1
|
Lu Y, Zhang R, Jiang T, Fu Q, Cui Z, Wu H. TrGPCR: GPCR-Ligand Binding Affinity Prediction Based on Dynamic Deep Transfer Learning. IEEE J Biomed Health Inform 2025; 29:1613-1624. [PMID: 37610904 DOI: 10.1109/jbhi.2023.3307928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Predicting G protein-coupled receptor (GPCR) -ligand binding affinity plays a crucial role in drug development. However, determining GPCR-ligand binding affinities is time-consuming and resource-intensive. Although many studies used data-driven methods to predict binding affinity, most of these methods required protein 3D structure, which was often unknown. Moreover, part of these studies only considered the sequence characteristics of the protein, ignoring the secondary structure of the protein. The number of known GPCR for affinity prediction is only a few thousand, which is insufficient for deep learning training. Therefore, this study aimed to propose a deep transfer learning method called TrGPCR, which used dynamic transfer learning to solve the problem of insufficient GPCR data. We used the Binding Database (BindingDB) as the source domain and the GLASS (GPCR-Ligand Association) database as the target domain. We also introduced protein secondary structures, called pockets, as features to predict binding affinities. Compared with DeepDTA, our model improved by 5.2% on RMSE (root mean square error) and 4.5% on MAE (mean squared error).
Collapse
|
2
|
Tang X, Zhou Y, Yang M, Li W. TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks. IEEE Trans Nanobioscience 2024; 23:572-578. [PMID: 39133595 DOI: 10.1109/tnb.2024.3441590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
Collapse
|
3
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
4
|
Tian C, Wang L, Cui Z, Wu H. GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction. Comput Biol Chem 2024; 108:107982. [PMID: 38039800 DOI: 10.1016/j.compbiolchem.2023.107982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Drug target affinity prediction (DTA) is critical to the success of drug development. While numerous machine learning methods have been developed for this task, there remains a necessity to further enhance the accuracy and reliability of predictions. Considerable bias in drug target binding prediction may result due to missing structural information or missing information. In addition, current methods focus only on simulating individual non-covalent interactions between drugs and proteins, thereby neglecting the intricate interplay among different drugs and their interactions with proteins. GTAMP-DTA combines special Attention mechanisms, assigning each atom or amino acid an attention vector. Interactions between drug forms and protein forms were considered to capture information about their interactions. And fusion transformer was used to learn protein characterization from raw amino acid sequences, which were then merged with molecular map features extracted from SMILES. A self-supervised pre-trained embedding that uses pre-trained transformers to encode drug and protein attributes is introduced in order to address the lack of labeled data. Experimental results demonstrate that our model outperforms state-of-the-art methods on both the Davis and KIBA datasets. Additionally, the model's performance undergoes evaluation using three distinct pooling layers (max-pooling, mean-pooling, sum-pooling) along with variations of the attention mechanism. GTAMP-DTA shows significant performance improvements compared to other methods.
Collapse
Affiliation(s)
- Chuangchuang Tian
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luping Wang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
5
|
Jiao CN, Zhou F, Liu BM, Zheng CH, Liu JX, Gao YL. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1110-1121. [PMID: 38055359 DOI: 10.1109/jbhi.2023.3336247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
Collapse
|
6
|
Nazli A, Qiu J, Tang Z, He Y. Recent Advances and Techniques for Identifying Novel Antibacterial Targets. Curr Med Chem 2024; 31:464-501. [PMID: 36734893 DOI: 10.2174/0929867330666230123143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND With the emergence of drug-resistant bacteria, the development of new antibiotics is urgently required. Target-based drug discovery is the most frequently employed approach for the drug development process. However, traditional drug target identification techniques are costly and time-consuming. As research continues, innovative approaches for antibacterial target identification have been developed which enabled us to discover drug targets more easily and quickly. METHODS In this review, methods for finding drug targets from omics databases have been discussed in detail including principles, procedures, advantages, and potential limitations. The role of phage-driven and bacterial cytological profiling approaches is also discussed. Moreover, current article demonstrates the advancements being made in the establishment of computational tools, machine learning algorithms, and databases for antibacterial target identification. RESULTS Bacterial drug targets successfully identified by employing these aforementioned techniques are described as well. CONCLUSION The goal of this review is to attract the interest of synthetic chemists, biologists, and computational researchers to discuss and improve these methods for easier and quicker development of new drugs.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
7
|
Wu H, Liu J, Jiang T, Zou Q, Qi S, Cui Z, Tiwari P, Ding Y. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw 2024; 169:623-636. [PMID: 37976593 DOI: 10.1016/j.neunet.2023.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Tengsheng Jiang
- Gusu School, Nanjing Medical University, Suzhou, 215009, China.
| | - Quan Zou
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Shujie Qi
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Sweden.
| | - Yijie Ding
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| |
Collapse
|
8
|
Zhang J, Xie M. Graph regularized non-negative matrix factorization with
L
2
,
1
norm regularization terms for drug-target interactions prediction. BMC Bioinformatics 2023; 24:375. [PMID: 37789278 PMCID: PMC10548602 DOI: 10.1186/s12859-023-05496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Identifying drug-target interactions (DTIs) plays a key role in drug development. Traditional wet experiments to identify DTIs are costly and time consuming. Effective computational methods to predict DTIs are useful to speed up the process of drug discovery. A variety of non-negativity matrix factorization based methods are proposed to predict DTIs, but most of them overlooked the sparsity of feature matrices and the convergence of adopted matrix factorization algorithms, therefore their performances can be further improved. RESULTS In order to predict DTIs more accurately, we propose a novel method iPALM-DLMF. iPALM-DLMF models DTIs prediction as a problem of non-negative matrix factorization with graph dual regularization terms andL 2 , 1 norm regularization terms. The graph dual regularization terms are used to integrate the information from the drug similarity matrix and the target similarity matrix, andL 2 , 1 norm regularization terms are used to ensure the sparsity of the feature matrices obtained by non-negative matrix factorization. To solve the model, iPALM-DLMF adopts non-negative double singular value decomposition to initialize the nonnegative matrix factorization, and an inertial Proximal Alternating Linearized Minimization iterating process, which has been proved to converge to a KKT point, to obtain the final result of the matrix factorization. Extensive experimental results show that iPALM-DLMF has better performance than other state-of-the-art methods. In case studies, in 50 highest-scoring proteins targeted by the drug gabapentin predicted by iPALM-DLMF, 46 have been validated, and in 50 highest-scoring drugs targeting prostaglandin-endoperoxide synthase 2 predicted by iPALM-DLMF, 47 have been validated.
