|
Petrella R, Cucinotta M, Mendes MA, Underwood CJ, Colombo L. The emerging role of small RNAs in ovule development, a kind of magic. PLANT REPRODUCTION 2021; 34:335-351. [PMID: 34142243 PMCID: PMC8566443 DOI: 10.1007/s00497-021-00421-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
In plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings about the function of small RNAs in ovule development, including megasporogenesis and megagametogenesis, both in sexual and apomictic plants. We discuss recent studies on the role of miRNAs, siRNAs and trans-acting RNAs (ta-siRNAs) in early female germline differentiation. The mechanistic complexity and unique regulatory features are reviewed, and possible directions for future research are provided.
Collapse
Affiliation(s)
- Rosanna Petrella
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mara Cucinotta
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
3
|
Soliman M, Podio M, Marconi G, Di Marsico M, Ortiz JPA, Albertini E, Delgado L. Differential Epigenetic Marks Are Associated with Apospory Expressivity in Diploid Hybrids of Paspalum rufum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040793. [PMID: 33920644 PMCID: PMC8072704 DOI: 10.3390/plants10040793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Apomixis seems to emerge from the deregulation of preexisting genes involved in sexuality by genetic and/or epigenetic mechanisms. The trait is associated with polyploidy, but diploid individuals of Paspalum rufum can form aposporous embryo sacs and develop clonal seeds. Moreover, diploid hybrid families presented a wide apospory expressivity variation. To locate methylation changes associated with apomixis expressivity, we compare relative DNA methylation levels, at CG, CHG, and CHH contexts, between full-sib P. rufum diploid genotypes presenting differential apospory expressivity. The survey was performed using a methylation content-sensitive enzyme ddRAD (MCSeEd) strategy on samples at premeiosis/meiosis and postmeiosis stages. Based on the relative methylation level, principal component analysis and heatmaps, clearly discriminate samples with contrasting apospory expressivity. Differential methylated contigs (DMCs) showed 14% of homology to known transcripts of Paspalum notatum reproductive transcriptome, and almost half of them were also differentially expressed between apomictic and sexual samples. DMCs showed homologies to genes involved in flower growth, development, and apomixis. Moreover, a high proportion of DMCs aligned on genomic regions associated with apomixis in Setaria italica. Several stage-specific differential methylated sequences were identified as associated with apospory expressivity, which could guide future functional gene characterization in relation to apomixis success at diploid and tetraploid levels.
Collapse
Affiliation(s)
- Mariano Soliman
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Maricel Podio
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Gianpiero Marconi
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Marco Di Marsico
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Juan Pablo A. Ortiz
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.M.); (M.D.M.)
| | - Luciana Delgado
- CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), Universidad Nacional de Rosario, Zavalla S2123, Argentina; (M.S.); (M.P.); (J.P.A.O.)
| |
Collapse
|
4
|
A study of the heterochronic sense/antisense RNA representation in florets of sexual and apomictic Paspalum notatum. BMC Genomics 2021; 22:185. [PMID: 33726667 PMCID: PMC7962388 DOI: 10.1186/s12864-021-07450-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Apomixis, an asexual mode of plant reproduction, is a genetically heritable trait evolutionarily related to sexuality, which enables the fixation of heterozygous genetic combinations through the development of maternal seeds. Recently, reference floral transcriptomes were generated from sexual and apomictic biotypes of Paspalum notatum, one of the most well-known plant models for the study of apomixis. However, the transcriptome dynamics, the occurrence of apomixis vs. sexual expression heterochronicity across consecutive developmental steps and the orientation of transcription (sense/antisense) remain unexplored. Results We produced 24 Illumina TruSeq®/ Hiseq 1500 sense/antisense floral transcriptome libraries covering four developmental stages (premeiosis, meiosis, postmeiosis, and anthesis) in biological triplicates, from an obligate apomictic and a full sexual genotype. De novo assemblies with Trinity yielded 103,699 and 100,114 transcripts for the apomictic and sexual samples respectively. A global comparative analysis involving reads from all developmental stages revealed 19,352 differentially expressed sense transcripts, of which 13,205 (68%) and 6147 (32%) were up- and down-regulated in apomictic samples with respect to the sexual ones. Interestingly, 100 differentially expressed antisense transcripts were detected, 55 (55%) of them up- and 45 (45%) down-regulated in apomictic libraries. A stage-by-stage comparative analysis showed a higher number of differentially expressed candidates due to heterochronicity discrimination: the highest number of differential sense transcripts was detected at premeiosis (23,651), followed by meiosis (22,830), postmeiosis (19,100), and anthesis (17,962), while the highest number of differential antisense transcripts were detected at anthesis (495), followed by postmeiosis (164), meiosis (120) and premeiosis (115). Members of the AP2, ARF, MYB and WRKY transcription factor families, as well as the auxin, jasmonate and cytokinin plant hormone families appeared broadly deregulated. Moreover, the chronological expression profile of several well-characterized apomixis controllers was examined in detail. Conclusions This work provides a quantitative sense/antisense gene expression catalogue covering several subsequent reproductive developmental stages from premeiosis to anthesis for apomictic and sexual P. notatum, with potential to reveal heterochronic expression between reproductive types and discover sense/antisense mediated regulation. We detected a contrasting transcriptional and hormonal control in apomixis and sexuality as well as specific sense/antisense modulation occurring at the onset of parthenogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07450-3.
