1
|
Cao H, Yan B, Dong L, Yuan X. Multipopulation Whale Optimization-Based Feature Selection Algorithm and Its Application in Human Fall Detection Using Inertial Measurement Unit Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:7879. [PMID: 39771617 PMCID: PMC11678948 DOI: 10.3390/s24247879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Feature selection (FS) is a key process in many pattern-recognition tasks, which reduces dimensionality by eliminating redundant or irrelevant features. However, for complex high-dimensional issues, traditional FS methods cannot find the ideal feature combination. To overcome this disadvantage, this paper presents a multispiral whale optimization algorithm (MSWOA) for feature selection. First, an Adaptive Multipopulation merging Strategy (AMS) is presented, which uses exponential variation and individual location information to divide the population, thus avoiding the premature aggregation of subpopulations and increasing candidate feature subsets. Second, a Double Spiral updating Strategy (DSS) is devised to break out of search stagnations by discovering new individual positions continuously. Last, to facilitate the convergence speed, a Baleen neighborhood Exploitation Strategy (BES) which mimics the behavior of whale tentacles is proposed. The presented algorithm is thoroughly compared with six state-of-the-art meta-heuristic methods and six promising WOA-based algorithms on 20 UCI datasets. Experimental results indicate that the proposed method is superior to other well-known competitors in most cases. In addition, the proposed method is utilized to perform feature selection in human fall-detection tasks, and extensive real experimental results further illustrate the superior ability of the proposed method in addressing practical problems.
Collapse
Affiliation(s)
| | | | | | - Xianfeng Yuan
- School of Mechanical Electrical and Information Engineering, Shandong University, Weihai 264209, China; (H.C.); (B.Y.); (L.D.)
| |
Collapse
|
2
|
Najafi H, Savoji K, Mirzaeibonehkhater M, Moravvej SV, Alizadehsani R, Pedrammehr S. A Novel Method for 3D Lung Tumor Reconstruction Using Generative Models. Diagnostics (Basel) 2024; 14:2604. [PMID: 39594270 PMCID: PMC11592759 DOI: 10.3390/diagnostics14222604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lung cancer remains a significant health concern, and the effectiveness of early detection significantly enhances patient survival rates. Identifying lung tumors with high precision is a challenge due to the complex nature of tumor structures and the surrounding lung tissues. METHODS To address these hurdles, this paper presents an innovative three-step approach that leverages Generative Adversarial Networks (GAN), Long Short-Term Memory (LSTM), and VGG16 algorithms for the accurate reconstruction of three-dimensional (3D) lung tumor images. The first challenge we address is the accurate segmentation of lung tissues from CT images, a task complicated by the overwhelming presence of non-lung pixels, which can lead to classifier imbalance. Our solution employs a GAN model trained with a reinforcement learning (RL)-based algorithm to mitigate this imbalance and enhance segmentation accuracy. The second challenge involves precisely detecting tumors within the segmented lung regions. We introduce a second GAN model with a novel loss function that significantly improves tumor detection accuracy. Following successful segmentation and tumor detection, the VGG16 algorithm is utilized for feature extraction, preparing the data for the final 3D reconstruction. These features are then processed through an LSTM network and converted into a format suitable for the reconstructive GAN. This GAN, equipped with dilated convolution layers in its discriminator, captures extensive contextual information, enabling the accurate reconstruction of the tumor's 3D structure. RESULTS The effectiveness of our method is demonstrated through rigorous evaluation against established techniques using the LIDC-IDRI dataset and standard performance metrics, showcasing its superior performance and potential for enhancing early lung cancer detection. CONCLUSIONS This study highlights the benefits of combining GANs, LSTM, and VGG16 into a unified framework. This approach significantly improves the accuracy of detecting and reconstructing lung tumors, promising to enhance diagnostic methods and patient results in lung cancer treatment.
