1
|
Sadegh-Zadeh SA, Sakha H, Movahedi S, Fasihi Harandi A, Ghaffari S, Javanshir E, Ali SA, Hooshanginezhad Z, Hajizadeh R. Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification. Comput Biol Med 2023; 167:107696. [PMID: 37979394 DOI: 10.1016/j.compbiomed.2023.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold promise for enhancing the precision of early mortality prediction in PE patients. OBJECTIVE To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and laboratory variables. METHODS This study utilized diverse oversampling techniques to improve the performance of various machine learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate oversampling methods were chosen for each model based on algorithm characteristics and dataset properties. Predictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves, providing a comprehensive view of models' predictive abilities. RESULTS The findings indicated that the RF model with random oversampling exhibited superior performance among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting the death class. The oversampling approaches effectively equalized the sample distribution among the classes and enhanced the models' performance. CONCLUSIONS The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions regarding the treatment of patients with acute PE. The study underscores the significance of oversampling methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality prediction for PE patients.
Collapse
Affiliation(s)
- Seyed-Ali Sadegh-Zadeh
- Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, England, United Kingdom
| | - Hanie Sakha
- Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, England, United Kingdom
| | | | | | - Samad Ghaffari
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Javanshir
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Syed Ahsan Ali
- Health Education England West Midlands, Birmingham, England, United Kingdom
| | - Zahra Hooshanginezhad
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Hajizadeh
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Stoessel D, Fa R, Artemova S, von Schenck U, Nowparast Rostami H, Madiot PE, Landelle C, Olive F, Foote A, Moreau-Gaudry A, Bosson JL. Early prediction of in-hospital mortality utilizing multivariate predictive modelling of electronic medical records and socio-determinants of health of the first day of hospitalization. BMC Med Inform Decis Mak 2023; 23:259. [PMID: 37957690 PMCID: PMC10644472 DOI: 10.1186/s12911-023-02356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND In France an average of 4% of hospitalized patients die during their hospital stay. To aid medical decision making and the attribution of resources, within a few days of admission the identification of patients at high risk of dying in hospital is essential. METHODS We used de-identified routine patient data available in the first 2 days of hospitalization in a French University Hospital (between 2016 and 2018) to build models predicting in-hospital mortality (at ≥ 2 and ≤ 30 days after admission). We tested nine different machine learning algorithms with repeated 10-fold cross-validation. Models were trained with 283 variables including age, sex, socio-determinants of health, laboratory test results, procedures (Classification of Medical Acts), medications (Anatomical Therapeutic Chemical code), hospital department/unit and home address (urban, rural etc.). The models were evaluated using various performance metrics. The dataset contained 123,729 admissions, of which the outcome for 3542 was all-cause in-hospital mortality and 120,187 admissions (no death reported within 30 days) were controls. RESULTS The support vector machine, logistic regression and Xgboost algorithms demonstrated high discrimination with a balanced accuracy of 0.81 (95%CI 0.80-0.82), 0.82 (95%CI 0.80-0.83) and 0.83 (95%CI 0.80-0.83) and AUC of 0.90 (95%CI 0.88-0.91), 0.90 (95%CI 0.89-0.91) and 0.90 (95%CI 0.89-0.91) respectively. The most predictive variables for in-hospital mortality in all three models were older age (greater risk), and admission with a confirmed appointment (reduced risk). CONCLUSION We propose three highly discriminating machine-learning models that could improve clinical and organizational decision making for adult patients at hospital admission.
Collapse
Affiliation(s)
- Daniel Stoessel
- Life Science Analytics, Clinical Solutions, Elsevier, Berlin, Germany
| | - Rui Fa
- Elsevier Health Analytics, London, UK
| | - Svetlana Artemova
- Public Health Department, CHU Grenoble Alpes, Grenoble, F-38000, France
| | | | | | | | - Caroline Landelle
- Public Health Department, CHU Grenoble Alpes, Grenoble, F-38000, France
- TIMC CNRS UMR5525, Université Grenoble Alpes, Grenoble, F-38000, France
| | - Fréderic Olive
- Public Health Department, CHU Grenoble Alpes, Grenoble, F-38000, France
| | - Alison Foote
- Public Health Department, CHU Grenoble Alpes, Grenoble, F-38000, France
| | - Alexandre Moreau-Gaudry
- Public Health Department, CHU Grenoble Alpes, Grenoble, F-38000, France
- TIMC CNRS UMR5525, Université Grenoble Alpes, Grenoble, F-38000, France
| | - Jean-Luc Bosson
- Public Health Department, CHU Grenoble Alpes, Grenoble, F-38000, France.
- TIMC CNRS UMR5525, Université Grenoble Alpes, Grenoble, F-38000, France.
| |
Collapse
|
3
|
Shi Z, Qian H, Li Y, Wu F, Wu L. Machine learning based regional epidemic transmission risks precaution in digital society. Sci Rep 2022; 12:20499. [PMID: 36443350 PMCID: PMC9705289 DOI: 10.1038/s41598-022-24670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The contact and interaction of human is considered to be one of the important factors affecting the epidemic transmission, and it is critical to model the heterogeneity of individual activities in epidemiological risk assessment. In digital society, massive data makes it possible to implement this idea on large scale. Here, we use the mobile phone signaling to track the users' trajectories and construct contact network to describe the topology of daily contact between individuals dynamically. We show the spatiotemporal contact features of about 7.5 million mobile phone users during the outbreak of COVID-19 in Shanghai, China. Furthermore, the individual feature matrix extracted from contact network enables us to carry out the extreme event learning and predict the regional transmission risk, which can be further decomposed into the risk due to the inflow of people from epidemic hot zones and the risk due to people close contacts within the observing area. This method is much more flexible and adaptive, and can be taken as one of the epidemic precautions before the large-scale outbreak with high efficiency and low cost.