Collapse
|
5
|
Ortiz JPA, Pupilli F, Acuña CA, Leblanc O, Pessino SC. How to Become an Apomixis Model: The Multifaceted Case of Paspalum. Genes (Basel) 2020; 11:E974. [PMID: 32839398 PMCID: PMC7564465 DOI: 10.3390/genes11090974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the past decades, the grasses of the Paspalum genus have emerged as a versatile model allowing evolutionary, genetic, molecular, and developmental studies on apomixis as well as successful breeding applications. The rise of such an archetypal system progressed through integrative phases, which were essential to draw conclusions based on solid standards. Here, we review the steps adopted in Paspalum to establish the current body of knowledge on apomixis and provide model breeding programs for other agronomically important apomictic crops. In particular, we discuss the need for previous detailed cytoembryological and cytogenetic germplasm characterization; the establishment of sexual and apomictic materials of identical ploidy level; the development of segregating populations useful for inheritance analysis, positional mapping, and epigenetic control studies; the development of omics data resources; the identification of key molecular pathways via comparative gene expression studies; the accurate molecular characterization of genomic loci governing apomixis; the in-depth functional analysis of selected candidate genes in apomictic and model species; the successful building of a sexual/apomictic combined breeding scheme.
Collapse
Affiliation(s)
- Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA Zavalla, Argentina;
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR-CNR), 06128 Perugia, Italy;
| | - Carlos A. Acuña
- Instituto de Botánica del Nordeste (IBONE), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina;
| | - Olivier Leblanc
- UMR DIADE, IRD, Univ. Montpellier, 34090 Montpellier, France;
| | - Silvina C. Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA Zavalla, Argentina;
| |
Collapse
|
6
|
Rathore P, Raina SN, Kumar S, Bhat V. Retro-Element Gypsy-163 Is Differentially Methylated in Reproductive Tissues of Apomictic and Sexual Plants of Cenchrus ciliaris. Front Genet 2020; 11:795. [PMID: 32849800 PMCID: PMC7387646 DOI: 10.3389/fgene.2020.00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
Apomixis, an asexual mode of reproduction through seeds, has immense scope for crop improvement due to its ability to fix hybrid vigor. In C. ciliaris, a predominantly apomictically reproducing range grass, apomixis is genetically controlled by an apospory-specific-genomic-region (ASGR) which is enriched with retrotransposons. Earlier studies showed insertional polymorphisms of a few ASGR-specific retrotransposons between apomictic and sexual plants of C. ciliaris. REs are mainly regulated at the transcriptional level through cytosine methylation. To understand the possible association of ASGR-specific retrotransposon to apomixis, the extent and pattern of differential methylation of Gy163 RE and its impact on transcription were investigated in two genotypes each of apomictic and sexual plants of C. ciliaris. We observed that Gy163 encodes for an integrase domain of RE Ty3-Gypsy, is differentially methylated between reproductive tissues of apomictic and sexual plants. However, leaf tissues did not exhibit differential methylation between apomictic and sexual plants. Among the three contexts (CG, CHG, and CHH) of cytosine methylation, the maximum variation was observed in CHH context in reproductive (at aposporous initial and mature embryo sac stages) tissues of apomictic plants implicating RdDM pathway in methylation of Gy163. Quantitative PCR analysis showed that Gy163 transcripts are expressed more in the reproductive tissues of apomictic plants compared to that in the sexual plants, which was negatively correlated with the methylation level. Thus, the study helps in understanding the role of RE present in ASGR in epigenetic regulation of apomictic mode of reproduction in C. ciliaris.