Collapse
Affiliation(s)
- Junjun Zhang
- Key Laboratory of Computing and Stochastic Mathematics(LCSM) (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081 China
| | - Minzhu Xie
- Key Laboratory of Computing and Stochastic Mathematics(LCSM) (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081 China
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081 China
| |
Collapse
|
9
|
Liu Y, Guan S, Jiang T, Fu Q, Ma J, Cui Z, Ding Y, Wu H. DNA protein binding recognition based on lifelong learning. Comput Biol Med 2023; 164:107094. [PMID: 37459792 DOI: 10.1016/j.compbiomed.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 09/09/2023]
Abstract
In recent years, research in the field of bioinformatics has focused on predicting the raw sequences of proteins, and some scholars consider DNA-binding protein prediction as a classification task. Many statistical and machine learning-based methods have been widely used in DNA-binding proteins research. The aforementioned methods are indeed more efficient than those based on manual classification, but there is still room for improvement in terms of prediction accuracy and speed. In this study, researchers used Average Blocks, Discrete Cosine Transform, Discrete Wavelet Transform, Global encoding, Normalized Moreau-Broto Autocorrelation and Pseudo position-specific scoring matrix to extract evolutionary features. A dynamic deep network based on lifelong learning architecture was then proposed in order to fuse six features and thus allow for more efficient classification of DNA-binding proteins. The multi-feature fusion allows for a more accurate description of the desired protein information than single features. This model offers a fresh perspective on the dichotomous classification problem in bioinformatics and broadens the application field of lifelong learning. The researchers ran trials on three datasets and contrasted them with other classification techniques to show the model's effectiveness in this study. The findings demonstrated that the model used in this research was superior to other approaches in terms of single-sample specificity (81.0%, 83.0%) and single-sample sensitivity (82.4%, 90.7%), and achieves high accuracy on the benchmark dataset (88.4%, 80.0%, and 76.6%).
Collapse
Affiliation(s)
- Yongsan Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - ShiXuan Guan
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - TengSheng Jiang
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qiming Fu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jieming Ma
- School of Intelligent Engineering, Xijiao Liverpool University, Suzhou, 215123, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
10
|
Zhou F, Yin MM, Jiao CN, Zhao JX, Zheng CH, Liu JX. Predicting miRNA-Disease Associations Through Deep Autoencoder With Multiple Kernel Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5570-5579. [PMID: 34860656 DOI: 10.1109/tnnls.2021.3129772] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining microRNA (miRNA)-disease associations (MDAs) is an integral part in the prevention, diagnosis, and treatment of complex diseases. However, wet experiments to discern MDAs are inefficient and expensive. Hence, the development of reliable and efficient data integrative models for predicting MDAs is of significant meaning. In the present work, a novel deep learning method for predicting MDAs through deep autoencoder with multiple kernel learning (DAEMKL) is presented. Above all, DAEMKL applies multiple kernel learning (MKL) in miRNA space and disease space to construct miRNA similarity network and disease similarity network, respectively. Then, for each disease or miRNA, its feature representation is learned from the miRNA similarity network and disease similarity network via the regression model. After that, the integrated miRNA feature representation and disease feature representation are input into deep autoencoder (DAE). Furthermore, the novel MDAs are predicted through reconstruction error. Ultimately, the AUC results show that DAEMKL achieves outstanding performance. In addition, case studies of three complex diseases further prove that DAEMKL has excellent predictive performance and can discover a large number of underlying MDAs. On the whole, our method DAEMKL is an effective method to identify MDAs.
Collapse
|
11
|
Han K, Wang J, Wang Y, Zhang L, Yu M, Xie F, Zheng D, Xu Y, Ding Y, Wan J. A review of methods for predicting DNA N6-methyladenine sites. Brief Bioinform 2023; 24:6887111. [PMID: 36502371 DOI: 10.1093/bib/bbac514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Deoxyribonucleic acid(DNA) N6-methyladenine plays a vital role in various biological processes, and the accurate identification of its site can provide a more comprehensive understanding of its biological effects. There are several methods for 6mA site prediction. With the continuous development of technology, traditional techniques with the high costs and low efficiencies are gradually being replaced by computer methods. Computer methods that are widely used can be divided into two categories: traditional machine learning and deep learning methods. We first list some existing experimental methods for predicting the 6mA site, then analyze the general process from sequence input to results in computer methods and review existing model architectures. Finally, the results were summarized and compared to facilitate subsequent researchers in choosing the most suitable method for their work.
Collapse
Affiliation(s)
- Ke Han
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China.,College of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Jianchun Wang
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Yu Wang
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Lei Zhang
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Mengyao Yu
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Fang Xie
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Dequan Zheng
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Yaoqun Xu
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Jie Wan
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
12
|
Ding Y, He W, Tang J, Zou Q, Guo F. Laplacian Regularized Sparse Representation Based Classifier for Identifying DNA N4-Methylcytosine Sites via L 2,1/2-Matrix Norm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:500-511. [PMID: 34882559 DOI: 10.1109/tcbb.2021.3133309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
N4-methylcytosine (4mC) is one of important epigenetic modifications in DNA sequences. Detecting 4mC sites is time-consuming. The computational method based on machine learning has provided effective help for identifying 4mC. To further improve the performance of prediction, we propose a Laplacian Regularized Sparse Representation based Classifier with L2,1/2-matrix norm (LapRSRC). We also utilize kernel trick to derive the kernel LapRSRC for nonlinear modeling. Matrix factorization technology is employed to solve the sparse representation coefficients of all test samples in the training set. And an efficient iterative algorithm is proposed to solve the objective function. We implement our model on six benchmark datasets of 4mC and eight UCI datasets to evaluate performance. The results show that the performance of our method is better or comparable.
Collapse
|
13
|
Gao W, Xu D, Li H, Du J, Wang G, Li D. Identification of adaptor proteins by incorporating deep learning and PSSM profiles. Methods 2023; 209:10-17. [PMID: 36427763 DOI: 10.1016/j.ymeth.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Adaptor proteins, also known as signal transduction adaptor proteins, are important proteins in signal transduction pathways, and play a role in connecting signal proteins for signal transduction between cells. Studies have shown that adaptor proteins are closely related to some diseases, such as tumors and diabetes. Therefore, it is very meaningful to construct a relevant model to accurately identify adaptor proteins. In recent years, many studies have used a position-specific scoring matrix (PSSM) and neural network methods to identify adaptor proteins. However, ordinary neural network models cannot correlate the contextual information in PSSM profiles well, so these studies usually process 20×N (N > 20) PSSM into 20×20 dimensions, which results in the loss of a large amount of protein information; This research proposes an efficient method that combines one-dimensional convolution (1-D CNN) and a bidirectional long short-term memory network (biLSTM) to identify adaptor proteins. The complete PSSM profiles are the input of the model, and the complete information of the protein is retained during the training process. We perform cross-validation during model training and test the performance of the model on an independent test set; in the data set with 1224 adaptor proteins and 11,078 non-adaptor proteins, five indicators including specificity, sensitivity, accuracy, area under the receiver operating characteristic curve (AUC) metric and Matthews correlation coefficient (MCC), were employed to evaluate model performance. On the independent test set, the specificity, sensitivity, accuracy and MCC were 0.817, 0.865, 0.823 and 0.465, respectively. Those results show that our method is better than the state-of-the art methods. This study is committed to improve the accuracy of adaptor protein identification, and laid a foundation for further research on diseases related to adaptor protein. This research provided a new idea for the application of deep learning related models in bioinformatics and computational biology.
