1
|
Tai HH, Shannon LM, Strömvik MV. Polyploidy in potatoes: challenges and possibilities for climate resilience. Trends Genet 2025:S0168-9525(25)00070-8. [PMID: 40268598 DOI: 10.1016/j.tig.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Solanum section Petota Dumort. consists of tuber-bearing species (i.e., the cultivated potatoes and their wild relatives) that have both asexual and sexual propagation, variation in ploidy, and reproductive isolation. These species have undergone adaptation to a diversity of climates, altitudes, photoperiods, and geographical range. The section defies characterization with the biological species concept due to interspecies hybridization, allo- and auto-polyploidy, and phenotypic plasticity. Genetic studies, and more recently genome sequencing and pangenome analyses, are fostering a greater understanding of genetic processes that shape genome evolution and speciation in the section, shedding light on the phylogeny and providing insights on utilization of potato crop wild relatives in breeding for climate-resilient potato varieties.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
2
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025; 35:1828-1847.e9. [PMID: 40174586 PMCID: PMC12015598 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
3
|
Zhang Y, Lv F, Wan Z, Geng M, Chu L, Cai B, Zhuang J, Ge X, Schnittger A, Yang C. The synaptonemal complex stabilizes meiosis in allotetraploid Brassica napus and autotetraploid Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:581-597. [PMID: 39963072 PMCID: PMC11923410 DOI: 10.1111/nph.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 03/21/2025]
Abstract
Polyploidy plays a key role in genome evolution and crop improvement. The formation of bivalents rather than multivalents during meiosis of polyploids is essential to ensure meiotic stability and optimal fertility of the species. However, the mechanisms preventing multivalent recombination in polyploids remain obscure. We studied the role of the synaptonemal complex in polyploid meiosis by mutating the transverse filament component ZYP1 in allotetraploid Brassica napus and autotetraploid Arabidopsis. In B. napus, a mutation of all four ZYP1 copies results in multivalent pairing accompanied by pairing partner switches, nonhomologous recombination, and interlocks, leading to severe chromosome entanglement and fertility abortion. The presence of only one functional allele of ZYP1 compromises synapsis and multivalent associations occur at nonsynaptic regions. Moreover, the disruption of ZYP1 causes a complete shift from predominantly multivalent pairing to exclusively multivalent pairing in pachytene cells of synthetic autotetraploid Arabidopsis thaliana, resulting in a dramatic increase in the frequency of multivalents at metaphase I. We conclude that the ZYP1-mediated assembly of the synaptonemal complex facilitates the pairwise homologous pairing and recombination in both allopolyploid and autopolyploid species and plays a key role in ensuring a diploid-like bivalent formation in polyploid meiosis.
Collapse
Affiliation(s)
- Yashi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyang Wan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaowei Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bowei Cai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Pelé A, Falque M, Lodé-Taburel M, Huteau V, Morice J, Coriton O, Martin OC, Chèvre AM, Rousseau-Gueutin M. Genomic Divergence Shaped the Genetic Regulation of Meiotic Homologous Recombination in Brassica Allopolyploids. Mol Biol Evol 2025; 42:msaf073. [PMID: 40173423 PMCID: PMC11982612 DOI: 10.1093/molbev/msaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
The tight regulation of meiotic recombination between homologs is disrupted in Brassica AAC allotriploids, a genomic configuration that may have facilitated the formation of rapeseed (Brassica napus L.) ∼7,500 years ago. Indeed, the presence of the haploid C genome induces supernumerary crossovers between homologous A chromosomes with dramatically reshaped distribution. However, the genetic mechanisms driving this phenomenon and their divergence between nascent and established lineages remain unclear. To address these concerns, we generated hybrids carrying additional C chromosomes derived either from an established lineage of the allotetraploid B. napus or from its diploid progenitor B. oleracea. We then assessed recombination variation across twelve populations by mapping male meiotic crossovers using single nucleotide polymorphism markers evenly distributed across the sequenced A genome. Our findings reveal that the C09 chromosome of B. oleracea is responsible for the formation of additional crossovers near pericentromeric regions. Interestingly, its counterpart from an established lineage of B. napus shows no significant effect on its own, despite having a similar content of meiotic genes. However, we showed that the B. napus C09 chromosome influences crossover formation through inter-chromosomal epistatic interactions with other specific C chromosomes. These results provide new insights into the genetic regulation of homologous recombination in Brassica and emphasize the role of genomic divergence since the formation of the allopolyploid B. napus.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland
| | - Matthieu Falque
- INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | | | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier C Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
5
|
Dunn T, Sethuraman A. Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations. Mol Biol Evol 2024; 41:msae241. [PMID: 39549274 DOI: 10.1093/molbev/msae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.