Collapse
Affiliation(s)
- Priyanka Rathore
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishnu Bhat
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Pozzi FI, Green GY, Barbona IG, Rodríguez GR, Felitti SA. CleanBSequences: an efficient curator of biological sequences in R. Mol Genet Genomics 2020; 295:837-841. [PMID: 32300860 DOI: 10.1007/s00438-020-01671-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
This work presents a new method and tool to solve a common problem of molecular biologists and geneticists who use molecular markers in their scientific research and developments: curation of sequences. Omic studies conducted by molecular biologists and geneticists usually involve the use of molecular markers. AFLP, cDNA-AFLP, and MSAP are examples of markers that render information at the genomics, transcriptomics, and epigenomics levels, respectively. These three types of molecular markers use adaptors that are the template for PCR amplification. The sequences of the adaptors have to be eliminated for the analysis of the results. Since a large number of sequences are usually obtained in these studies, this clean-up of the data could demand long time and work. To automate this work, an R package, named CleanBSequences, was created that allows the sequences to be curated massively, quickly, without errors and can be used offline. The curating is performed by aligning the forward and/or reverse primers or ends of cloning vectors with the sequences to be removed. After the alignment, new subsequences are generated without biological fragments not desired by the user, i.e., sequences needed by the techniques. In conclusion, the CleanBSequences tool facilitates the work of researchers, reducing time, effort, and working errors. Therefore, the present tool would respond to the problems related to the curation of sequences obtained from the use of some types of molecular markers. In addition to the above, being an open source, CleanBSequences is a flexible tool that has the potential to be used in future improvements to respond to new problems.
Collapse
Affiliation(s)
- Florencia I Pozzi
- Instituto de Tecnología Agropecuaria, EEA Marcos Juárez, Ruta 12 km. 3, 2580, Marcos Juárez, Córdoba, Argentina. .,Cátedra de Microbiología, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Santa Fe, Argentina.
| | - Gisela Y Green
- Cátedra de Epidemiología, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, S2170, Casilda, Santa Fe, Argentina
| | - Ivana G Barbona
- Cátedra de Estadística, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) (CONICET-UNR), Zavalla, Argentina.,Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Silvina A Felitti
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) (CONICET-UNR), Zavalla, Argentina
| |
Collapse
|
8
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
9
|
Soliman M, Espinoza F, Ortiz JPA, Delgado L. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. ANNALS OF BOTANY 2019; 123:901-915. [PMID: 30576402 PMCID: PMC6526369 DOI: 10.1093/aob/mcy228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Apomixis is an asexual reproductive mode via seeds that generate maternal clonal progenies. Although apomixis in grasses is mainly expressed at the polyploid level, some natural diploid genotypes of Paspalum rufum produce aposporous embryo sacs in relatively high proportions and are even able to complete apomixis under specific conditions. However, despite the potential for apomixis, sexuality prevails in diploids, and apomixis expression is repressed for an as yet undetermind reason. Apomixis is thought to derive from a deregulation of one or a few components of the sexual pathway that could be triggered by polyploidy and/or hybridization. The objectives of this work were to characterize and compare the reproductive development and the timing of apospory initial (AI) emergence between diploid genotypes with potential for apomixis and facultative apomictic tetraploid cytotypes of P. rufum. METHODS Reproductive characterization was performed by cytoembryological observations of cleared ovaries and anthers during all reproductive development steps and by quantitative evaluation of the ovule growth parameters. KEY RESULTS Cytoembryological observations showed that in diploids, both female and male reproductive development is equally synchronized, but in tetraploids, megasporogenesis and early megagametogenesis are delayed with respect to microsporogenesis and early microgametogenesis. This delay was also seen when ovary growth was taken as a reference parameter. The analysis of the onset of AIs revealed that they emerge during different developmental periods depending on the ploidy level. In diploids, the AIs appeared along with the tetrad (or triad) of female meiocytes, but in tetraploids they appeared earlier, at the time of the megaspore mother cell. In both cytotypes, AIs can be seen even during megagametogenesis. CONCLUSIONS Overall observations reveal that female sexual reproductive development is delayed in tetraploids as compared with diploid genotypes, mainly at meiosis. In tetraploids, AIs appear at earlier sexual developmental stages than in diploids, and they accumulate up to the end of megasporogenesis. The longer extension of megasporogenesis in tetraploids could favour AI emergence and also apomixis success.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE), CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Casilla de Correo, Corrientes, Argentina