Collapse
Affiliation(s)
- Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Junping Du
- Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China.
| | - Dan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China.
| |
Collapse
|
14
|
Zhang J, Xie M. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction. BMC Bioinformatics 2022; 23:564. [PMID: 36581822 PMCID: PMC9798666 DOI: 10.1186/s12859-022-05119-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Identifying drug-target interactions (DTIs) plays a key role in drug development. Traditional wet experiments to identify DTIs are expensive and time consuming. Effective computational methods to predict DTIs are useful to narrow the searching scope of potential drugs and speed up the process of drug discovery. There are a variety of non-negativity matrix factorization based methods to predict DTIs, but the convergence of the algorithms used in the matrix factorization are often overlooked and the results can be further improved. RESULTS In order to predict DTIs more accurately and quickly, we propose an alternating direction algorithm to solve graph regularized non-negative matrix factorization with prior knowledge consistency constraint (ADA-GRMFC). Based on known DTIs, drug chemical structures and target sequences, ADA-GRMFC at first constructs a DTI matrix, a drug similarity matrix and a target similarity matrix. Then DTI prediction is modeled as the non-negative factorization of the DTI matrix with graph dual regularization terms and a prior knowledge consistency constraint. The graph dual regularization terms are used to integrate the information from the drug similarity matrix and the target similarity matrix, and the prior knowledge consistency constraint is used to ensure the matrix decomposition result should be consistent with the prior knowledge of known DTIs. Finally, an alternating direction algorithm is used to solve the matrix factorization. Furthermore, we prove that the algorithm can converge to a stationary point. Extensive experimental results of 10-fold cross-validation show that ADA-GRMFC has better performance than other state-of-the-art methods. In the case study, ADA-GRMFC is also used to predict the targets interacting with the drug olanzapine, and all of the 10 highest-scoring targets have been accurately predicted. In predicting drug interactions with target estrogen receptors alpha, 17 of the 20 highest-scoring drugs have been validated.
Collapse
Affiliation(s)
- Junjun Zhang
- grid.411427.50000 0001 0089 3695Key Laboratory of Computing and Stochastic Mathematics (LCSM) (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081 China
| | - Minzhu Xie
- grid.411427.50000 0001 0089 3695Key Laboratory of Computing and Stochastic Mathematics (LCSM) (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081 China ,grid.411427.50000 0001 0089 3695College of Information Science and Engineering, Hunan Normal University, Changsha, 410081 China
| |
Collapse
|
15
|
Zhao BW, Su XR, Hu PW, Ma YP, Zhou X, Hu L. A geometric deep learning framework for drug repositioning over heterogeneous information networks. Brief Bioinform 2022; 23:6692552. [PMID: 36125202 DOI: 10.1093/bib/bbac384] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug repositioning (DR) is a promising strategy to discover new indicators of approved drugs with artificial intelligence techniques, thus improving traditional drug discovery and development. However, most of DR computational methods fall short of taking into account the non-Euclidean nature of biomedical network data. To overcome this problem, a deep learning framework, namely DDAGDL, is proposed to predict drug-drug associations (DDAs) by using geometric deep learning (GDL) over heterogeneous information network (HIN). Incorporating complex biological information into the topological structure of HIN, DDAGDL effectively learns the smoothed representations of drugs and diseases with an attention mechanism. Experiment results demonstrate the superior performance of DDAGDL on three real-world datasets under 10-fold cross-validation when compared with state-of-the-art DR methods in terms of several evaluation metrics. Our case studies and molecular docking experiments indicate that DDAGDL is a promising DR tool that gains new insights into exploiting the geometric prior knowledge for improved efficacy.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Peng-Wei Hu
- Merck China Innovation Hub, Shanghai 200000, China
| | - Yu-Peng Ma
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Xi Zhou
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
| |
Collapse
|
16
|
Qian Y, Ding Y, Zou Q, Guo F. Identification of drug-side effect association via restricted Boltzmann machines with penalized term. Brief Bioinform 2022; 23:6762741. [PMID: 36259601 DOI: 10.1093/bib/bbac458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022] Open
Abstract
In the entire life cycle of drug development, the side effect is one of the major failure factors. Severe side effects of drugs that go undetected until the post-marketing stage leads to around two million patient morbidities every year in the United States. Therefore, there is an urgent need for a method to predict side effects of approved drugs and new drugs. Following this need, we present a new predictor for finding side effects of drugs. Firstly, multiple similarity matrices are constructed based on the association profile feature and drug chemical structure information. Secondly, these similarity matrices are integrated by Centered Kernel Alignment-based Multiple Kernel Learning algorithm. Then, Weighted K nearest known neighbors is utilized to complement the adjacency matrix. Next, we construct Restricted Boltzmann machines (RBM) in drug space and side effect space, respectively, and apply a penalized maximum likelihood approach to train model. At last, the average decision rule was adopted to integrate predictions from RBMs. Comparison results and case studies demonstrate, with four benchmark datasets, that our method can give a more accurate and reliable prediction result.
Collapse
Affiliation(s)
- Yuqing Qian
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, PR China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
17
|
Wang H, Guo F, Du M, Wang G, Cao C. A novel method for drug-target interaction prediction based on graph transformers model. BMC Bioinformatics 2022; 23:459. [PMID: 36329406 PMCID: PMC9635108 DOI: 10.1186/s12859-022-04812-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target. RESULTS We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction. CONCLUSIONS This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.
Collapse
Affiliation(s)
- Hongmei Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Fang Guo
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Mengyan Du
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China
| | - Guishen Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun, China.
| | - Chen Cao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China. .,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Pu Y, Li J, Tang J, Guo F. DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2760-2769. [PMID: 34379594 DOI: 10.1109/tcbb.2021.3103966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification of drug-target interaction (DTI) is the most important issue in the broad field of drug discovery. Using purely biological experiments to verify drug-target binding profiles takes lots of time and effort, so computational technologies for this task obviously have great benefits in reducing the drug search space. Most of computational methods to predict DTI are proposed to solve a binary classification problem, which ignore the influence of binding strength. Therefore, drug-target binding affinity prediction is still a challenging issue. Currently, lots of studies only extract sequence information that lacks feature-rich representation, but we consider more spatial features in order to merge various data in drug and target spaces. In this study, we propose a two-stage deep neural network ensemble model for detecting drug-target binding affinity, called DeepFusionDTA, via various information analysis modules. First stage is to utilize sequence and structure information to generate fusion feature map of candidate protein and drug pair through various analysis modules based deep learning. Second stage is to apply bagging-based ensemble learning strategy for regression prediction, and we obtain outstanding results by combining the advantages of various algorithms in efficient feature abstraction and regression calculation. Importantly, we evaluate our novel method, DeepFusionDTA, which delivers 1.5 percent CI increase on KIBA dataset and 1.0 percent increase on Davis dataset, by comparing with existing prediction tools, DeepDTA. Furthermore, the ideas we have offered can be applied to in-silico screening of the interaction space, to provide novel DTIs which can be experimentally pursued. The codes and data are available from https://github.com/guofei-tju/DeepFusionDTA.