Collapse
Affiliation(s)
- Tamsen Dunn
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
6
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
7
|
Bohutínská M, Petříková E, Booker TR, Vives Cobo C, Vlček J, Šrámková G, Poupětová A, Hojka J, Marhold K, Yant L, Kolář F, Schmickl R. Polyploids broadly generate novel haplotypes from trans-specific variation in Arabidopsis arenosa and Arabidopsis lyrata. PLoS Genet 2024; 20:e1011521. [PMID: 39715277 PMCID: PMC11706510 DOI: 10.1371/journal.pgen.1011521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content. Here, we deconstruct in detail the origins of haplotypes displaying the strongest selection signals in established, successful autopolyploids, Arabidopsis lyrata and Arabidopsis arenosa. We see strong signatures of selection in 17 genes implied in meiosis, cell cycle, and transcription across all four autotetraploid lineages present in our expanded sampling of 983 sequenced genomes. Most prominent in our results is the finding that the tetraploid-characteristic haplotypes with the most robust signals of selection were completely absent in all diploid sisters. In contrast, the fine-scaled variant 'mosaics' in the tetraploids originated from highly diverse evolutionary sources. These include widespread novel reassortments of trans-specific polymorphism from diploids, new mutations, and tetraploid-specific inter-species hybridization-a pattern that is in line with the broad-scale acquisition and reshuffling of potentially adaptive variation in tetraploids.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Eliška Petříková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tom R. Booker
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cristina Vives Cobo
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Vlček
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Šrámková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alžběta Poupětová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Hojka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Karol Marhold
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Levi Yant
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
8
|
Morris JP, Baslan T, Soltis DE, Soltis PS, Fox DT. Integrating the Study of Polyploidy Across Organisms, Tissues, and Disease. Annu Rev Genet 2024; 58:297-318. [PMID: 39227132 PMCID: PMC11590481 DOI: 10.1146/annurev-genet-111523-102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyploidy is a cellular state containing more than two complete chromosome sets. It has largely been studied as a discrete phenomenon in either organismal, tissue, or disease contexts. Increasingly, however, investigation of polyploidy across disciplines is coalescing around common principles. For example, the recent Polyploidy Across the Tree of Life meeting considered the contribution of polyploidy both in organismal evolution over millions of years and in tumorigenesis across much shorter timescales. Here, we build on this newfound integration with a unified discussion of polyploidy in organisms, cells, and disease. We highlight how common polyploidy is at multiple biological scales, thus eliminating the outdated mindset of its specialization. Additionally, we discuss rules that are likely common to all instances of polyploidy. With increasing appreciation that polyploidy is pervasive in nature and displays fascinating commonalities across diverse contexts, inquiry related to this important topic is rapidly becoming unified.
Collapse
Affiliation(s)
- John P Morris
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Timour Baslan
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Sciences and Penn Vet Cancer Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Polyploidy Integration and Innovation Institute
- Department of Biology, University of Florida, Gainesville, Florida, USA;
| | - Pamela S Soltis
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;
- Polyploidy Integration and Innovation Institute
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke Regeneration Center, and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA;
- Polyploidy Integration and Innovation Institute
| |
Collapse
|
9
|
Zhang H, Liu B. Does nascent polyploidy employ common mechanisms to stabilize and establish? Cell Rep 2024; 43:114709. [PMID: 39255060 DOI: 10.1016/j.celrep.2024.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
In a recent issue of Cell Reports, Bray et al. found genetic adaptation in kinetochore components and ion transporters underlying polyploid stabilization in Cochlearia. This resurrects the issue of whether nascent polyploidy in diverse organisms establish via common biological mechanisms.