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| |
Collapse
|
10
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Colono C, Ortiz JPA, Permingeat HR, Souza Canada ED, Siena LA, Spoto N, Galdeano F, Espinoza F, Leblanc O, Pessino SC. A Plant-Specific TGS1 Homolog Influences Gametophyte Development in Sexual Tetraploid Paspalum notatum Ovules. FRONTIERS IN PLANT SCIENCE 2019; 10:1566. [PMID: 31850040 PMCID: PMC6895069 DOI: 10.3389/fpls.2019.01566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/08/2019] [Indexed: 05/04/2023]
Abstract
Aposporous apomictic plants form clonal maternal seeds by inducing the emergence of non-reduced (2n) embryo sacs in the ovule nucellus and the development of embryos by parthenogenesis. In previous work, we reported a plant-specific TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1) gene (PN_TGS1-like) showing expression levels positively correlated with sexuality rates in facultative apomictic Paspalum notatum. PN_ TGS1-like displayed contrasting in situ hybridization patterns in apomictic and sexual plant ovules from premeiosis to anthesis. Here we transformed sexual P. notatum with a TGS1-like antisense construction under a constitutive promoter, in order to produce lines with reduced transcript representation. Antisense plants developed prominent trichomes on the adaxial leaf surface, a trait absent from control genotypes. Reproductive development analysis revealed occasional formation of twin ovules. While control individuals typically displayed a single meiotic embryo sac per ovule, antisense lines showed 12.93-15.79% of ovules bearing extra nuclei, which can be assigned to aposporous-like embryo sacs (AES-like) or, alternatively, to gametophytes with a misguided cell fate development. Moreover, around 8.42-9.52% of ovules showed what looked like a combination of meiotic and aposporous-like sacs. Besides, 32.5% of ovules at early developmental stages displayed nucellar cells with prominent nuclei resembling apospory initials (AIs), which surrounded the megaspore mother cell (MMC) or the MMC-derived meiotic products. Two or more concurrent meiosis events were never detected, which suggest a non-reduced nature for the extra nuclei observed in the mature ovules, unless they were generated by proliferation and misguided differentiation of the legitimate meiotic products. The antisense lines produced a similar amount of viable even-sized pollen with respect to control genotypes, and formed an equivalent full seed set (∼9% of total seeds) after self-pollination. Flow cytometry analyses of caryopses derived from antisense lines revealed that all full seeds had originated from meiotic embryo sacs (i.e. by sexuality). A reduction of 25.55% in the germination percentage was detected when comparing antisense lines with controls. Our results indicate that PN_ TGS1-like influences ovule, gametophyte and possibly embryo development.
Collapse
Affiliation(s)
- Carolina Colono
- Molecular Biology Laboratory, IICAR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan Pablo A. Ortiz
- Molecular Biology Laboratory, IICAR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo R. Permingeat
- Molecular Biology Laboratory, IICAR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Lorena A. Siena
- Molecular Biology Laboratory, IICAR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nicolás Spoto
- Molecular Biology Laboratory, IICAR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia Galdeano
- Genetics Laboratory, IBONE, CONICET, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Francisco Espinoza
- Genetics Laboratory, IBONE, CONICET, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | - Silvina C. Pessino
- Molecular Biology Laboratory, IICAR, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Silvina C. Pessino,
| |
Collapse
|
12
|
Mancini M, Permingeat H, Colono C, Siena L, Pupilli F, Azzaro C, de Alencar Dusi DM, de Campos Carneiro VT, Podio M, Seijo JG, González AM, Felitti SA, Ortiz JPA, Leblanc O, Pessino SC. The MAP3K-Coding QUI-GON JINN ( QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum. FRONTIERS IN PLANT SCIENCE 2018; 9:1547. [PMID: 30405677 PMCID: PMC6207905 DOI: 10.3389/fpls.2018.01547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023]
Abstract
Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the nucellus of aposporous plants' ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR.