Collapse
|
19
|
Feng C, Wu J, Wei H, Xu L, Zou Q. CRCF: A Method of Identifying Secretory Proteins of Malaria Parasites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2149-2157. [PMID: 34061749 DOI: 10.1109/tcbb.2021.3085589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Malaria is a mosquito-borne disease that results in millions of cases and deaths annually. The development of a fast computational method that identifies secretory proteins of the malaria parasite is important for research on antimalarial drugs and vaccines. Thus, a method was developed to identify the secretory proteins of malaria parasites. In this method, a reduced alphabet was selected to recode the original protein sequence. A feature synthesis method was used to synthesise three different types of feature information. Finally, the random forest method was used as a classifier to identify the secretory proteins. In addition, a web server was developed to share the proposed algorithm. Experiments using the benchmark dataset demonstrated that the overall accuracy achieved by the proposed method was greater than 97.8 percent using the 10-fold cross-validation method. Furthermore, the reduced schemes and characteristic performance analyses are discussed.
Collapse
|
20
|
Ai C, Yang H, Ding Y, Tang J, Guo F. A multi-layer multi-kernel neural network for determining associations between non-coding RNAs and diseases. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
DTIP-TC2A: An analytical framework for drug-target interactions prediction methods. Comput Biol Chem 2022; 99:107707. [DOI: 10.1016/j.compbiolchem.2022.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
|
22
|
Zhao S, Pan Q, Zou Q, Ju Y, Shi L, Su X. Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7518779. [PMID: 35422876 PMCID: PMC9005296 DOI: 10.1155/2022/7518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and position variability, although the performance of the prediction model has been continuously improved, there is still a lot of room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews' correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qingfeng Pan
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
23
|
HKAM-MKM: A hybrid kernel alignment maximization-based multiple kernel model for identifying DNA-binding proteins. Comput Biol Med 2022; 145:105395. [PMID: 35334314 DOI: 10.1016/j.compbiomed.2022.105395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
The identification of DNA-binding proteins (DBPs) has always been a hot issue in the field of sequence classification. However, considering that the experimental identification method is very resource-intensive, the construction of a computational prediction model is worthwhile. This study developed and evaluated a hybrid kernel alignment maximization-based multiple kernel model (HKAM-MKM) for predicting DBPs. First, we collected two datasets and performed feature extraction on the sequences to obtain six feature groups, and then constructed the corresponding kernels. To ensure the effective utilisation of the base kernel and avoid ignoring the difference between the sample and its neighbours, we proposed local kernel alignment to calculate the kernel between the sample and its neighbours, with each sample as the centre. We combined the global and local kernel alignments to develop a hybrid kernel alignment model, and balance the relationship between the two through parameters. By maximising the hybrid kernel alignment value, we obtained the weight of each kernel and then linearly combined the kernels in the form of weights. Finally, the fused kernel was input into a support vector machine for training and prediction. Finally, in the independent test sets PDB186 and PDB2272, we obtained the highest Matthew's correlation coefficient (MCC) (0.768 and 0.5962, respectively) and the highest accuracy (87.1% and 78.43%, respectively), which were superior to the other predictors. Therefore, HKAM-MKM is an efficient prediction tool for DBPs.
Collapse
|
24
|
Jiao S, Chen Z, Zhang L, Zhou X, Shi L. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning. Amino Acids 2022; 54:799-809. [PMID: 35286461 DOI: 10.1007/s00726-022-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Autophagy plays an important role in biological evolution and is regulated by many autophagy proteins. Accurate identification of autophagy proteins is crucially important to reveal their biological functions. Due to the expense and labor cost of experimental methods, it is urgent to develop automated, accurate and reliable sequence-based computational tools to enable the identification of novel autophagy proteins among numerous proteins and peptides. For this purpose, a new predictor named ATGPred-FL was proposed for the efficient identification of autophagy proteins. We investigated various sequence-based feature descriptors and adopted the feature learning method to generate corresponding, more informative probability features. Then, a two-step feature selection strategy based on accuracy was utilized to remove irrelevant and redundant features, leading to the most discriminative 14-dimensional feature set. The final predictor was built using a support vector machine classifier, which performed favorably on both the training and testing sets with accuracy values of 94.40% and 90.50%, respectively. ATGPred-FL is the first ATG machine learning predictor based on protein primary sequences. We envision that ATGPred-FL will be an effective and useful tool for autophagy protein identification, and it is available for free at http://lab.malab.cn/~acy/ATGPred-FL , the source code and datasets are accessible at https://github.com/jiaoshihu/ATGPred .
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen, 518055, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 61005, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, 150001, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, No 415, Fengyang Road, Huangpu District, Shanghai, 210000, China.
| |
Collapse
|
25
|
Sun J, Lu Y, Cui L, Fu Q, Wu H, Chen J. A Method of Optimizing Weight Allocation in Data Integration Based on Q-Learning for Drug-Target Interaction Prediction. Front Cell Dev Biol 2022; 10:794413. [PMID: 35356288 PMCID: PMC8959213 DOI: 10.3389/fcell.2022.794413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022] Open
Abstract
Calculating and predicting drug-target interactions (DTIs) is a crucial step in the field of novel drug discovery. Nowadays, many models have improved the prediction performance of DTIs by fusing heterogeneous information, such as drug chemical structure and target protein sequence and so on. However, in the process of fusion, how to allocate the weight of heterogeneous information reasonably is a huge challenge. In this paper, we propose a model based on Q-learning algorithm and Neighborhood Regularized Logistic Matrix Factorization (QLNRLMF) to predict DTIs. First, we obtain three different drug-drug similarity matrices and three different target-target similarity matrices by using different similarity calculation methods based on heterogeneous data, including drug chemical structure, target protein sequence and drug-target interactions. Then, we initialize a set of weights for the drug-drug similarity matrices and target-target similarity matrices respectively, and optimize them through Q-learning algorithm. When the optimal weights are obtained, a new drug-drug similarity matrix and a new drug-drug similarity matrix are obtained by linear combination. Finally, the drug target interaction matrix, the new drug-drug similarity matrices and the target-target similarity matrices are used as inputs to the Neighborhood Regularized Logistic Matrix Factorization (NRLMF) model for DTIs. Compared with the existing six methods of NetLapRLS, BLM-NII, WNN-GIP, KBMF2K, CMF, and NRLMF, our proposed method has achieved better effect in the four benchmark datasets, including enzymes(E), nuclear receptors (NR), ion channels (IC) and G protein coupled receptors (GPCR).