Collapse
Affiliation(s)
- Huakun Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
10
|
Bray SM, Hämälä T, Zhou M, Busoms S, Fischer S, Desjardins SD, Mandáková T, Moore C, Mathers TC, Cowan L, Monnahan P, Koch J, Wolf EM, Lysak MA, Kolar F, Higgins JD, Koch MA, Yant L. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep 2024; 43:114576. [PMID: 39116207 DOI: 10.1016/j.celrep.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
Collapse
Affiliation(s)
- Sian M Bray
- The University of Nottingham, Nottingham NG7 2RD, UK; The John Innes Centre, Norwich NR4 7UH, UK
| | - Tuomas Hämälä
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Silvia Busoms
- The John Innes Centre, Norwich NR4 7UH, UK; Department of Plant Physiology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sina Fischer
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart D Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Chris Moore
- The University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Laura Cowan
- The University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | - Eva M Wolf
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Kolar
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic; The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Levi Yant
- The University of Nottingham, Nottingham NG7 2RD, UK; Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic.
| |
Collapse
|
11
|
Lv Z, Addo Nyarko C, Ramtekey V, Behn H, Mason AS. Defining autopolyploidy: Cytology, genetics, and taxonomy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16292. [PMID: 38439575 DOI: 10.1002/ajb2.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/06/2024]
Abstract
Autopolyploidy is taxonomically defined as the presence of more than two copies of each genome within an organism or species, where the genomes present must all originate within the same species. Alternatively, "genetic" or "cytological" autopolyploidy is defined by polysomic inheritance: random pairing and segregation of the four (or more) homologous chromosomes present, with no preferential pairing partners. In this review, we provide an overview of methods used to categorize species as taxonomic and cytological autopolyploids, including both modern and obsolete cytological methods, marker-segregation-based and genomics methods. Subsequently, we also investigated how frequently polysomic inheritance has been reliably documented in autopolyploids. Pure or predominantly polysomic inheritance was documented in 39 of 43 putative autopolyploid species where inheritance data was available (91%) and in seven of eight synthetic autopolyploids, with several cases of more mixed inheritance within species. We found no clear cases of autopolyploids with disomic inheritance, which was likely a function of our search methodology. Interestingly, we found seven species with purely polysomic inheritance and another five species with partial or predominant polysomic inheritance that appear to be taxonomic allopolyploids. Our results suggest that observations of polysomic inheritance can lead to relabeling of taxonomically allopolyploid species as autopolyploid and highlight the need for further cytogenetic and genomic investigation into polyploid origins and inheritance types.
Collapse
Affiliation(s)
- Zhenling Lv
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Charles Addo Nyarko
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Vinita Ramtekey
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- ICAR-Indian Institute of Seed Science, 275103, Mau, India
| | - Helen Behn
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
12
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
13
|
Session AM. Allopolyploid subgenome identification and implications for evolutionary analysis. Trends Genet 2024; 40:621-631. [PMID: 38637269 DOI: 10.1016/j.tig.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Whole-genome duplications (WGDs) are widespread genomic events in eukaryotes that are hypothesized to contribute to the evolutionary success of many lineages, including flowering plants, Saccharomyces yeast, and vertebrates. WGDs generally can be classified into autopolyploids (ploidy increase descended from one species) or allopolyploids (ploidy increase descended from multiple species). Assignment of allopolyploid progenitor species (called subgenomes in the polyploid) is important to understanding the biology and evolution of polyploids, including the asymmetric subgenome evolution following hybridization (biased fractionation). Here, I review the different methodologies used to identify the ancestors of allopolyploid subgenomes, discuss the advantages and disadvantages of these methods, and outline the implications of how these methods affect the subsequent evolutionary analysis of these genomes.