Collapse
Affiliation(s)
- Zhengyu Shi
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Haoqi Qian
- Institute for Global Public Policy, Fudan University, Shanghai, 200433, China.
- LSE-Fudan Research Centre for Global Public Policy, Fudan University, Shanghai, 200433, China.
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, 200433, China.
| | - Yao Li
- Shanghai Ideal Information Industry (Group) Co., Ltd, Fudan University, Shanghai, 200120, China
| | - Fan Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China
- Key Laboratory of Medical Molecular Virology, Fudan University, Shanghai, 200032, China
| | - Libo Wu
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, 200433, China.
- School of Economics, Fudan University, Shanghai, 200433, China.
- Institute for Big Data, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Distance-based arranging oversampling technique for imbalanced data. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Li C, Zhang Z, Ren Y, Nie H, Lei Y, Qiu H, Xu Z, Pu X. Machine learning based early mortality prediction in the emergency department. Int J Med Inform 2021; 155:104570. [PMID: 34547624 DOI: 10.1016/j.ijmedinf.2021.104570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is a great challenge for emergency physicians to early detect the patient's deterioration and prevent unexpected death through a large amount of clinical data, which requires sufficient experience and keen insight. OBJECTIVE To evaluate the performance of machine learning models in quantifying the severity of emergency department (ED) patients and identifying high-risk patients. METHODS Using routinely-available demographics, vital signs and laboratory tests extracted from electronic health records (EHRs), a framework based on machine learning and feature engineering was proposed for mortality prediction. Patients who had one complete record of vital signs and laboratory tests in ED were included. The following patients were excluded: pediatric patients aged < 18 years, pregnant woman, and patients died or were discharged or hospitalized within 12 h after admission. Based on 76 original features extracted, 9 machine learning models were adopted to validate our proposed framework. Their optimal hyper-parameters were fine-tuned using the grid search method. The prediction results were evaluated on performance metrics (i.e., accuracy, area under the curve (AUC), recall and precision) with repeated 5-fold cross-validation (CV). The time window from patient admission to the prediction was analyzed at 12 h, 24 h, 48 h, and entire stay. RESULTS We studied a total of 1114 ED patients with 71.54% (797/1114) survival and 28.46% (317/1114) death in the hospital. The results revealed a more complete time window leads to better prediction performance. Using the entire stay records, the LightGBM model with refined feature engineering demonstrated high discrimination and achieved 93.6% (±0.008) accuracy, 97.6% (±0.003) AUC, 97.1% (±0.008) recall, and 94.2% (±0.006) precision, even if no diagnostic information was utilized. CONCLUSIONS This study quantifies the criticality of ED patients and appears to have significant potential as a clinical decision support tool in assisting physicians in their clinical routine. While the model requires validation before use elsewhere, the same methodology could be used to create a strong model for the new hospital.
Collapse
Affiliation(s)
- Cong Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuo Zhang
- Emergency Department, West China Hospital, Sichuan University, Chengdu, China
| | - Yazhou Ren
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Hu Nie
- Emergency Department, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuqing Lei
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hang Qiu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Zenglin Xu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China; Harbin Institute of Technology Shenzhen, Shenzhen, Guangdong, China
| | - Xiaorong Pu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Lopez-Guede JM, Izquierdo A, Estevez J, Graña M. Active learning for road lane landmark inventory with V-ELM in highly uncontrolled image capture conditions. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.07.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
El-Bouri R, Taylor T, Youssef A, Zhu T, Clifton DA. Machine learning in patient flow: a review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2021; 3:022002. [PMID: 34738074 PMCID: PMC8559147 DOI: 10.1088/2516-1091/abddc5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
This work is a review of the ways in which machine learning has been used in order to plan, improve or aid the problem of moving patients through healthcare services. We decompose the patient flow problem into four subcategories: prediction of demand on a healthcare institution, prediction of the demand and resource required to transfer patients from the emergency department to the hospital, prediction of potential resource required for the treatment and movement of inpatients and prediction of length-of-stay and discharge timing. We argue that there are benefits to both approaches of considering the healthcare institution as a whole as well as the patient by patient case and that ideally a combination of these would be best for improving patient flow through hospitals. We also argue that it is essential for there to be a shared dataset that will allow researchers to benchmark their algorithms on and thereby allow future researchers to build on that which has already been done. We conclude that machine learning for the improvement of patient flow is still a young field with very few papers tailor-making machine learning methods for the problem being considered. Future works should consider the need to transfer algorithms trained on a dataset to multiple hospitals and allowing for dynamic algorithms which will allow real-time decision-making to help clinical staff on the shop floor.
Collapse
Affiliation(s)
- Rasheed El-Bouri
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Thomas Taylor
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Alexey Youssef
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Tingting Zhu
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - David A Clifton
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Son LH, Ciaramella A, Thu Huyen DT, Staiano A, Tuan TM, Van Hai P. Predictive reliability and validity of hospital cost analysis with dynamic neural network and genetic algorithm. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04876-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Cho P, Lee M, Chang W. Instance-based entropy fuzzy support vector machine for imbalanced data. Pattern Anal Appl 2019. [DOI: 10.1007/s10044-019-00851-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|