1
|
Fang Z, Zhang K, Li J, Ma J, Ye C. Construction of a Membrane Yeast Two-Hybrid Library and Screening of MsPYR1-Like Interacting Proteins in Malus sieversii. Mol Biotechnol 2025; 67:2319-2338. [PMID: 38824489 DOI: 10.1007/s12033-024-01199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
To investigate the biological effects of the ABA receptor pyrabactin resistance 1-like (PYR1-like) in Malus sieversii seeds, the proteins interacting with MsPYR1-like were screened by the membrane yeast two-hybrid library based on the split-ubiquitin system, and to construct the bait vector pBT3-SUC-PYR1 for Malus sieversii cDNA library, which had no self-activating effect on the yeast cells of the pPR3-N membrane yeast two-hybrid library. The library titer assay showed that it could meet the requirements for membrane yeast two-hybrid library screening. After sequencing, GenBank database blast, and yeast rotary validation, 28 candidate proteins interacting with MsPYR1-like were obtained, including ribosomal proteins, late embryogenesis abundant proteins, F-actin-capping proteins, phytochrome-interacting proteins, low-temperature-inducible 65 kDa protein-like, senescence-associated, PP2C and SnRK2 family members, and unknown proteins. Gene ontology analysis of the interaction proteins was related to plant hormone response and negative regulation of seed germination, overexpression of MsPYR1-like in Arabidopsis negatively regulates seed germination, and the study of the biological roles of MsPYR1-like interacting proteins lays the foundation for revealing the lifting of seed dormancy in Malus sieversii.
Collapse
Affiliation(s)
- Zhen Fang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kai Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jing Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Juan Ma
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Chunxiu Ye
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
2
|
Knoch D, Rugen N, Thiel J, Heuermann MC, Kuhlmann M, Rizzo P, Meyer RC, Wagner S, Schippers JHM, Braun HP, Altmann T. A spatio-temporal transcriptomic and proteomic dataset of developing Brassica napus seeds. Sci Data 2025; 12:759. [PMID: 40335559 PMCID: PMC12059035 DOI: 10.1038/s41597-025-05115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Oilseed rape (Brassica napus) seeds are of major economic and nutritional value since they are rich in both oil and proteins, which accumulate predominantly in the embryonic cotyledons during the filling period. Developmental phases such as embryogenesis, seed filling, and maturation have been associated with specific changes in the transcriptional landscape and are controlled by interactions of regulatory components, particularly transcription factors and cis-regulatory elements. However, the global changes on the protein level remain largely elusive. Here, we investigated the dynamics of seed development by an integrative analysis of the seed transcriptome and proteome. Plants of the winter-type cultivar Express 617 were grown under controlled, field-like conditions in the IPK PhenoSphere, and developing seeds were collected for temporally and spatially resolved multi-omics analyses. The dataset covers five stages, from pre-storage to seed maturation, and includes spatial information on four dissected organs/tissues. It provides comprehensive insights into differentiation and developmental processes of the Brassica napus seed and may serve as starting point to select potentially important genes for detailed functional investigations.
Collapse
Affiliation(s)
- Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Nils Rugen
- Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Johannes Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Paride Rizzo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Jos H M Schippers
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Corrensstraße 3, 06466 Seeland OT, Gatersleben, Germany.
| |
Collapse
|
3
|
Rosas MA, Alvarez JM, Sanguinet KA. The root hairless mutant buzz in Brachypodium distachyon shows increased nitrate uptake and signaling but does not affect overall nitrogen use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2738-2751. [PMID: 39570729 DOI: 10.1111/tpj.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve. However, the root hairless mutant buzz in Brachypodium distachyon shows a constitutive nitrogen-foraging phenotype with increased root growth and root branching under nitrate-rich conditions. To investigate how this unique root structure and root hair morphology in the buzz mutant affects nitrate metabolism, we measured the expression of nitrate-responsive genes, nitrate uptake and accumulation, nitrate reductase activity, and nitrogen use efficiency. We found that nitrate responses were upregulated by low nitrate conditions in buzz relative to wild type and correlated with increased expression of nitrate transport genes. In addition, buzz mutants showed increased nitrate uptake and a higher accumulation of nitrate in shoots. The buzz mutant also showed increased nitrate reductase activity in the shoots under low nitrate conditions. However, developmentally mature wild-type and buzz plants grown under low nitrate had similar nitrogen use efficiencies. These findings suggest that BUZZ influences nitrate signaling and that enhanced responsiveness to nitrate is required in buzz seedlings to compensate for the lack of root hairs. These data question the importance of root hairs in enhancing nitrate uptake and expand our understanding of how root hairs in grasses affect physiological responses to low nitrate availability.