Collapse
Affiliation(s)
- Micaela Mancini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Hugo Permingeat
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Lorena Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Fulvio Pupilli
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | | | | | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - José Guillermo Seijo
- Instituto de Botánica del Nordeste, CONICET-UNNE, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Ana María González
- Instituto de Botánica del Nordeste, CONICET-UNNE, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Silvina A. Felitti
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | | | - Silvina C. Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| |
Collapse
|
13
|
Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC, Fan L, Yu X. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 2018; 24:635-648. [PMID: 28992048 PMCID: PMC5726479 DOI: 10.1093/dnares/dsx031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant-fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection-resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi-host interactions.
Collapse
Affiliation(s)
- Zihong Ye
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Yao Pan
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Yafen Zhang
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Gulei Jin
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Xiaoping Yu
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
14
|
Barke BH, Daubert M, Hörandl E. Establishment of Apomixis in Diploid F 2 Hybrids and Inheritance of Apospory From F 1 to F 2 Hybrids of the Ranunculus auricomus Complex. FRONTIERS IN PLANT SCIENCE 2018; 9:1111. [PMID: 30123228 PMCID: PMC6085428 DOI: 10.3389/fpls.2018.01111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 05/18/2023]
Abstract
Hybridization and polyploidization play important roles in plant evolution but it is still not fully clarified how these evolutionary forces contribute to the establishment of apomicts. Apomixis, the asexual reproduction via seed formation, comprises several essential alterations in development compared to the sexual pathway. Furthermore, most natural apomicts were found to be polyploids and/or hybrids. The Ranunculus auricomus complex comprises diploid sexual and polyploid apomictic species and represents an excellent model system to gain knowledge on origin and evolution of apomixis in natural plant populations. In this study, the second generation of synthetically produced homoploid (2x) and heteroploid (3x) hybrids derived from sexual R. auricomus species was analyzed for aposporous initial cell formation by DIC microscopy. Complete manifestation of apomixis was determined by measuring single mature seeds by flow cytometric seed screen. Microscopic analysis of the female gametophyte formation indicated spontaneous occurrence of aposporous initial cells and several developmental irregularities. The frequency of apospory was found to depend on dosage effects since a significant increase in apospory was observed, when both F1 parents, rather than just one, were aposporous. Other than in the F1 generation, diploid Ranunculus F2 hybrids formed BIII seeds and fully apomictic seeds. The results indicate that hybridization rather than polyploidization seems to be the functional activator of apomictic reproduction in the synthetic Ranunculus hybrids. In turn, at least two hybrid generations are required to establish apomictic seed formation.