Collapse
Affiliation(s)
- Hamidreza Najafi
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran;
| | - Kimia Savoji
- Biomedical Data Science and Informatics, School of Computing, Clemson University, Clemson, SC 29634, USA;
| | - Marzieh Mirzaeibonehkhater
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA;
| | - Seyed Vahid Moravvej
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia;
| | - Siamak Pedrammehr
- Faculty of Design, Tabriz Islamic Art University, Tabriz 51647-36931, Iran
| |
Collapse
|
3
|
J M, K J. Enhancing Lung Nodule Classification: A Novel CViEBi-CBGWO Approach with Integrated Image Preprocessing. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2108-2125. [PMID: 38526706 PMCID: PMC11522259 DOI: 10.1007/s10278-024-01074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Cancer detection and accurate classification pose significant challenges for medical professionals, as it is described as a lethal illness. Diagnosing the malignant lung nodules in its initial stage significantly enhances the recovery and survival rates. Therefore, a novel model named convolutional vision Elman bidirectional-based crossover boosted grey wolf optimization (CViEBi-CBGWO) has been proposed to enhance classification accuracy. CT images selected for further preprocessing are obtained from the LUNA16 dataset and LIDC-IDRI dataset. The data undergoes preprocessing phases involving normalization, data augmentation, and filtering to improve the generalization ability as well as image quality. The local features within the preprocessed images are extracted by implementing the convolutional neural network (CNN). For extracting the global features within the preprocessed images, the vision transformer (ViT) model consists of five encoder blocks. The attained local and global features are combined to generate the feature map. The Elman bidirectional long short-term memory (EBiLSTM) model is applied to categorize the generated feature map as benign and malignant. The crossover operation is integrated with the grey wolf optimization (GWO) algorithm, and the combined form of CBGWO fine-tunes the parameters of the CViEBi model, eliminating the problem of local optima. Experimental validation is conducted using various evaluation measures to assess effectiveness. Comparative analysis demonstrates a superior classification accuracy of 98.72% in the proposed method compared to existing methods.
Collapse
Affiliation(s)
- Manikandan J
- Department of Information Technology, St. Joseph's College of Engineering, Chennai, India.
| | - Jayashree K
- Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai, India
| |
Collapse
|
4
|
Li C, Zhou Z, Hou L, Hu K, Wu Z, Xie Y, Ouyang J, Cai X. A novel machine learning model for efficacy prediction of immunotherapy-chemotherapy in NSCLC based on CT radiomics. Comput Biol Med 2024; 178:108638. [PMID: 38897152 DOI: 10.1016/j.compbiomed.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. For patients with advanced NSCLC that do not have oncogene addiction, the preferred treatment approach is a combination of immunotherapy and chemotherapy. However, the progression-free survival (PFS) typically ranges only from about 6 to 8 months, accompanied by certain adverse events. In order to carry out individualized treatment more effectively, it is urgent to accurately screen patients with PFS for more than 12 months under this treatment regimen. Therefore, this study undertook a retrospective collection of pulmonary CT images from 60 patients diagnosed with NSCLC treated at the First Affiliated Hospital of Wenzhou Medical University. It developed a machine learning model, designated as bSGSRIME-SVM, which integrates the rime optimization algorithm with self-adaptive Gaussian kernel probability search (SGSRIME) and support vector machine (SVM) classifier. Specifically, the model initiates its process by employing the SGSRIME algorithm to identify pivotal image features. Subsequently, it utilizes an SVM classifier to assess these features, aiming to enhance the model's predictive accuracy. Initially, the superior optimization capability and robustness of SGSRIME in IEEE CEC 2017 benchmark functions were validated. Subsequently, employing color moments and gray-level co-occurrence matrix methods, image features were extracted from images of 60 NSCLC patients undergoing immunotherapy combined with chemotherapy. The developed model was then utilized for analysis. The results indicate a significant advantage of the model in predicting the efficacy of immunotherapy combined with chemotherapy for NSCLC, with an accuracy of 92.381% and a specificity of 96.667%. This lays the foundation for more accurate PFS predictions and personalized treatment plans.
Collapse
Affiliation(s)
- Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhifeng Zhou
- Wenzhou University Library, Wenzhou, 325035, China.
| | - Lingxian Hou
- Rehabilitation Department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, China.
| | - Keli Hu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China; Information Technology R&D Innovation Center of Peking University, Shaoxing, 312000, China.
| | - Zongda Wu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Yupeng Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jinsheng Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
5
|
Li H, Liao B, Li J, Li S. A Survey on Biomimetic and Intelligent Algorithms with Applications. Biomimetics (Basel) 2024; 9:453. [PMID: 39194432 DOI: 10.3390/biomimetics9080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The question "How does it work" has motivated many scientists. Through the study of natural phenomena and behaviors, many intelligence algorithms have been proposed to solve various optimization problems. This paper aims to offer an informative guide for researchers who are interested in tackling optimization problems with intelligence algorithms. First, a special neural network was comprehensively discussed, and it was called a zeroing neural network (ZNN). It is especially intended for solving time-varying optimization problems, including origin, basic principles, operation mechanism, model variants, and applications. This paper presents a new classification method based on the performance index of ZNNs. Then, two classic bio-inspired algorithms, a genetic algorithm and a particle swarm algorithm, are outlined as representatives, including their origin, design process, basic principles, and applications. Finally, to emphasize the applicability of intelligence algorithms, three practical domains are introduced, including gene feature extraction, intelligence communication, and the image process.