Collapse
Affiliation(s)
- Adam M Session
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
14
|
Hämälä T, Moore C, Cowan L, Carlile M, Gopaulchan D, Brandrud MK, Birkeland S, Loose M, Kolář F, Koch MA, Yant L. Impact of whole-genome duplications on structural variant evolution in Cochlearia. Nat Commun 2024; 15:5377. [PMID: 38918389 PMCID: PMC11199601 DOI: 10.1038/s41467-024-49679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.
Collapse
Affiliation(s)
- Tuomas Hämälä
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Production Systems, Natural Resources Institute Finland, Jokioinen, Finland.
| | | | - Laura Cowan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthew Carlile
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Siri Birkeland
- Natural History Museum, University of Oslo, Oslo, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
15
|
Hörandl E. Apomixis and the paradox of sex in plants. ANNALS OF BOTANY 2024; 134:1-18. [PMID: 38497809 PMCID: PMC11161571 DOI: 10.1093/aob/mcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Booker WW, Schrider DR. The genetic consequences of range expansion and its influence on diploidization in polyploids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562992. [PMID: 37905020 PMCID: PMC10614938 DOI: 10.1101/2023.10.18.562992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Despite newly formed polyploids being subjected to myriad fitness consequences, the relative prevalence of polyploidy both contemporarily and in ancestral branches of the tree of life suggests alternative advantages that outweigh these consequences. One proposed advantage is that polyploids may more easily colonize novel habitats such as deglaciated areas. However, previous research conducted in diploids suggests that range expansion comes with a fitness cost as deleterious mutations may fix rapidly on the expansion front. Here, we interrogate the potential consequences of expansion in polyploids by conducting spatially explicit forward-in-time simulations to investigate how ploidy and inheritance patterns impact the relative ability of polyploids to expand their range. We show that under realistic dominance models, autopolyploids suffer greater fitness reductions than diploids as a result of range expansion due to the fixation of increased mutational load that is masked in the range core. Alternatively, the disomic inheritance of allopolyploids provides a shield to this fixation resulting in minimal fitness consequences. In light of this advantage provided by disomy, we investigate how range expansion may influence cytogenetic diploidization through the reversion to disomy in autotetraploids. We show that under a wide range of parameters investigated for two models of diploidization, disomy frequently evolves more rapidly on the expansion front than in the range core, and that this dynamic inheritance model has additional effects on fitness. Together our results point to a complex interaction between dominance, ploidy, inheritance, and recombination on fitness as a population spreads across a geographic range.
Collapse
Affiliation(s)
- William W. Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514-2916, United States of America
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514-2916, United States of America
| |
Collapse
|
17
|
Westermann J, Srikant T, Gonzalo A, Tan HS, Bomblies K. Defective pollen tube tip growth induces neo-polyploid infertility. Science 2024; 383:eadh0755. [PMID: 38422152 DOI: 10.1126/science.adh0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Genome duplication (generating polyploids) is an engine of novelty in eukaryotic evolution and a promising crop improvement tool. Yet newly formed polyploids often have low fertility. Here we report that a severe fertility-compromising defect in pollen tube tip growth arises in new polyploids of Arabidopsis arenosa. Pollen tubes of newly polyploid A. arenosa grow slowly, have aberrant anatomy and disrupted physiology, often burst prematurely, and have altered gene expression. These phenotypes recover in evolved polyploids. We also show that gametophytic (pollen tube) genotypes of two tip-growth genes under selection in natural tetraploid A. arenosa are strongly associated with pollen tube performance in the tetraploid. Our work establishes pollen tube tip growth as an important fertility challenge for neo-polyploid plants and provides insights into a naturally evolved multigenic solution.
