1
|
Nadal Bigas J, Fiers M, van der Wal F, Willems LAJ, Willemsen V, Nijveen H, Angenent GC, Immink RGH. The PEBP genes FLOWERING LOCUS T and TERMINAL FLOWER 1 modulate seed dormancy and size. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1049-1067. [PMID: 39827301 PMCID: PMC11850975 DOI: 10.1093/jxb/erae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The phosphatidylethanolamine-binding protein (PEBP) family members FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) are major regulators of plant reproduction. In Arabidopsis, the FT/TFL1 balance defines the timing of floral transition and the determination of inflorescence meristem identity. However, emerging studies have elucidated a plethora of previously unknown functions for these genes in various physiological processes. Here, we characterized potential roles in seed size and dormancy of FT and TFL1 in Arabidopsis thaliana using CRISPR mutants and reporter analysis. Our findings unveiled a role for TFL1 in seed dormancy while confirming the role of FT in regulating this trait. We showed that the interplay between these two genes in seed dormancy is antagonistic, mirroring their roles in flowering time and inflorescence architecture. Analysis of reporter lines demonstrated that FT and TFL1 are partly co-expressed in seeds. Finally, we showed that total seed yield is affected in these mutants. Together, our results highlight the versatility of these two genes beyond their canonical functions. The impact of FT and TFL1 on seed characteristics emphasizes the significance of approaching gene studies from various perspectives, enabling the identification of multifaceted molecular factors that could play a major role in shaping the future of agriculture.
Collapse
Affiliation(s)
- Judit Nadal Bigas
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Froukje van der Wal
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Verma S, Švihlová L, Robert HS. The MADS-box protein SHATTERPROOF 2 regulates TAA1 expression in the gynoecium valve margins. PLANT REPRODUCTION 2025; 38:6. [PMID: 39792298 PMCID: PMC11723901 DOI: 10.1007/s00497-024-00518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
KEY MESSAGE SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal. Despite the acknowledged contribution of auxin to gynoecium development, its precise role in valve margin establishment remains somewhat enigmatic. Our study addresses this gap by uncovering the role of SHP2 as a positive regulator of key auxin biosynthetic genes, TAA1 and YUCCA 4. Genetic and molecular analyses revealed that SHP2 directly regulates the expression of TAA1 in the valve margins of a stage 12 gynoecium with known regulators of flower and ovule development, such as AGAMOUS, SEEDSTICK, and SEPATALA 3. Collectively, our findings define a previously unrecognized function of SHP2 in the regulation of auxin biosynthetic genes during gynoecium development and raise the possibility that the auxin produced under SHP2 regulation may contribute significantly to the valve margin establishment.
Collapse
Affiliation(s)
- Subodh Verma
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Švihlová
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Ebrahimi Naghani S, Šmeringai J, Pleskačová B, Dobisová T, Panzarová K, Pernisová M, Robert HS. Integrative phenotyping analyses reveal the relevance of the phyB-PIF4 pathway in Arabidopsis thaliana reproductive organs at high ambient temperature. BMC PLANT BIOLOGY 2024; 24:721. [PMID: 39075366 PMCID: PMC11285529 DOI: 10.1186/s12870-024-05394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The increasing ambient temperature significantly impacts plant growth, development, and reproduction. Uncovering the temperature-regulating mechanisms in plants is of high importance, for increasing our fundamental understanding of plant thermomorphogenesis, for its potential in applied science, and for aiding plant breeders in improving plant thermoresilience. Thermomorphogenesis, the developmental response to warm temperatures, has been primarily studied in seedlings and in the regulation of flowering time. PHYTOCHROME B and PHYTOCHROME-INTERACTING FACTORs (PIFs), particularly PIF4, are key components of this response. However, the thermoresponse of other adult vegetative tissues and reproductive structures has not been systematically evaluated, especially concerning the involvement of phyB and PIFs. RESULTS We screened the temperature responses of the wild type and several phyB-PIF4 pathway Arabidopsis mutant lines in combined and integrative phenotyping platforms for root growth in soil, shoot, inflorescence, and seed. Our findings demonstrate that phyB-PIF4 is generally involved in the relay of temperature signals throughout plant development, including the reproductive stage. Furthermore, we identified correlative responses to high ambient temperature between shoot and root tissues. This integrative and automated phenotyping was complemented by monitoring the changes in transcript levels in reproductive organs. Transcriptomic profiling of the pistils from plants grown under high ambient temperature identified key elements that may provide insight into the molecular mechanisms behind temperature-induced reduced fertilization rate. These include a downregulation of auxin metabolism, upregulation of genes involved auxin signalling, miRNA156 and miRNA160 pathways, and pollen tube attractants. CONCLUSIONS Our findings demonstrate that phyB-PIF4 involvement in the interpretation of temperature signals is pervasive throughout plant development, including processes directly linked to reproduction.