Collapse
Affiliation(s)
- Hao Li
- College of Computer Science and Engineering, Jishou University, Jishou 416000, China
- School of Communication and Electronic Engineering, Jishou University, Jishou 416000, China
| | - Bolin Liao
- College of Computer Science and Engineering, Jishou University, Jishou 416000, China
| | - Jianfeng Li
- College of Computer Science and Engineering, Jishou University, Jishou 416000, China
| | - Shuai Li
- College of Computer Science and Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
6
|
Prodanovic T, Petrovic Savic S, Prodanovic N, Simovic A, Zivojinovic S, Djordjevic JC, Savic D. Advanced Diagnostics of Respiratory Distress Syndrome in Premature Infants Treated with Surfactant and Budesonide through Computer-Assisted Chest X-ray Analysis. Diagnostics (Basel) 2024; 14:214. [PMID: 38275461 PMCID: PMC10814713 DOI: 10.3390/diagnostics14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
This research addresses the respiratory distress syndrome (RDS) in preterm newborns caused by insufficient surfactant synthesis, which can lead to serious complications, including pneumothorax, pulmonary hypertension, and pulmonary hemorrhage, increasing the risk of a fatal outcome. By analyzing chest radiographs and blood gases, we specifically focus on the significant contributions of these parameters to the diagnosis and analysis of the recovery of patients with RDS. The study involved 32 preterm newborns, and the analysis of gas parameters before and after the administration of surfactants and inhalation corticosteroid therapy revealed statistically significant changes in values of parameters such as FiO2, pH, pCO2, HCO3, and BE (Sig. < 0.05), while the pO2 parameter showed a potential change (Sig. = 0.061). Parallel to this, the research emphasizes the development of a lung segmentation algorithm implemented in the MATLAB programming environment. The key steps of the algorithm include preprocessing, segmentation, and visualization for a more detailed understanding of the recovery dynamics after RDS. These algorithms have achieved promising results, with a global accuracy of 0.93 ± 0.06, precision of 0.81 ± 0.16, and an F-score of 0.82 ± 0.14. These results highlight the potential application of algorithms in the analysis and monitoring of recovery in newborns with RDS, also underscoring the need for further development of software solutions in medicine, particularly in neonatology, to enhance the diagnosis and treatment of preterm newborns with respiratory distress syndrome.
Collapse
Affiliation(s)
- Tijana Prodanovic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (T.P.); (A.S.); (S.Z.); (J.C.D.); (D.S.)
- Center for Neonatology, Pediatric Clinic, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Suzana Petrovic Savic
- Department for Production Engineering, Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia;
| | - Nikola Prodanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Clinic for Orthopaedic and Trauma Surgery, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Aleksandra Simovic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (T.P.); (A.S.); (S.Z.); (J.C.D.); (D.S.)
- Center for Neonatology, Pediatric Clinic, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Suzana Zivojinovic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (T.P.); (A.S.); (S.Z.); (J.C.D.); (D.S.)
- Center for Neonatology, Pediatric Clinic, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Jelena Cekovic Djordjevic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (T.P.); (A.S.); (S.Z.); (J.C.D.); (D.S.)
- Center for Neonatology, Pediatric Clinic, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Dragana Savic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (T.P.); (A.S.); (S.Z.); (J.C.D.); (D.S.)
- Center for Neonatology, Pediatric Clinic, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Lee J, Lee T, Lee HN, Kim H, Kang YK, Ryu S, Chung HJ. Simple and Multiplexed Detection of Nucleic Acid Targets Based on Fluorescent Ring Patterns and Deep Learning Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54335-54345. [PMID: 37970793 DOI: 10.1021/acsami.3c14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Simple diagnostic tests for nucleic acid targets can provide great advantages for applications such as rapid pathogen detection. Here, we developed a membrane assay for multiplexed detection of nucleic acid targets based on the visualization of two-dimensional fluorescent ring patterns. A droplet of the assay solution is applied to a cellulose nitrate membrane, and upon radial chromatographic flow and evaporation of the solvent, fluorescent patterns appear under UV irradiation. The target nucleic acid is isothermally amplified and is immediately hybridized with fluorescent oligonucleotide probes in a one-pot reaction. We established the fluorescent ring assay integrated with isothermal amplification (iFluor-RFA = isothermal fluorescent ring-based radial flow assay), and feasibility was tested using nucleic acid targets of the receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) genes of SARS-CoV-2. We demonstrate that the iFluor-RFA method is capable of specific and sensitive detection in the subpicomole range, as well as multiplexed detection even in complex solutions. Furthermore, we applied deep learning analysis of the fluorescence images, showing that patterns could be classified as positive or negative and that quantitative amounts of the target could be predicted. The current technique, which is a membrane pattern-based nucleic acid assay combined with deep learning analysis, provides a novel approach in diagnostic platform development that can be versatilely applied for the rapid detection of infectious pathogens.