Collapse
Affiliation(s)
- Birthe H. Barke
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
15
|
Ochogavía A, Galla G, Seijo JG, González AM, Bellucci M, Pupilli F, Barcaccia G, Albertini E, Pessino S. Structure, target-specificity and expression of PN_LNC_N13, a long non-coding RNA differentially expressed in apomictic and sexual Paspalum notatum. PLANT MOLECULAR BIOLOGY 2018; 96:53-67. [PMID: 29119346 PMCID: PMC5778186 DOI: 10.1007/s11103-017-0679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/29/2017] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE: ncRNA PN_LNC_N13 shows contrasting expression in reproductive organs of sexual and apomictic Paspalum notatum genotypes. Apomictic plants set genetically maternal seeds whose embryos derive by parthenogenesis from unreduced egg cells, giving rise to clonal offspring. Several Paspalum notatum apomixis related genes were identified in prior work by comparative transcriptome analyses. Here, one of these candidates (namely N13) was characterized. N13 belongs to a Paspalum gene family including 30-60 members, of which at least eight are expressed at moderate levels in florets. The sequences of these genes show no functional ORFs, but include segments of different protein coding genes. Particularly, N13 shows partial identity to maize gene BT068773 (RESPONSE REGULATOR 6). Secondary structure predictions as well as mature miRNA and target cleavage detection suggested that N13 is not a miRNA precursor. Moreover, N13 family members produce abundant 24-nucleotide small RNAs along extensive parts of their sequences. Surveys in the GREENC and CANTATA databases indicated similarity with plant long non-coding RNAs (lncRNAs) involved in splicing regulation; consequently, N13 was renamed as PN_LNC_N13. The Paspalum BT068773 predicted ortholog (N13TAR) originates floral transcript variants shorter than the canonical maize isoform and with possible structural differences between the apomictic and sexual types. PN_LNC_N13 is expressed only in apomictic plants and displays quantitative representation variation across reproductive developmental stages. However, PN_LNC_N13-like homologs and/or its derived sRNAs showed overall a higher representation in ovules of sexual plants at late premeiosis. Our results suggest the existence of a whole family of N13-like lncRNAs possibly involved in splicing regulation, with some members characterized by differential activity across reproductive types.
Collapse
Affiliation(s)
- Ana Ochogavía
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Provincia De Santa Fe, Argentina
| | - Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Italy
| | - José Guillermo Seijo
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400, Corrientes, Argentina
| | - Ana María González
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400, Corrientes, Argentina
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Silvina Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET), Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Provincia De Santa Fe, Argentina.
| |
Collapse
|
16
|
De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes. PLoS One 2017; 12:e0185595. [PMID: 29091722 PMCID: PMC5665505 DOI: 10.1371/journal.pone.0185595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad.) Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s) related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.
Collapse
|
17
|
Ronceret A, Vielle-Calzada JP. Meiosis, unreduced gametes, and parthenogenesis: implications for engineering clonal seed formation in crops. PLANT REPRODUCTION 2015; 28:91-102. [PMID: 25796397 DOI: 10.1007/s00497-015-0262-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 05/18/2023]
Abstract
Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.
Collapse
Affiliation(s)
- Arnaud Ronceret
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
18
|
Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, Waller M, Rosenstiel P, Grossniklaus U. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 2014; 10:e1004476. [PMID: 25010342 PMCID: PMC4091798 DOI: 10.1371/journal.pgen.1004476] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction. In flowering plants, asexual reproduction through seeds (apomixis) likely evolved from sexual ancestors several times independently. Only three key developmental steps differ between sexual reproduction and apomixis. In contrast to sexual reproduction, in apomicts the first cell of the female reproductive lineage omits or aborts meiosis (apomeiosis) to initiate gamete formation. Subsequently, the egg cell develops into an embryo without fertilization (parthenogenesis), and endosperm formation can either be autonomous or depend on fertilization. Consequently, the offspring of apomicts is genetically identical to the mother plant. The production of clonal seeds bears great promise for agricultural applications. However, the targeted manipulation of reproductive pathways for seed production has proven difficult as knowledge about the underlying gene regulatory processes is limited. We performed cell type-specific transcriptome analyses to study apomictic germline development in Boechera gunnisoniana, an apomictic species closely related to Arabidopsis thaliana. To facilitate these analyses, we first characterized a floral reference transcriptome. In comparison, we identified several regulatory pathways, including core cell cycle regulation, protein degradation, transcription factor activity, and hormonal pathways to be differentially regulated between sexual and apomictic plants. Apart from new insights into the underlying transcriptional networks, our dataset provides a valuable starting point for functional investigations.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| | - Marc W. Schmid
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Weihong Qi
- Functional Genomics Center Zürich, UZH/ETH Zürich, Zürich, Switzerland
| | - Daniela Guthörl
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christian Sailer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Manuel Waller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| |
Collapse
|
19
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
20
|
Zappacosta DC, Ochogavía AC, Rodrigo JM, Romero JR, Meier MS, Garbus I, Pessino SC, Echenique VC. Increased apomixis expression concurrent with genetic and epigenetic variation in a newly synthesized Eragrostis curvula polyploid. Sci Rep 2014; 4:4423. [PMID: 24710346 PMCID: PMC3978503 DOI: 10.1038/srep04423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/24/2014] [Indexed: 11/09/2022] Open
Abstract
Eragrostis curvula includes biotypes reproducing through obligate and facultative apomixis or, rarely, full sexuality. We previously generated a “tetraploid-dihaploid-tetraploid” series of plants consisting of a tetraploid apomictic plant (T), a sexual dihaploid plant (D) and a tetraploid artificial colchiploid (C). Initially, plant C was nearly 100% sexual. However, its capacity to form non-reduced embryo sacs dramatically increased over a four year period (2003–2007) to reach levels of 85–90%. Here, we confirmed high rates of apomixis in plant C, and used AFLPs and MSAPs to characterize the genetic and epigenetic variation observed in this plant in 2007 as compared to 2003. Of the polymorphic sequences, some had no coding potential whereas others were homologous to retrotransposons and/or protein-coding-like sequences. Our results suggest that in this particular plant system increased apomixis expression is concurrent with genetic and epigenetic modifications, possibly involving transposable elements.