Collapse
Affiliation(s)
- Jens Westermann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Thanvi Srikant
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Adrián Gonzalo
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Hui San Tan
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Kirsten Bomblies
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Chéron F, Petiot V, Lambing C, White C, Serra H. Incorrect recombination partner associations contribute to meiotic instability of neo-allopolyploid Arabidopsis suecica. THE NEW PHYTOLOGIST 2024; 241:2025-2038. [PMID: 38158491 DOI: 10.1111/nph.19487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Combining two or more related homoeologous genomes in a single nucleus, newly formed allopolyploids must rapidly adapt meiosis to restore balanced chromosome segregation, production of euploid gametes and fertility. The poor fertility of such neo-allopolyploids thus strongly selects for the limitation or avoidance of genetic crossover formation between homoeologous chromosomes. In this study, we have reproduced the interspecific hybridization between Arabidopsis thaliana and Arabidopsis arenosa leading to the allotetraploid Arabidopsis suecica and have characterized the first allopolyploid meioses. First-generation neo-allopolyploid siblings vary considerably in fertility, meiotic behavior and levels of homoeologous recombination. We show that centromere dynamics at early meiosis is altered in synthetic neo-allopolyploids compared with evolved A. suecica, with a significant increase in homoeologous centromere interactions at zygotene. At metaphase I, the presence of multivalents involving homoeologous chromosomes confirms that homoeologous recombination occurs in the first-generation synthetic allopolyploid plants and this is associated with a significant reduction in homologous recombination, compared to evolved A. suecica. Together, these data strongly suggest that the fidelity of recombination partner choice, likely during the DNA invasion step, is strongly impaired during the first meiosis of neo-allopolyploids and requires subsequent adaptation.
Collapse
Affiliation(s)
- Floriane Chéron
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Valentine Petiot
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Charles White
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Heïdi Serra
- Genetics, Reproduction and Development Institute (iGReD), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| |
Collapse
|
19
|
Clot CR, Klein D, Koopman J, Schuit C, Engelen CJM, Hutten RCB, Brouwer M, Visser RGF, Jurani M, van Eck HJ. Crossover shortage in potato is caused by StMSH4 mutant alleles and leads to either highly uniform unreduced pollen or sterility. Genetics 2024; 226:iyad194. [PMID: 37943687 PMCID: PMC10763545 DOI: 10.1093/genetics/iyad194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Dennis Klein
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Joey Koopman
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Cees Schuit
- Bejo Zaden B.V., Warmenhuizen, 1749 CZ, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Martina Jurani
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University & Research, Wageningen, 6700 AJ, The Netherlands
| |
Collapse
|
20
|
Lyu ZY, Zhou XL, Wang SQ, Yang GM, Sun WG, Zhang JY, Zhang R, Shen SK. The first high-altitude autotetraploid haplotype-resolved genome assembled (Rhododendron nivale subsp. boreale) provides new insights into mountaintop adaptation. Gigascience 2024; 13:giae052. [PMID: 39110622 PMCID: PMC11304948 DOI: 10.1093/gigascience/giae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Wen-Guang Sun
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Jie-Yu Zhang
- School of Life Sciences, Yunnan Normal University, Kunming 650500 Yunnan, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504 Yunnan, China
| |
Collapse
|
21
|
Parra-Nunez P, Fernández-Jiménez N, Pachon-Penalba M, Sanchez-Moran E, Pradillo M, Santos JL. Synthetically induced Arabidopsis thaliana autotetraploids provide insights into the analysis of meiotic mutants with altered crossover frequency. THE NEW PHYTOLOGIST 2024; 241:197-208. [PMID: 37921581 DOI: 10.1111/nph.19366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Mutations affecting crossover (CO) frequency and distribution lead to the presence of univalents during meiosis, giving rise to aneuploid gametes and sterility. These mutations may have a different effect after chromosome doubling. The combination of altered ploidy and mutations could be potentially useful to gain new insights into the mechanisms and regulation of meiotic recombination; however, studies using autopolyploid meiotic mutants are scarce. Here, we have analyzed the cytogenetic consequences in colchicine-induced autotetraploids (colchiploids) from different Arabidopsis mutants with an altered CO frequency. We have found that there are three types of mutants: mutants in which chiasma frequency is doubled after chromosome duplication (zip4, mus81), as in the control; mutants in which polyploidy leads to a higher-than-expected increase in chiasma frequency (asy1, mer3, hei10, and mlh3); and mutants in which the rise in chiasma frequency produced by the presence of two extrachromosomal sets is less than doubled (msh5, fancm). In addition, the proportion of class I/class II COs varies after chromosome duplication in the control. The results obtained reveal the potential of colchiploid meiotic mutants for better understanding of the function of key proteins during plant meiosis. This is especially relevant considering that most crops are polyploids.