Collapse
Affiliation(s)
- Jiacheng Sun
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
| | - You Lu
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
- *Correspondence: You Lu, ; Jianping Chen,
| | - Linqian Cui
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
| | - Qiming Fu
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
| | - Jianping Chen
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- School of Architecture and Urban Planning, Suzhou University of Science and Technology, Suzhou, China
- *Correspondence: You Lu, ; Jianping Chen,
| |
Collapse
|
26
|
Meng C, Ju Y, Shi H. TMPpred: A support vector machine-based thermophilic protein identifier. Anal Biochem 2022; 645:114625. [PMID: 35218736 DOI: 10.1016/j.ab.2022.114625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022]
Abstract
MOTIVATION The thermostability of proteins will cause them to break the temperature binding and play more functions. Using machine learning, we explored the mechanism of and reasons for protein thermostability characteristics. RESULTS Different from other methods that only pursue the performance of models, we aim to find important features so as to provide a powerful reference for in vitro experiments. We transformed this problem into a binary classification problem, that is, the distinction between thermophilic proteins and nonthermophilic proteins. Using support vector machine-based model construction and analysis, we inferred that Gly, Ala, Ser and Thr may be the most important components at the residue level that determine the thermal stability of proteins. It is also noteworthy that our proposed model obtains an Sn of 0.892, an Sp of 0.857, an ACC of 0.87566 and an AUC of 0.874. To facilitate other researchers, we wrapped our model and deployed it as a web server, which is accessible at http://112.124.26.17:7000/TMPpred/index.html.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Hohhot, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China.
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| |
Collapse
|
27
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
28
|
Ding Y, Tang J, Guo F, Zou Q. Identification of drug-target interactions via multiple kernel-based triple collaborative matrix factorization. Brief Bioinform 2022; 23:6520305. [PMID: 35134117 DOI: 10.1093/bib/bbab582] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Targeted drugs have been applied to the treatment of cancer on a large scale, and some patients have certain therapeutic effects. It is a time-consuming task to detect drug-target interactions (DTIs) through biochemical experiments. At present, machine learning (ML) has been widely applied in large-scale drug screening. However, there are few methods for multiple information fusion. We propose a multiple kernel-based triple collaborative matrix factorization (MK-TCMF) method to predict DTIs. The multiple kernel matrices (contain chemical, biological and clinical information) are integrated via multi-kernel learning (MKL) algorithm. And the original adjacency matrix of DTIs could be decomposed into three matrices, including the latent feature matrix of the drug space, latent feature matrix of the target space and the bi-projection matrix (used to join the two feature spaces). To obtain better prediction performance, MKL algorithm can regulate the weight of each kernel matrix according to the prediction error. The weights of drug side-effects and target sequence are the highest. Compared with other computational methods, our model has better performance on four test data sets.
Collapse
Affiliation(s)
- Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, P.R.China
| | - Jijun Tang
- Department of Computational Science and Engineering, University of South Carolina, Columbia, U.S
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, P.R.China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, P.R.China
| |
Collapse
|
29
|
Zhao Z, Yang W, Zhai Y, Liang Y, Zhao Y. Identify DNA-Binding Proteins Through the Extreme Gradient Boosting Algorithm. Front Genet 2022; 12:821996. [PMID: 35154264 PMCID: PMC8837382 DOI: 10.3389/fgene.2021.821996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The exploration of DNA-binding proteins (DBPs) is an important aspect of studying biological life activities. Research on life activities requires the support of scientific research results on DBPs. The decline in many life activities is closely related to DBPs. Generally, the detection method for identifying DBPs is achieved through biochemical experiments. This method is inefficient and requires considerable manpower, material resources and time. At present, several computational approaches have been developed to detect DBPs, among which machine learning (ML) algorithm-based computational techniques have shown excellent performance. In our experiments, our method uses fewer features and simpler recognition methods than other methods and simultaneously obtains satisfactory results. First, we use six feature extraction methods to extract sequence features from the same group of DBPs. Then, this feature information is spliced together, and the data are standardized. Finally, the extreme gradient boosting (XGBoost) model is used to construct an effective predictive model. Compared with other excellent methods, our proposed method has achieved better results. The accuracy achieved by our method is 78.26% for PDB2272 and 85.48% for PDB186. The accuracy of the experimental results achieved by our strategy is similar to that of previous detection methods.
Collapse
Affiliation(s)
- Ziye Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yingjian Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| |
Collapse
|
30
|
Gong Y, Dong B, Zhang Z, Zhai Y, Gao B, Zhang T, Zhang J. VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost. Front Genet 2022; 12:808856. [PMID: 35047020 PMCID: PMC8762342 DOI: 10.3389/fgene.2021.808856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew's correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.
Collapse
Affiliation(s)
- Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Ye Q, Zhang X, Lin X. Drug-target interaction prediction via multiple classification strategies. BMC Bioinformatics 2022; 22:461. [PMID: 35057737 PMCID: PMC8772044 DOI: 10.1186/s12859-021-04366-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Computational prediction of the interaction between drugs and protein targets is very important for the new drug discovery, as the experimental determination of drug-target interaction (DTI) is expensive and time-consuming. However, different protein targets are with very different numbers of interactions. Specifically, most interactions focus on only a few targets. As a result, targets with larger numbers of interactions could own enough positive samples for predicting their interactions but the positive samples for targets with smaller numbers of interactions could be not enough. Only using a classification strategy may not be able to deal with the above two cases at the same time. To overcome the above problem, in this paper, a drug-target interaction prediction method based on multiple classification strategies (MCSDTI) is proposed. In MCSDTI, targets are firstly divided into two parts according to the number of interactions of the targets, where one part contains targets with smaller numbers of interactions (TWSNI) and another part contains targets with larger numbers of interactions (TWLNI). And then different classification strategies are respectively designed for TWSNI and TWLNI to predict the interaction. Furthermore, TWSNI and TWLNI are evaluated independently, which can overcome the problem that result could be mainly determined by targets with large numbers of interactions when all targets are evaluated together. RESULTS We propose a new drug-target interaction (MCSDTI) prediction method, which uses multiple classification strategies. MCSDTI is tested on five DTI datasets, such as nuclear receptors (NR), ion channels (IC), G protein coupled receptors (GPCR), enzymes (E), and drug bank (DB). Experiments show that the AUCs of our method are respectively 3.31%, 1.27%, 2.02%, 2.02% and 1.04% higher than that of the second best methods on NR, IC, GPCR and E for TWLNI; And AUCs of our method are respectively 1.00%, 3.20% and 2.70% higher than the second best methods on NR, IC, and E for TWSNI. CONCLUSION MCSDTI is a competitive method compared to the previous methods for all target parts on most datasets, which administrates that different classification strategies for different target parts is an effective way to improve the effectiveness of DTI prediction.
Collapse
Affiliation(s)
- Qing Ye
- Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaolong Zhang
- Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China.
| | - Xiaoli Lin
- Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Zhang Z, Gong Y, Gao B, Li H, Gao W, Zhao Y, Dong B. SNAREs-SAP: SNARE Proteins Identification With PSSM Profiles. Front Genet 2022; 12:809001. [PMID: 34987554 PMCID: PMC8721734 DOI: 10.3389/fgene.2021.809001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) proteins are a large family of transmembrane proteins located in organelles and vesicles. The important roles of SNARE proteins include initiating the vesicle fusion process and activating and fusing proteins as they undergo exocytosis activity, and SNARE proteins are also vital for the transport regulation of membrane proteins and non-regulatory vesicles. Therefore, there is great significance in establishing a method to efficiently identify SNARE proteins. However, the identification accuracy of the existing methods such as SNARE CNN is not satisfied. In our study, we developed a method based on a support vector machine (SVM) that can effectively recognize SNARE proteins. We used the position-specific scoring matrix (PSSM) method to extract features of SNARE protein sequences, used the support vector machine recursive elimination correlation bias reduction (SVM-RFE-CBR) algorithm to rank the importance of features, and then screened out the optimal subset of feature data based on the sorted results. We input the feature data into the model when building the model, used 10-fold crossing validation for training, and tested model performance by using an independent dataset. In independent tests, the ability of our method to identify SNARE proteins achieved a sensitivity of 68%, specificity of 94%, accuracy of 92%, area under the curve (AUC) of 84%, and Matthew’s correlation coefficient (MCC) of 0.48. The results of the experiment show that the common evaluation indicators of our method are excellent, indicating that our method performs better than other existing classification methods in identifying SNARE proteins.