Collapse
Affiliation(s)
- Miguel A Rosas
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, Washington, 99164, USA
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370035, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Nucleus in Data Science for Plant Resilience (Phytolearning), 8370186, Santiago, Chile
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, Washington, 99164, USA
| |
Collapse
|
4
|
de Jesus Vieira Teixeira C, Bellande K, van der Schuren A, O'Connor D, Hardtke CS, Vermeer JEM. An atlas of Brachypodium distachyon lateral root development. Biol Open 2024; 13:bio060531. [PMID: 39158386 PMCID: PMC11391822 DOI: 10.1242/bio.060531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
The root system of plants is a vital part for successful development and adaptation to different soil types and environments. A major determinant of the shape of a plant root system is the formation of lateral roots, allowing for expansion of the root system. Arabidopsis thaliana, with its simple root anatomy, has been extensively studied to reveal the genetic program underlying root branching. However, to get a more general understanding of lateral root development, comparative studies in species with a more complex root anatomy are required. Here, by combining optimized clearing methods and histology, we describe an atlas of lateral root development in Brachypodium distachyon, a wild, temperate grass species. We show that lateral roots initiate from enlarged phloem pole pericycle cells and that the overlying endodermis reactivates its cell cycle and eventually forms the root cap. In addition, auxin signaling reported by the DR5 reporter was not detected in the phloem pole pericycle cells or young primordia. In contrast, auxin signaling was activated in the overlying cortical cell layers, including the exodermis. Thus, Brachypodium is a valuable model to investigate how signaling pathways and cellular responses have been repurposed to facilitate lateral root organogenesis.
Collapse
Affiliation(s)
| | - Kevin Bellande
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Alja van der Schuren
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Devin O'Connor
- Sainsbury Lab, University of Cambridge, CB2 1LR Cambridge, UK
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Joop E. M Vermeer
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
5
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
6
|
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. MOLECULAR PLANT 2024; 17:438-459. [PMID: 38310351 DOI: 10.1016/j.molp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
7
|
Long X, Zhang J, Wang D, Weng Y, Liu S, Li M, Hao Z, Cheng T, Shi J, Chen J. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids. FORESTRY RESEARCH 2023; 3:15. [PMID: 39526259 PMCID: PMC11524298 DOI: 10.48130/fr-2023-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 11/16/2024]
Abstract
The relict woody plant genus Liriodendron contains two endangered species, Liriodendron chinense and Liriodendron tulipifera. Understanding the molecular mechanisms involved in early embryo development is important for horticultural and ecological research, particularly for the development of improved somatic embryogenesis systems. However, the specific molecular processes underlying embryogenesis in these species remain largely unexplored. To address this, we investigated expression of the WOX ( WUSCHEL-related homeobox) gene family of transcription factors throughout somatic embryogenesis. We confirmed expression of eight out of 11 novel candidate LcWOX genes in L.chinense using qRT-PCR and examined spatiotemporal expression patterns of the expressed genes using stable reporter lines that had been transformed with different LcWOX promoters driving GUS expression. We observed embryo developmental stages and expression patterns that broadly correlated with those reported for Arabidopsis somatic embryogenesis. LcWUS was weakly expressed during the transition stage and was predominantly restricted to the apical meristem. LcWOX5 was specifically expressed in the root meristem and restricted to the cotyledons thereafter, and LcWOX4 expression was restricted to the vascular tissue of cotyledonary embryos. In contrast, LcWOX9 was expressed in the embryonic callus and the entire embryonic cell mass, then became restricted to the basal cells, indicating a potential role in regulating embryonic maintenance. Our findings provide insights into spatiotemporally specific WOX transcription and shed new light on potential functions of WOX genes during Liriodendron somatic embryogenesis.