Collapse
Affiliation(s)
- Pablo Parra-Nunez
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Madrid, 28040, Spain
| | - Miguel Pachon-Penalba
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | | | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Madrid, 28040, Spain
| | - Juan Luis Santos
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Madrid, 28040, Spain
| |
Collapse
|
22
|
Chowdary KVSKA, Saini R, Singh AK. Epigenetic regulation during meiosis and crossover. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1945-1958. [PMID: 38222277 PMCID: PMC10784443 DOI: 10.1007/s12298-023-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various factors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericentromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover in other organisms is also discussed.
Collapse
Affiliation(s)
- K. V. S. K. Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramswaroop Saini
- Department of Biotechnology, Joy University, Vadakangulam, Tirunelveli, Tamil Nadu 627116 India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
23
|
da Costa Lima Moraes A, Mollinari M, Ferreira RCU, Aono A, de Castro Lara LA, Pessoa-Filho M, Barrios SCL, Garcia AAF, do Valle CB, de Souza AP, Vigna BBZ. Advances in genomic characterization of Urochloa humidicola: exploring polyploid inheritance and apomixis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:238. [PMID: 37919432 DOI: 10.1007/s00122-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
KEY MESSAGE We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.
Collapse
Affiliation(s)
- Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | | | - Alexandre Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Anete Pereira de Souza
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
24
|
Bird KA, Pires JC, VanBuren R, Xiong Z, Edger PP. Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus. Genetics 2023; 225:iyad114. [PMID: 37338008 PMCID: PMC10471226 DOI: 10.1093/genetics/iyad114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia 010070, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Gonzalo A, Parra-Nunez P, Bachmann AL, Sanchez-Moran E, Bomblies K. Partial cytological diploidization of neoautotetraploid meiosis by induced cross-over rate reduction. Proc Natl Acad Sci U S A 2023; 120:e2305002120. [PMID: 37549263 PMCID: PMC10434300 DOI: 10.1073/pnas.2305002120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
Polyploids, which arise from whole-genome duplication events, have contributed to genome evolution throughout eukaryotes. Among plants, novel features of neopolyploids include traits that can be evolutionarily or agriculturally beneficial, such as increased abiotic stress tolerance. Thus, in addition to being interesting from an evolutionary perspective, genome duplication is also increasingly recognized as a promising crop improvement tool. However, newly formed (neo)polyploids commonly suffer from fertility problems, which have been attributed to abnormal associations among the multiple homologous chromosome copies during meiosis (multivalents). Here, we test the long-standing hypothesis that reducing meiotic cross-over number may be sufficient to limit multivalent formation, favoring diploid-like bivalent associations (cytological diploidization). To do so, we developed Arabidopsis thaliana lines with low cross-over rates by combining mutations for HEI10 and TAF4b. Double mutants showed a reduction of ~33% in cross-over numbers in diploids without compromising meiotic stability. Neopolyploids derived from the double mutant show a cross-over rate reduction of about 40% relative to wild-type neotetraploids, and groups of four homologs indeed formed fewer multivalents and more bivalents. However, we also show that the reduction in multivalents comes with the cost of a slightly increased frequency of univalents and that it does not rescue neopolyploid fertility. Thus, while our results do show that reducing cross-over rates can reduce multivalent frequency in neopolyploids, they also emphasize that there are additional factors affecting both meiotic stability and neopolyploid fertility that will need to be considered in solving the neopolyploid fertility challenge.