Collapse
Affiliation(s)
- Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
33
|
Li H, Shi L, Gao W, Zhang Z, Zhang L, Wang G. dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods 2022; 204:215-222. [PMID: 34998983 DOI: 10.1016/j.ymeth.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022] Open
Abstract
Promoters play an irreplaceable role in biological processes and genetics, which are responsible for stimulating the transcription and expression of specific genes. Promoter abnormalities have been found in some diseases, and the level of promoter-binding transcription factors can be used as a marker before a disease occurs. Hence, detecting promoters from DNA sequences has important biological significance, particular, distinguishing strong promoters can help to elucidate differences in gene expression and the mechanisms of specific diseases. With the introduction of third-generation sequencing, it is difficult to match the speed of sequencing to the speed of labeling promoters experimentally. Many computing models have been designed to fill this gap and identify unlabeled DNA. However, their feature representation methods are very singular, which cannot reflect the information contained in the original samples. With the aim of avoiding information loss, we propose a computational model based on multiple descriptors and feature selection to jointly express samples. It is worth mentioning that a new feature descriptor called K-mer word vector is defined. The promoter model of multiple feature descriptors dominated by K-mer word vector achieves similar performance to existing methods, the sensitivity of 85.72% can distinguish the promoter more effectively than other methods. Furthermore, the performance of the promoter strength has surpassed published methods, and accuracy of 77.00% greatly improves the ability to distinguish between strong and weak promoters.
Collapse
Affiliation(s)
- Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China; Yangtze Delta Region Institute, University of Electronic Science and Technology, Quzhou,China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
34
|
Niu M, Zou Q, Lin C. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. PLoS Comput Biol 2022; 18:e1009798. [PMID: 35051187 PMCID: PMC8806072 DOI: 10.1371/journal.pcbi.1009798] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism. Increasing evidence shows that circular RNAs can directly bind to RNA-binding proteins (RBP) and play an important role in a variety of biological activities. The interactions between circRNAs and RBPs are key to comprehending the mechanism of posttranscriptional regulation. Accurately identifying binding sites is very useful for analyzing interactions. In past research, some predictors on the basis of machine learning (ML) have been presented, but prediction accuracy still needs to be ameliorated. Therefore, we present a novel calculation model, CRBPDL, which uses an Adaboost integrated deep hierarchical network to identify the binding sites of circular RNA-RBP. CRBPDL combines five different feature encoding schemes to encode the original RNA sequence, uses deep multiscale residual networks (MSRN) and bidirectional gating recurrent units (BiGRUs) to effectively learn high-level feature representations, it is sufficient to extract local and global context information at the same time. Additionally, a self-attention mechanism is employed to train the robustness of the CRBPDL. Ultimately, the Adaboost algorithm is applied to integrate deep learning (DL) model to improve prediction performance and reliability of the model. To verify the usefulness of CRBPDL, we compared the efficiency with state-of-the-art methods on 37 circular RNA data sets and 31 linear RNA data sets. Moreover, results display that CRBPDL is capable of performing universal, reliable, and robust. The code and data sets are obtainable at https://github.com/nmt315320/CRBPDL.git. More and more evidences show that circular RNA can directly bind to proteins and participate in countless different biological processes. The calculation method can quickly and accurately predict the binding site of circular RNA and RBP. In order to identify the interaction of circRNA with 37 different types of circRNA binding proteins, we developed an integrated deep learning network based on hierarchical network, called CRBPDL. It can effectively learn high-level feature representations. The performance of the model was verified through comparative experiments of different feature extraction algorithms, different deep learning models and classifier models. Moreover, the CRBPDL model was applied to 31 linear RNAs, and the effectiveness of our method was proved by comparison with the results of current excellent algorithms. It is expected that the CRBPDL model can effectively predict the binding site of circular RNA-RBP and provide reliable candidates for further biological experiments.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
35
|
Qian Y, Meng H, Lu W, Liao Z, Ding Y, Wu H. Identification of DNA-Binding Proteins via Hypergraph Based Laplacian
Support Vector Machine. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210806091922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The identification of DNA binding proteins (DBP) is an important research
field. Experiment-based methods are time-consuming and labor-intensive for detecting DBP.
Objective:
To solve the problem of large-scale DBP identification, some machine learning methods are
proposed. However, these methods have insufficient predictive accuracy. Our aim is to develop a sequence-
based machine learning model to predict DBP.
Methods:
In our study, we extracted six types of features (including NMBAC, GE, MCD, PSSM-AB,
PSSM-DWT, and PsePSSM) from protein sequences. We used Multiple Kernel Learning based on Hilbert-
Schmidt Independence Criterion (MKL-HSIC) to estimate the optimal kernel. Then, we constructed
a hypergraph model to describe the relationship between labeled and unlabeled samples. Finally, Laplacian
Support Vector Machines (LapSVM) is employed to train the predictive model. Our method is
tested on PDB186, PDB1075, PDB2272 and PDB14189 data sets.
Result:
Compared with other methods, our model achieved best results on benchmark data sets.
Conclusion:
The accuracy of 87.1% and 74.2% are achieved on PDB186 (Independent test of
PDB1075) and PDB2272 (Independent test of PDB14189), respectively.
Collapse
Affiliation(s)
- Yuqing Qian
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Hao Meng
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Weizhong Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University,
Fuzhou, P.R. China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China,
Quzhou, P.R. China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| |
Collapse
|
36
|
Chen Y, Juan L, Lv X, Shi L. Bioinformatics Research on Drug Sensitivity Prediction. Front Pharmacol 2021; 12:799712. [PMID: 34955863 PMCID: PMC8696280 DOI: 10.3389/fphar.2021.799712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Modeling-based anti-cancer drug sensitivity prediction has been extensively studied in recent years. While most drug sensitivity prediction models only use gene expression data, the remarkable impacts of gene mutation, methylation, and copy number variation on drug sensitivity are neglected. Drug sensitivity prediction can both help protect patients from some adverse drug reactions and improve the efficacy of treatment. Genomics data are extremely useful for drug sensitivity prediction task. This article reviews the role of drug sensitivity prediction, describes a variety of methods for predicting drug sensitivity. Moreover, the research significance of drug sensitivity prediction, as well as existing problems are well discussed.