Collapse
Affiliation(s)
- Xiaofei Long
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaji Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhao Weng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Siqin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Meiping Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tielong Cheng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
8
|
Smit ME, Vatén A, Mair A, Northover CAM, Bergmann DC. Extensive embryonic patterning without cellular differentiation primes the plant epidermis for efficient post-embryonic stomatal activities. Dev Cell 2023; 58:506-521.e5. [PMID: 36931268 DOI: 10.1016/j.devcel.2023.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Plant leaves feature epidermal stomata that are organized in stereotyped patterns. How does the pattern originate? We provide transcriptomic, imaging, and genetic evidence that Arabidopsis embryos engage known stomatal fate and patterning factors to create regularly spaced stomatal precursor cells. Analysis of embryos from 36 plant species indicates that this trait is widespread among angiosperms. Embryonic stomatal patterning in Arabidopsis is established in three stages: first, broad SPEECHLESS (SPCH) expression; second, coalescence of SPCH and its targets into discrete domains; and third, one round of asymmetric division to create stomatal precursors. Lineage progression is then halted until after germination. We show that the embryonic stomatal pattern enables fast stomatal differentiation and photosynthetic activity upon germination, but it also guides the formation of additional stomata as the leaf expands. In addition, key stomatal regulators are prevented from driving the fate transitions they can induce after germination, identifying stage-specific layers of regulation that control lineage progression during embryogenesis.
Collapse
Affiliation(s)
- Margot E Smit
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Andrea Mair
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Singh KBM, Thakur JK. Endosperm ontogeny through the lens of epigenetics. MOLECULAR PLANT 2023; 16:295-297. [PMID: 36258669 DOI: 10.1016/j.molp.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Kajol B M Singh
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi 110067, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
10
|
Zhao L, Yang Y, Chen J, Lin X, Zhang H, Wang H, Wang H, Bie X, Jiang J, Feng X, Fu X, Zhang X, Du Z, Xiao J. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol 2023; 24:7. [PMID: 36639687 PMCID: PMC9837924 DOI: 10.1186/s13059-022-02844-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. RESULTS Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal-distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. CONCLUSIONS Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhe Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiafu Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoqi Feng
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhuo Du
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Chen JJ, Wang W, Qin WQ, Men SZ, Li HL, Mitsuda N, Ohme-Takagi M, Wu AM. Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:463-478. [PMID: 36342216 PMCID: PMC9806662 DOI: 10.1093/plphys/kiac513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.
Collapse
Affiliation(s)
- Jia-Jun Chen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Wen-Qi Qin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Zhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui-Ling Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Yang QX, Chen D, Zhao Y, Zhang XY, Zhao M, Peng R, Sun NX, Baldwin TC, Yang SC, Liang YL. RNA-seq analysis reveals key genes associated with seed germination of Fritillaria taipaiensis P.Y.Li by cold stratification. FRONTIERS IN PLANT SCIENCE 2022; 13:1021572. [PMID: 36247582 PMCID: PMC9555243 DOI: 10.3389/fpls.2022.1021572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Seed dormancy is an adaptive strategy for environmental evolution. However, the molecular mechanism of the breaking of seed dormancy at cold temperatures is still unclear, and the genetic regulation of germination initiated by exposure to cold temperature requires further investigation. In the initial phase of the current study, the seed coat characteristics and embryo development of Fritillaria taipaiensis P.Y.Li at different temperatures (0°C, 4°C, 10°C & 25°C) was recorded. The results obtained demonstrated that embryo elongation and the dormancy-breaking was most significantly affected at 4°C. Subsequently, transcriptome analyses of seeds in different states of dormancy, at two stratification temperatures (4°C and 25°C) was performed, combined with weighted gene coexpression network analysis (WGCNA) and metabolomics, to explore the transcriptional regulation of seed germination in F. taipaiensis at the two selected stratification temperatures. The results showed that stratification at the colder temperature (4°C) induced an up-regulation of gene expression involved in gibberellic acid (GA) and auxin biosynthesis and the down-regulation of genes related to the abscisic acid (ABA) biosynthetic pathway. Thereby promoting embryo development and the stimulation of seed germination. Collectively, these data constitute a significant advance in our understanding of the role of cold temperatures in the regulation of seed germination in F. taipaiensis and also provide valuable transcriptomic data for seed dormancy for other non-model plant species.