Collapse
Affiliation(s)
- Adrián Gonzalo
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8092Zürich, Switzerland
| | - Pablo Parra-Nunez
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Andreas L. Bachmann
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8092Zürich, Switzerland
| | | | - Kirsten Bomblies
- Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8092Zürich, Switzerland
| |
Collapse
|
26
|
Katche EI, Schierholt A, Schiessl SV, He F, Lv Z, Batley J, Becker HC, Mason AS. Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3 (BETHESDA, MD.) 2023; 13:jkad136. [PMID: 37313757 PMCID: PMC10411605 DOI: 10.1093/g3journal/jkad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Established allopolyploids are known to be genomically stable and fertile. However, in contrast, most newly resynthesized allopolyploids are infertile and meiotically unstable. Identifying the genetic factors responsible for genome stability in newly formed allopolyploid is key to understanding how 2 genomes come together to form a species. One hypothesis is that established allopolyploids may have inherited specific alleles from their diploid progenitors which conferred meiotic stability. Resynthesized Brassica napus lines are often unstable and infertile, unlike B. napus cultivars. We tested this hypothesis by characterizing 41 resynthesized B. napus lines produced by crosses between 8 Brassica rapa and 8 Brassica oleracea lines for copy number variation resulting from nonhomologous recombination events and fertility. We resequenced 8 B. rapa and 5 B. oleracea parent accessions and analyzed 19 resynthesized lines for allelic variation in a list of meiosis gene homologs. SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 3 individuals per line. Self-pollinated seed set and genome stability (number of copy number variants) were significantly affected by the interaction between both B. rapa and B. oleracea parental genotypes. We identified 13 putative meiosis gene candidates which were significantly associated with frequency of copy number variants and which contained putatively harmful mutations in meiosis gene haplotypes for further investigation. Our results support the hypothesis that allelic variants inherited from parental genotypes affect genome stability and fertility in resynthesized rapeseed.
Collapse
Affiliation(s)
- Elizabeth Ihien Katche
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Antje Schierholt
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Sarah-Veronica Schiessl
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main D-60325, Germany
| | - Fei He
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
| | - Zhenling Lv
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Heiko C Becker
- Department of Crop Sciences, Division of Plant Breeding Methodology, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Bonn 53115, Germany
- Department of Plant Breeding, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
27
|
Mata JK, Martin SL, Smith TW. Global biodiversity data suggest allopolyploid plants do not occupy larger ranges or harsher conditions compared with their progenitors. Ecol Evol 2023; 13:e10231. [PMID: 37600489 PMCID: PMC10433117 DOI: 10.1002/ece3.10231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 08/22/2023] Open
Abstract
Understanding the factors determining species' geographical and environmental range is a central question in evolution and ecology, and key for developing conservation and management practices. Shortly after the discovery of polyploidy, just over 100 years ago, it was suggested that polyploids generally have greater range sizes and occur in more extreme conditions than their diploid congeners. This suggestion is now widely accepted in the literature and is attributed to polyploids having an increased capacity for genetic diversity that increases their potential for adaptation and invasiveness. However, the data supporting this idea are mixed. Here, we compare the niche of allopolyploid plants to their progenitor species to determine whether allopolyploidization is associated with increased geographic range or extreme environmental tolerance. Our analysis includes 123 allopolyploid species that exist as only one known ploidy level, with at least one known progenitor species, and at least 50 records in the Global Biodiversity Information Facility (GBIF) database. We used GBIF occurrence data and range modeling tools to quantify the geographic and environmental distribution of these allopolyploids relative to their progenitors. We find no indication that allopolyploid plants occupy more extreme conditions or larger geographic ranges than their progenitors. Data evaluated here generally indicate no significant difference in range between allopolyploids and progenitors, and where significant differences do occur, the progenitors are more likely to exist in extreme conditions. We concluded that the evidence from these data indicate allopolyploidization does not result in larger or more extreme ranges. Thus, allopolyploidization does not have a consistent effect on species distribution, and we conclude it is more likely the content of an allopolyploid's genome rather than polyploidy per se that determines the potential for invasiveness.
Collapse
|
28
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|