Collapse
Affiliation(s)
- Yaojia Chen
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Liran Juan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiao Lv
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Lei Shi
- Department of Spine Surgery Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
37
|
Gu X, Guo L, Liao B, Jiang Q. Pseudo-188D: Phage Protein Prediction Based on a Model of Pseudo-188D. Front Genet 2021; 12:796327. [PMID: 34925468 PMCID: PMC8672092 DOI: 10.3389/fgene.2021.796327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Phages have seriously affected the biochemical systems of the world, and not only are phages related to our health, but medical treatments for many cancers and skin infections are related to phages; therefore, this paper sought to identify phage proteins. In this paper, a Pseudo-188D model was established. The digital features of the phage were extracted by PseudoKNC, an appropriate vector was selected by the AdaBoost tool, and features were extracted by 188D. Then, the extracted digital features were combined together, and finally, the viral proteins of the phage were predicted by a stochastic gradient descent algorithm. Our model effect reached 93.4853%. To verify the stability of our model, we randomly selected 80% of the downloaded data to train the model and used the remaining 20% of the data to verify the robustness of our model.
Collapse
Affiliation(s)
- Xiaomei Gu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Institute of Yangtze River Delta, University of Electronic Science and Technology of China, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Lina Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Qinghua Jiang
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.,School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
38
|
Zhao D, Teng Z, Li Y, Chen D. iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest. Front Genet 2021; 12:773202. [PMID: 34917130 PMCID: PMC8669811 DOI: 10.3389/fgene.2021.773202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discovery of novel and efficient anti-inflammatory peptide-based therapeutics and the acceleration of their application in therapy. In this paper, a random forest-based model called iAIPs for identifying AIPs is proposed. First, the original samples were encoded with three feature extraction methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature subset is generated by a two-step feature selection method, in which the feature is ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is generated by the incremental feature selection strategy. Finally, the optimal feature subset is inputted into the random forest classifier, and the identification model is constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822 on an independent test dataset, which indicated that our proposed model has better performance than the existing methods. Furthermore, the extraction of features for peptide sequences provides the basis for evolutionary analysis. The study of peptide identification is helpful to understand the diversity of species and analyze the evolutionary history of species.
Collapse
Affiliation(s)
- Dongxu Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
39
|
Gong Y, Liao B, Wang P, Zou Q. DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Front Pharmacol 2021; 12:771808. [PMID: 34916947 PMCID: PMC8669608 DOI: 10.3389/fphar.2021.771808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Drug targets are biological macromolecules or biomolecule structures capable of specifically binding a therapeutic effect with a particular drug or regulating physiological functions. Due to the important value and role of drug targets in recent years, the prediction of potential drug targets has become a research hotspot. The key to the research and development of modern new drugs is first to identify potential drug targets. In this paper, a new predictor, DrugHybrid_BS, is developed based on hybrid features and Bagging-SVM to identify potentially druggable proteins. This method combines the three features of monoDiKGap (k = 2), cross-covariance, and grouped amino acid composition. It removes redundant features and analyses key features through MRMD and MRMD2.0. The cross-validation results show that 96.9944% of the potentially druggable proteins can be accurately identified, and the accuracy of the independent test set has reached 96.5665%. This all means that DrugHybrid_BS has the potential to become a useful predictive tool for druggable proteins. In addition, the hybrid key features can identify 80.0343% of the potentially druggable proteins combined with Bagging-SVM, which indicates the significance of this part of the features for research.
Collapse
Affiliation(s)
- Yuxin Gong
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Peng Wang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
40
|
Jia Y, Huang S, Zhang T. KK-DBP: A Multi-Feature Fusion Method for DNA-Binding Protein Identification Based on Random Forest. Front Genet 2021; 12:811158. [PMID: 34912382 PMCID: PMC8667860 DOI: 10.3389/fgene.2021.811158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/04/2023] Open
Abstract
DNA-binding protein (DBP) is a protein with a special DNA binding domain that is associated with many important molecular biological mechanisms. Rapid development of computational methods has made it possible to predict DBP on a large scale; however, existing methods do not fully integrate DBP-related features, resulting in rough prediction results. In this article, we develop a DNA-binding protein identification method called KK-DBP. To improve prediction accuracy, we propose a feature extraction method that fuses multiple PSSM features. The experimental results show a prediction accuracy on the independent test dataset PDB186 of 81.22%, which is the highest of all existing methods.
Collapse
Affiliation(s)
- Yuran Jia
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
41
|
Han S, Wang N, Guo Y, Tang F, Xu L, Ju Y, Shi L. Application of Sparse Representation in Bioinformatics. Front Genet 2021; 12:810875. [PMID: 34976030 PMCID: PMC8715914 DOI: 10.3389/fgene.2021.810875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 11/15/2022] Open
Abstract
Inspired by L1-norm minimization methods, such as basis pursuit, compressed sensing, and Lasso feature selection, in recent years, sparse representation shows up as a novel and potent data processing method and displays powerful superiority. Researchers have not only extended the sparse representation of a signal to image presentation, but also applied the sparsity of vectors to that of matrices. Moreover, sparse representation has been applied to pattern recognition with good results. Because of its multiple advantages, such as insensitivity to noise, strong robustness, less sensitivity to selected features, and no “overfitting” phenomenon, the application of sparse representation in bioinformatics should be studied further. This article reviews the development of sparse representation, and explains its applications in bioinformatics, namely the use of low-rank representation matrices to identify and study cancer molecules, low-rank sparse representations to analyze and process gene expression profiles, and an introduction to related cancers and gene expression profile database.
Collapse
Affiliation(s)
- Shuguang Han
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Ning Wang
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yuxin Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Furong Tang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
- *Correspondence: Ying Ju, ; Lei Shi,
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Ying Ju, ; Lei Shi,
| |
Collapse
|
42
|
Lin X. Genomic Variation Prediction: A Summary From Different Views. Front Cell Dev Biol 2021; 9:795883. [PMID: 34901036 PMCID: PMC8656232 DOI: 10.3389/fcell.2021.795883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Structural variations in the genome are closely related to human health and the occurrence and development of various diseases. To understand the mechanisms of diseases, find pathogenic targets, and carry out personalized precision medicine, it is critical to detect such variations. The rapid development of high-throughput sequencing technologies has accelerated the accumulation of large amounts of genomic mutation data, including synonymous mutations. Identifying pathogenic synonymous mutations that play important roles in the occurrence and development of diseases from all the available mutation data is of great importance. In this paper, machine learning theories and methods are reviewed, efficient and accurate pathogenic synonymous mutation prediction methods are developed, and a standardized three-level variant analysis framework is constructed. In addition, multiple variation tolerance prediction models are studied and integrated, and new ideas for structural variation detection based on deep information mining are explored.