Collapse
Affiliation(s)
- Shekoufeh Ebrahimi Naghani
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | - Klára Panzarová
- PSI - Photon Systems Instruments, Drasov, 66424, Czech Republic
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
- Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic.
| |
Collapse
|
4
|
Kim KW. Clearing techniques for deeper imaging of plants and plant-microbe interactions. Appl Microsc 2024; 54:5. [PMID: 38816666 PMCID: PMC11139840 DOI: 10.1186/s42649-024-00098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Plant cells are uniquely characterized by exhibiting cell walls, pigments, and phenolic compounds, which can impede microscopic observations by absorbing and scattering light. The concept of clearing was first proposed in the late nineteenth century to address this issue, aiming to render plant specimens transparent using chloral hydrate. Clearing techniques involve chemical procedures that render biological specimens transparent, enabling deep imaging without physical sectioning. Drawing inspiration from clearing techniques for animal specimens, various protocols have been adapted for plant research. These procedures include (i) hydrophobic methods (e.g., Visikol™), (ii) hydrophilic methods (ScaleP and ClearSee), and (iii) hydrogel-based methods (PEA-CLARITY). Initially, clearing techniques for plants were mainly utilized for deep imaging of seeds and leaves of herbaceous plants such as Arabidopsis thaliana and rice. Utilizing cell wall-specific fluorescent dyes for plants and fungi, researchers have documented the post-penetration behavior of plant pathogenic fungi within hosts. State-of-the-art plant clearing techniques, coupled with microbe-specific labeling and high-throughput imaging methods, offer the potential to advance the in planta characterization of plant microbiomes.
Collapse
Affiliation(s)
- Ki Woo Kim
- Department of Forest Ecology and Protection, Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
5
|
Jedličková V, Štefková M, Mandáková T, Sánchez López JF, Sedláček M, Lysak MA, Robert HS. Injection-based hairy root induction and plant regeneration techniques in Brassicaceae. PLANT METHODS 2024; 20:29. [PMID: 38368430 PMCID: PMC10874044 DOI: 10.1186/s13007-024-01150-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Hairy roots constitute a valuable tissue culture system for species that are difficult to propagate through conventional seed-based methods. Moreover, the generation of transgenic plants derived from hairy roots can be facilitated by employing carefully designed hormone-containing media. RESULTS We initiated hairy root formation in the rare crucifer species Asperuginoides axillaris via an injection-based protocol using the Agrobacterium strain C58C1 harboring a hairy root-inducing (Ri) plasmid and successfully regenerated plants from established hairy root lines. Our study confirms the genetic stability of both hairy roots and their derived regenerants and highlights their utility as a permanent source of mitotic chromosomes for cytogenetic investigations. Additionally, we have developed an effective embryo rescue protocol to circumvent seed dormancy issues in A. axillaris seeds. By using inflorescence primary stems of Arabidopsis thaliana and Cardamine hirsuta as starting material, we also established hairy root lines that were subsequently used for regeneration studies. CONCLUSION We developed efficient hairy root transformation and regeneration protocols for various crucifers, namely A. axillaris, A. thaliana, and C. hirsuta. Hairy roots and derived regenerants can serve as a continuous source of plant material for molecular and cytogenetic analyses.
Collapse
Affiliation(s)
- Veronika Jedličková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Štefková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Juan Francisco Sánchez López
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Sedláček
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin A Lysak
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
6
|
Ritchie BA, Uyeno TA, Diaz DRF, Lokdarshi A. A Novel Imaging Protocol for Investigating Arabidopsis thaliana Siliques and Seeds Using X-rays. Bio Protoc 2023; 13:e4839. [PMID: 37817902 PMCID: PMC10560693 DOI: 10.21769/bioprotoc.4839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding silique and seed morphology is essential to developmental biology. Arabidopsis thaliana is one of the best-studied plant models for understanding the genetic determinants of seed count and size. However, the small size of its seeds, and their encasement in a pod known as silique, makes investigating their numbers and morphology both time consuming and tedious. Researchers often report bulk seed weights as an indicator of average seed size, but this overlooks individual seed details. Removal of the seeds and subsequent image analysis is possible, but automated counts are often impossible due to seed pigmentation and shadowing. Traditional ways of analyzing seed count and size, without their removal from the silique, involve lengthy histological processing (24-48 h) and the use of toxic organic solvents. We developed a method that is non-invasive, requires minimal sample processing, and obtains data in a short period of time (1-2 h). This method uses a custom X-ray imaging system to visualize Arabidopsis siliques at different stages of their growth. We show that this process can be successfully used to analyze the overall topology of Arabidopsis siliques and seed size and count. This new method can be easily adapted for other plant models. Key features • No requirement for organic solvents for imaging siliques. • Easy image capture and rapid turnaround time for obtaining data. • Protocol may be easily adapted for other plant models.
Collapse
Affiliation(s)
| | | | | | - Ansul Lokdarshi
- Department of Biology, Valdosta State University, Valdosta, GA, USA
| |
Collapse
|