Collapse
Affiliation(s)
- Qiu-Xiong Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Dan Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yu Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Min Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Rui Peng
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Nian-Xi Sun
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Sheng-Chao Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Gao P, Qiu S, Ma X, Parkin IAP, Xiang D, Datla R. Spatiotemporal Transcriptomic Atlas of Developing Embryos and Vegetative Tissues in Flax. PLANTS 2022; 11:plants11152031. [PMID: 35956508 PMCID: PMC9370790 DOI: 10.3390/plants11152031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Flax (Linum usitatissimum L.) is an important multipurpose crop widely grown for oil and fiber. Despite recent advances in genomics, detailed gene activities during the important reproductive phase of its development are not well defined. In this study, we employed high-throughput RNA-sequencing methods to generate in-depth transcriptome profiles of flax tissues with emphasis on the reproductive phases of five key stages of embryogenesis (globular embryo, heart embryo, torpedo embryo, cotyledon embryo, and mature embryo), mature seed, and vegetative tissues viz. ovary, anther, and root. These datasets were used to establish the co-expression networks covering 36 gene modules based on the expression patterns for each gene through weighted gene co-expression network analysis (WGCNA). Functional interrogation with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of dominantly expressed genetic modules in tissues revealed pathways involved in the development of different tissues. Moreover, the essential genes in embryo development and synthesis of storage reserves were identified based on their dynamic expression patterns. Together, this comprehensive dataset for developing embryos, mature seeds and vegetative tissues provides new insights into molecular mechanisms of seed development with potential for flax crop improvement.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4L8, Canada
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Shuqing Qiu
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Xingliang Ma
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Isobel A. P. Parkin
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4L8, Canada
- Correspondence: (I.A.P.P.); (D.X.); (R.D.); Tel.: +1-306-3859434 (I.A.P.P.); +1-306-9755580 (D.X.); +1-306-2293924 (R.D.)
| |
Collapse
|
14
|
Yoshida S, Weijers D. Quantitative analysis of 3D cellular geometry and modeling of the Arabidopsis embryo. J Microsc 2022; 287:107-113. [PMID: 35759505 DOI: 10.1111/jmi.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
As many multicellular organisms, land plants start their life as a single cell, which forms an embryo. Embryo morphology is relatively simple, yet comprises basic tissues and organs, as well as stem cells that sustain post-embryonic development. Being condensed in both time and space, early plant embryogenesis offers an excellent window to study general principles of plant development. However, it has been technically challenging to obtain high spatial microscopic resolution, or to perform live imaging, that would enable an in-depth investigation. Recent advances in sample preparation and microscopy now allow studying the detailed cellular morphology of plant embryos in 3D. When coupled to quantitative image analysis and computational modeling, this allows resolving the temporal and spatial interactions between cellular patterning and genetic networks. In this review, we discuss examples of interdisciplinary studies that showcase the potential of the early plant embryo for revealing principles underlying plant development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saiko Yoshida
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University
| |
Collapse
|
15
|
Martynov A, Lundin K, Korshunova T. Ontogeny, Phylotypic Periods, Paedomorphosis, and Ontogenetic Systematics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.806414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The key terms linking ontogeny and evolution are briefly reviewed. It is shown that their application and usage in the modern biology are often inconsistent and incorrectly understood even within the “evo-devo” field. For instance, the core modern reformulation that ontogeny not merely recapitulates, but produces phylogeny implies that ontogeny and phylogeny are closely interconnected. However, the vast modern phylogenetic and taxonomic fields largely omit ontogeny as a central concept. Instead, the common “clade-” and “tree-thinking” prevail, despite on the all achievements of the evo-devo. This is because the main conceptual basis of the modern biology is fundamentally ontogeny-free. In another words, in the Haeckel’s pair of “ontogeny and phylogeny,” ontogeny is still just a subsidiary for the evolutionary process (and hence, phylogeny), instead as in reality, its main driving force. The phylotypic periods is another important term of the evo-devo and represent a modern reformulation of Haeckel’s recapitulations and biogenetic law. However, surprisingly, this one of the most important biological evidence, based on the natural ontogenetic grounds, in the phylogenetic field that can be alleged as a “non-evolutionary concept.” All these observations clearly imply that a major revision of the main terms which are associated with the “ontogeny and phylogeny/evolution” field is urgently necessarily. Thus, “ontogenetic” is not just an endless addition to the term “systematics,” but instead a crucial term, without it neither systematics, nor biology have sense. To consistently employ the modern ontogenetic and epigenetic achievements, the concept of ontogenetic systematics is hereby refined. Ontogenetic systematics is not merely a “research program” but a key biological discipline which consistently links the enormous biological diversity with underlying fundamental process of ontogeny at both molecular and morphological levels. The paedomorphosis is another widespread ontogenetic-and-evolutionary process that is significantly underestimated or misinterpreted by the current phylogenetics and taxonomy. The term paedomorphosis is refined, as initially proposed to link ontogeny with evolution, whereas “neoteny” and “progenesis” are originally specific, narrow terms without evolutionary context, and should not be used as synonyms of paedomorphosis. Examples of application of the principles of ontogenetic systematics represented by such disparate animal groups as nudibranch molluscs and ophiuroid echinoderms clearly demonstrate that perseverance of the phylotypic periods is based not only on the classic examples in vertebrates, but it is a universal phenomenon in all organisms, including disparate animal phyla.