Collapse
Affiliation(s)
- Xiuchun Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Dou L, Zhou W, Zhang L, Xu L, Han K. Accurate identification of RNA D modification using multiple features. RNA Biol 2021; 18:2236-2246. [PMID: 33729104 PMCID: PMC8632091 DOI: 10.1080/15476286.2021.1898160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
As one of the common post-transcriptional modifications in tRNAs, dihydrouridine (D) has prominent effects on regulating the flexibility of tRNA as well as cancerous diseases. Facing with the expensive and time-consuming sequencing techniques to detect D modification, precise computational tools can largely promote the progress of molecular mechanisms and medical developments. We proposed a novel predictor, called iRNAD_XGBoost, to identify potential D sites using multiple RNA sequence representations. In this method, by considering the imbalance problem using hybrid sampling method SMOTEEEN, the XGBoost-selected top 30 features are applied to construct model. The optimized model showed high Sn and Sp values of 97.13% and 97.38% over jackknife test, respectively. For the independent experiment, these two metrics separately achieved 91.67% and 94.74%. Compared with iRNAD method, this model illustrated high generalizability and consistent prediction efficiencies for positive and negative samples, which yielded satisfactory MCC scores of 0.94 and 0.86, respectively. It is inferred that the chemical property and nucleotide density features (CPND), electron-ion interaction pseudopotential (EIIP and PseEIIP) as well as dinucleotide composition (DNC) are crucial to the recognition of D modification. The proposed predictor is a promising tool to help experimental biologists investigate molecular functions.
Collapse
Affiliation(s)
- Lijun Dou
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, SichuanChina
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, HeilongjiangChina
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, GuangdongChina
| | - Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, HeilongjiangChina
| |
Collapse
|
44
|
Ao C, Zou Q, Yu L. NmRF: identification of multispecies RNA 2'-O-methylation modification sites from RNA sequences. Brief Bioinform 2021; 23:6446272. [PMID: 34850821 DOI: 10.1093/bib/bbab480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
45
|
Guo Y, Hou L, Zhu W, Wang P. Prediction of Hormone-Binding Proteins Based on K-mer Feature Representation and Naive Bayes. Front Genet 2021; 12:797641. [PMID: 34887905 PMCID: PMC8650314 DOI: 10.3389/fgene.2021.797641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Hormone binding protein (HBP) is a soluble carrier protein that interacts selectively with different types of hormones and has various effects on the body's life activities. HBPs play an important role in the growth process of organisms, but their specific role is still unclear. Therefore, correctly identifying HBPs is the first step towards understanding and studying their biological function. However, due to their high cost and long experimental period, it is difficult for traditional biochemical experiments to correctly identify HBPs from an increasing number of proteins, so the real characterization of HBPs has become a challenging task for researchers. To measure the effectiveness of HBPs, an accurate and reliable prediction model for their identification is desirable. In this paper, we construct the prediction model HBP_NB. First, HBPs data were collected from the UniProt database, and a dataset was established. Then, based on the established high-quality dataset, the k-mer (K = 3) feature representation method was used to extract features. Second, the feature selection algorithm was used to reduce the dimensionality of the extracted features and select the appropriate optimal feature set. Finally, the selected features are input into Naive Bayes to construct the prediction model, and the model is evaluated by using 10-fold cross-validation. The final results were 95.45% accuracy, 94.17% sensitivity and 96.73% specificity. These results indicate that our model is feasible and effective.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Liping Hou
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Peng Wang
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
46
|
Jiao S, Zou Q, Guo H, Shi L. iTTCA-RF: a random forest predictor for tumor T cell antigens. J Transl Med 2021; 19:449. [PMID: 34706730 PMCID: PMC8554859 DOI: 10.1186/s12967-021-03084-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor vaccines development and molecular function investigation. Although several machine learning predictors have been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing methodology is still challenging. METHODS In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an efficient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-step feature selection technique to search for the optimal feature subset. The final prediction model was constructed using random forest algorithm. RESULTS Finally, the top 263 informative features were selected to train the random forest classifier for detecting tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% over independent tests, respectively. The online prediction server was freely accessible at http://lab.malab.cn/~acy/iTTCA . CONCLUSIONS We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major histocompatibility complex class I.
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Huannan Guo
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
47
|
Identification of drug-target interactions via multi-view graph regularized link propagation model. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Ding Y, Yang C, Tang J, Guo F. Identification of protein-nucleotide binding residues via graph regularized k-local hyperplane distance nearest neighbor model. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02737-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Chen X, Lin Y, Qu Q, Ning B, Chen H, Li X. An epistasis and heterogeneity analysis method based on maximum correlation and maximum consistence criteria. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7711-7726. [PMID: 34814271 DOI: 10.3934/mbe.2021382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor heterogeneity significantly increases the difficulty of tumor treatment. The same drugs and treatment methods have different effects on different tumor subtypes. Therefore, tumor heterogeneity is one of the main sources of poor prognosis, recurrence and metastasis. At present, there have been some computational methods to study tumor heterogeneity from the level of genome, transcriptome, and histology, but these methods still have certain limitations. In this study, we proposed an epistasis and heterogeneity analysis method based on genomic single nucleotide polymorphism (SNP) data. First of all, a maximum correlation and maximum consistence criteria was designed based on Bayesian network score K2 and information entropy for evaluating genomic epistasis. As the number of SNPs increases, the epistasis combination space increases sharply, resulting in a combination explosion phenomenon. Therefore, we next use an improved genetic algorithm to search the SNP epistatic combination space for identifying potential feasible epistasis solutions. Multiple epistasis solutions represent different pathogenic gene combinations, which may lead to different tumor subtypes, that is, heterogeneity. Finally, the XGBoost classifier is trained with feature SNPs selected that constitute multiple sets of epistatic solutions to verify that considering tumor heterogeneity is beneficial to improve the accuracy of tumor subtype prediction. In order to demonstrate the effectiveness of our method, the power of multiple epistatic recognition and the accuracy of tumor subtype classification measures are evaluated. Extensive simulation results show that our method has better power and prediction accuracy than previous methods.
Collapse
Affiliation(s)
- Xia Chen
- School of Basic Education, Changsha Aeronautical Vocational and Technical College, Changsha, Hunan 410124, China
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yexiong Lin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Qu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bin Ning
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiong Li
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
50
|
Zheng Y, Wu Z. Cascade Deep Forest With Heterogeneous Similarity Measures for Drug-Target Interaction Prediction. Front Genet 2021; 12:702259. [PMID: 34504515 PMCID: PMC8421679 DOI: 10.3389/fgene.2021.702259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Drug repositioning is a method of systematically identifying potential molecular targets that known drugs may act on. Compared with traditional methods, drug repositioning has been extensively studied due to the development of multi-omics technology and system biology methods. Because of its biological network properties, it is possible to apply machine learning related algorithms for prediction. Based on various heterogeneous network model, this paper proposes a method named THNCDF for predicting drug-target interactions. Various heterogeneous networks are integrated to build a tripartite network, and similarity calculation methods are used to obtain similarity matrix. Then, the cascade deep forest method is used to make prediction. Results indicate that THNCDF outperforms the previously reported methods based on the 10-fold cross-validation on the benchmark data sets proposed by Y. Yamanishi. The area under Precision Recall curve (AUPR) value on the Enzyme, GPCR, Ion Channel, and Nuclear Receptor data sets is 0.988, 0.980, 0.938, and 0.906 separately. The experimental results well illustrate the feasibility of this method.
Collapse
Affiliation(s)
- Ying Zheng
- School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha, China
| | | |
Collapse
|