Collapse
Affiliation(s)
- Diego C Zappacosta
- 1] Departamento de Agronomía, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina [2] CERZOS-CONICET, CCT-Bahía Blanca, 8000 Bahía Blanca, Argentina
| | - Ana C Ochogavía
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Juan M Rodrigo
- CERZOS-CONICET, CCT-Bahía Blanca, 8000 Bahía Blanca, Argentina
| | - José R Romero
- CERZOS-CONICET, CCT-Bahía Blanca, 8000 Bahía Blanca, Argentina
| | - Mauro S Meier
- CERZOS-CONICET, CCT-Bahía Blanca, 8000 Bahía Blanca, Argentina
| | - Ingrid Garbus
- CERZOS-CONICET, CCT-Bahía Blanca, 8000 Bahía Blanca, Argentina
| | - Silvina C Pessino
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Viviana C Echenique
- 1] Departamento de Agronomía, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina [2] CERZOS-CONICET, CCT-Bahía Blanca, 8000 Bahía Blanca, Argentina
| |
Collapse
|
21
|
Podio M, Felitti SA, Siena LA, Delgado L, Mancini M, Seijo JG, González AM, Pessino SC, Ortiz JPA. Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum. PLANT MOLECULAR BIOLOGY 2014; 84:479-95. [PMID: 24146222 DOI: 10.1007/s11103-013-0146-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/11/2013] [Indexed: 05/19/2023]
Abstract
The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Campo Experimental Villarino, CC 14 (S2125ZAA), Zavalla, Santa Fe, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Cáceres ME, Pupilli F. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. ANNALS OF BOTANY 2013; 112:767-87. [PMID: 23864004 PMCID: PMC3747805 DOI: 10.1093/aob/mct152] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/13/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.
Collapse
Affiliation(s)
- Juan Pablo A. Ortiz
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Camilo L. Quarin
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Silvina C. Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Eric J. Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Diego H. Hojsgaard
- Albrecht-von-Haller Institute for Plant Sciences, Department of Systematic Botany, Georg-August-University of Göttingen, Göttingen, Germany
| | - Maria E. Sartor
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Maria E. Cáceres
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Fulvio Pupilli
- CNR-Istituto di Genetica Vegetale, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
- For correspondence. E-mail
| |
Collapse
|
23
|
Abstract
Resolving the paradox of sex, with its twofold cost to genic transmission, remains one of the major unresolved questions in evolutionary biology. Counting this genetic cost has now gone genomic. In this issue of Molecular Ecology, Kraaijeveld et al. (2012) describe the first genome-scale comparative study of related sexual and asexual animal lineages, to test the hypothesis that asexuals bear heavier loads of deleterious transposable elements. A much higher density of such parasites might be expected, due to the inability of asexual lineages to purge transposons via mechanisms exclusive to sexual reproduction. They find that the answer is yes--and no--depending upon the family of transposons considered. Like many such advances in testing theory, more questions are raised by this study than answered, but a door has been opened to molecular evolutionary analyses of how responses to selection from intragenomic parasites might mediate the costs of sex.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
24
|
Podio M, Rodríguez MP, Felitti S, Stein J, Martínez EJ, Siena LA, Quarin CL, Pessino SC, Ortiz JPA. Sequence characterization, in silico mapping and cytosine methylation analysis of markers linked to apospory in Paspalum notatum. Genet Mol Biol 2012; 35:827-37. [PMID: 23271945 PMCID: PMC3526092 DOI: 10.1590/s1415-47572012005000070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/01/2012] [Indexed: 12/20/2022] Open
Abstract