Collapse
|
16
|
Wehbi H, Soulhat C, Morin H, Bendahmane A, Hilson P, Bouchabké-Coussa O. One-Week Scutellar Somatic Embryogenesis in the Monocot Brachypodium distachyon. PLANTS 2022; 11:plants11081068. [PMID: 35448796 PMCID: PMC9025947 DOI: 10.3390/plants11081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Plant somatic embryogenesis (SE) is a natural process of vegetative propagation. It can be induced in tissue cultures to investigate developmental transitions, to create transgenic or edited lines, or to multiply valuable crops. We studied the induction of SE in the scutellum of monocots with Brachypodium distachyon as a model system. Towards the in-depth analysis of SE initiation, we determined the earliest stages at which somatic scutellar cells acquired an embryogenic fate, then switched to a morphogenetic mode in a regeneration sequence involving treatments with exogenous hormones: first an auxin (2,4-D) then a cytokinin (kinetin). Our observations indicated that secondary somatic embryos could already develop in the proliferative calli derived from immature zygotic embryo tissues within one week from the start of in vitro culture. Cell states and tissue identity were deduced from detailed histological examination, and in situ hybridization was performed to map the expression of key developmental genes. The fast SE induction method we describe here facilitates the mechanistic study of the processes involved and may significantly shorten the production of transgenic or gene-edited plants.
Collapse
Affiliation(s)
- Houssein Wehbi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
| | - Camille Soulhat
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; (H.M.); (A.B.)
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; (H.M.); (A.B.)
| | - Pierre Hilson
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
- Correspondence:
| | - Oumaya Bouchabké-Coussa
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France; (H.W.); (C.S.); (O.B.-C.)
| |
Collapse
|
17
|
Raissig MT, Woods DP. The wild grass Brachypodium distachyon as a developmental model system. Curr Top Dev Biol 2022; 147:33-71. [PMID: 35337454 DOI: 10.1016/bs.ctdb.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.
Collapse
Affiliation(s)
- Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
18
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
19
|
Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT, Qin L, Babic V, Liu L, Cram D, Pasha A, Esteban E, Condie J, Sidebottom C, Zhang Y, Huang Y, Zhang W, Bhowmik P, Kochian LV, Konkin D, Wei Y, Provart NJ, Kagale S, Smith M, Patterson N, Gillmor CS, Datla R, Xiang D. Evolutionary divergence in embryo and seed coat development of U's Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. THE NEW PHYTOLOGIST 2022; 233:30-51. [PMID: 34687557 DOI: 10.1111/nph.17759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The economically valuable Brassica species include the six related members of U's Triangle. Despite the agronomic and economic importance of these Brassicas, the impacts of evolution and relatively recent domestication events on the genetic landscape of seed development have not been comprehensively examined in these species. Here we present a 3D transcriptome atlas for the six species of U's Triangle, producing a unique resource that captures gene expression data for the major subcompartments of the seed, from the unfertilized ovule to the mature embryo and seed coat. This comprehensive dataset for seed development in tetraploid and ancestral diploid Brassicas provides new insights into evolutionary divergence and expression bias at the gene and subgenome levels during the domestication of these valued crop species. Comparisons of gene expression associated with regulatory networks and metabolic pathways operating in the embryo and seed coat during seed development reveal differences in storage reserve accumulation and fatty acid metabolism among the six Brassica species. This study illustrates the genetic underpinnings of seed traits and the selective pressures placed on seed production, providing an immense resource for continued investigation of Brassica polyploid biology, genomics and evolution.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Hui Yang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kirby T Nilsen
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB, R7C 1A1, Canada
| | - Li Qin
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Vivijan Babic
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Asher Pasha
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Janet Condie
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Christine Sidebottom
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yan Zhang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Yangdou Wei
- College of Art & Science, University of Saskatchewan, 9 Campus Dr, Saskatoon, SK, S7N 5A5, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Mark Smith
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, México
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4L8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
20
|
Su L, Wan S, Zhou J, Shao QS, Xing B. Transcriptional regulation of plant seed development. PHYSIOLOGIA PLANTARUM 2021; 173:2013-2025. [PMID: 34480800 DOI: 10.1111/ppl.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL-related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple-TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.
Collapse
Affiliation(s)
- Liyang Su
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Junmei Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Song Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
21
|
Rensing SA, Weijers D. Flowering plant embryos: How did we end up here? PLANT REPRODUCTION 2021; 34:365-371. [PMID: 34313838 PMCID: PMC8566406 DOI: 10.1007/s00497-021-00427-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
The seeds of flowering plants are sexually produced propagules that ensure dispersal and resilience of the next generation. Seeds harbor embryos, three dimensional structures that are often miniatures of the adult plant in terms of general structure and primordial organs. In addition, embryos contain the meristems that give rise to post-embryonically generated structures. However common, flowering plant embryos are an evolutionary derived state. Flowering plants are part of a much larger group of embryo-bearing plants, aptly termed Embryophyta. A key question is what evolutionary trajectory led to the emergence of flowering plant embryos. In this opinion, we deconstruct the flowering plant embryo and describe the current state of knowledge of embryos in other plant lineages. While we are far yet from understanding the ancestral state of plant embryogenesis, we argue what current knowledge may suggest and how the knowledge gaps may be closed.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Yan J, Buer H, Wang YP, Zhula G, Bai YE. Transcriptomic Time-Series Analyses of Gene Expression Profile During Zygotic Embryo Development in Picea mongolica. Front Genet 2021; 12:738649. [PMID: 34659359 PMCID: PMC8513737 DOI: 10.3389/fgene.2021.738649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Zygotic embryogenesis is a critical process during seed development in gymnosperms. However, knowledge on the genome-wide transcriptional activation that guides this process in conifers is limited, especially in Picea mongolica. This tree species is endemic to semiarid habitats of Inner Mongolia in China. To extend what is known about the molecular events underpinning its zygotic embryogenesis, comparative transcriptomic analyses of gene expression in zygotic embryos were performed by RNA sequencing in P. mongolica. Our results showed that most changes in transcript levels occurred in the early embryonic pattering determination and formation of mature embryos. Transcripts related to embryogenic competence, cell division pattern, hormones, and stress response genes were identified during embryogenesis. Auxin is essential for early embryo patterning and pre-cotyledon embryonic formation. However, ABA is a major regulator of embryo maturation. Moreover, we found that methylation-related gene expression is associated with activation of early-stage embryos, late embryogenesis abundant proteins, and storage/energy-related genes with late and mature embryos. Furthermore, network analysis revealed stage-specific and multistage gene expression clusters during embryogenesis. WOX, MYB, AP2, and HLH transcription factors seem more relevant to embryogenesis in different stages. Our results provide large-scale and comprehensive transcriptome data for embryo development in P. mongolica. These data will lay a foundation for the protection and utilization of P. mongolica resources.
Collapse
Affiliation(s)
- Jia Yan
- Institute of Forest Tree Genetic Breeding, Forestry College, Inner Mongolia Agricultural University, Hohhot, China.,Life Science of College, Inner Mongolia University, Hohhot, China
| | - Ha Buer
- Institute of Forest Tree Genetic Breeding, Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Ya Ping Wang
- Institute of Forest Tree Genetic Breeding, Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Gegen Zhula
- Institute of Forest Tree Genetic Breeding, Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu E Bai
- Institute of Forest Tree Genetic Breeding, Forestry College, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|