In previous studies we reported the identification of several AFLP, RAPD and RFLP molecular markers linked to apospory in Paspalum notatum. The objective of this work was to sequence these markers, obtain their flanking regions by chromosome walking and perform an in silico mapping analysis in rice and maize. The methylation status of two apospory-related sequences was also assessed using methylation-sensitive RFLP experiments. Fourteen molecular markers were analyzed and several protein-coding sequences were identified. Copy number estimates and RFLP linkage analysis showed that the sequence PnMAI3 displayed 2–4 copies per genome and linkage to apospory. Extension of this marker by chromosome walking revealed an additional protein-coding sequence mapping in silico in the apospory-syntenic regions of rice and maize. Approximately 5 kb corresponding to different markers were characterized through the global sequencing procedure. A more refined analysis based on sequence information indicated synteny with segments of chromosomes 2 and 12 of rice and chromosomes 3 and 5 of maize. Two loci associated with apomixis locus were tested in methylation-sensitive RFLP experiments using genomic DNA extracted from leaves. Although both target sequences were methylated no methylation polymorphisms associated with the mode of reproduction were detected.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Santa Fe, Argentina. ; Instituto de Botánica del Nordeste, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rodriguez-Leal D, Vielle-Calzada JP. Regulation of apomixis: learning from sexual experience. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:549-55. [PMID: 23000434 DOI: 10.1016/j.pbi.2012.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 05/10/2023]
Abstract
Apomixis is a natural form of asexual reproduction through seeds that leads to viable offspring genetically identical to the mother plant. New evidence from sexual model species indicates that the regulation of female gametogenesis and seed formation is also directed by epigenetic mechanisms that are crucial to control events that distinguish sexuality from apomixis, with important implications for our understanding of the evolutionary forces that shape structural variation and diversity in plant reproduction.
Collapse
Affiliation(s)
- Daniel Rodriguez-Leal
- Group of Reproductive Development and Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
26
|
Grimanelli D. Epigenetic regulation of reproductive development and the emergence of apomixis in angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:57-62. [PMID: 22037465 DOI: 10.1016/j.pbi.2011.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 05/03/2023]
Abstract
Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. While apomixis is genetically controlled, individual loci contributing to its expression have yet to be identified. Here, we review recent results indicating that RNA-dependent DNA methylation pathways acting during female reproduction are essential for proper reproductive development in plants, and may represent key regulators of the differentiation between apomictic and sexual reproduction.
Collapse
Affiliation(s)
- Daniel Grimanelli
- Institut de Recherche pour Développement, UMR 232, URL5300, Université de Montpellier II, 34394 Montpellier, France.
| |
Collapse
|
27
|
Armenta-Medina A, Demesa-Arévalo E, Vielle-Calzada JP. Epigenetic control of cell specification during female gametogenesis. ACTA ACUST UNITED AC 2011; 24:137-47. [PMID: 21484604 DOI: 10.1007/s00497-011-0166-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
Abstract
In flowering plants, the formation of gametes depends on the differentiation of cellular precursors that divide meiotically before giving rise to a multicellular gametophyte. The establishment of this gametophytic phase presents an opportunity for natural selection to act on the haploid plant genome by means of epigenetic mechanisms that ensure a tight regulation of plant reproductive development. Despite this early acting selective pressure, there are numerous examples of naturally occurring developmental alternatives that suggest a flexible regulatory control of cell specification and subsequent gamete formation in flowering plants. In this review, we discuss recent findings indicating that epigenetic mechanisms related to the activity of small RNA pathways prevailing during ovule formation play an essential role in cell specification and genome integrity. We also compare these findings to small RNA pathways acting during gametogenesis in animals and discuss their implications for the understanding of the mechanisms that control the establishment of the female gametophytic lineage during both sexual reproduction and apomixis.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, CINVESTAV, Irapuato, Mexico
| | | | | |
Collapse
|