Collapse
Affiliation(s)
- Juhee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Taegu Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ha Neul Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoo Kyung Kang
- College of Pharmacy, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Nadimi-Shahraki MH, Zamani H, Asghari Varzaneh Z, Mirjalili S. A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-47. [PMID: 37359740 PMCID: PMC10220350 DOI: 10.1007/s11831-023-09928-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Despite the simplicity of the whale optimization algorithm (WOA) and its success in solving some optimization problems, it faces many issues. Thus, WOA has attracted scholars' attention, and researchers frequently prefer to employ and improve it to address real-world application optimization problems. As a result, many WOA variations have been developed, usually using two main approaches improvement and hybridization. However, no comprehensive study critically reviews and analyzes WOA and its variants to find effective techniques and algorithms and develop more successful variants. Therefore, in this paper, first, the WOA is critically analyzed, then the last 5 years' developments of WOA are systematically reviewed. To do this, a new adapted PRISMA methodology is introduced to select eligible papers, including three main stages: identification, evaluation, and reporting. The evaluation stage was improved using three screening steps and strict inclusion criteria to select a reasonable number of eligible papers. Ultimately, 59 improved WOA and 57 hybrid WOA variants published by reputable publishers, including Springer, Elsevier, and IEEE, were selected as eligible papers. Effective techniques for improving and successful algorithms for hybridizing eligible WOA variants are described. The eligible WOA are reviewed in continuous, binary, single-objective, and multi/many-objective categories. The distribution of eligible WOA variants regarding their publisher, journal, application, and authors' country was visualized. It is also concluded that most papers in this area lack a comprehensive comparison with previous WOA variants and are usually compared only with other algorithms. Finally, some future directions are suggested.
Collapse
Affiliation(s)
- Mohammad H. Nadimi-Shahraki
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, 8514143131 Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, 8514143131 Iran
| | - Hoda Zamani
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, 8514143131 Iran
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, 8514143131 Iran
| | - Zahra Asghari Varzaneh
- Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, 4006 Australia
- University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| |
Collapse
|
9
|
Saleem MA, Thien Le N, Asdornwised W, Chaitusaney S, Javeed A, Benjapolakul W. Sooty Tern Optimization Algorithm-Based Deep Learning Model for Diagnosing NSCLC Tumours. SENSORS (BASEL, SWITZERLAND) 2023; 23:2147. [PMID: 36850744 PMCID: PMC9959990 DOI: 10.3390/s23042147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Lung cancer is one of the most common causes of cancer deaths in the modern world. Screening of lung nodules is essential for early recognition to facilitate treatment that improves the rate of patient rehabilitation. An increase in accuracy during lung cancer detection is vital for sustaining the rate of patient persistence, even though several research works have been conducted in this research domain. Moreover, the classical system fails to segment cancer cells of different sizes accurately and with excellent reliability. This paper proposes a sooty tern optimization algorithm-based deep learning (DL) model for diagnosing non-small cell lung cancer (NSCLC) tumours with increased accuracy. We discuss various algorithms for diagnosing models that adopt the Otsu segmentation method to perfectly isolate the lung nodules. Then, the sooty tern optimization algorithm (SHOA) is adopted for partitioning the cancer nodules by defining the best characteristics, which aids in improving diagnostic accuracy. It further utilizes a local binary pattern (LBP) for determining appropriate feature retrieval from the lung nodules. In addition, it adopts CNN and GRU-based classifiers for identifying whether the lung nodules are malignant or non-malignant depending on the features retrieved during the diagnosing process. The experimental results of this SHOA-optimized DNN model achieved an accuracy of 98.32%, better than the baseline schemes used for comparison.
Collapse
Affiliation(s)
- Muhammad Asim Saleem
- Center of Excellence in Artificial Intelligence, Machine Learning and Smart Grid Technology, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ngoc Thien Le
- Center of Excellence in Artificial Intelligence, Machine Learning and Smart Grid Technology, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Widhyakorn Asdornwised
- Center of Excellence in Artificial Intelligence, Machine Learning and Smart Grid Technology, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surachai Chaitusaney
- Center of Excellence in Artificial Intelligence, Machine Learning and Smart Grid Technology, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashir Javeed
- Aging Research Center, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Watit Benjapolakul
- Center of Excellence in Artificial Intelligence, Machine Learning and Smart Grid Technology, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Hussain Ali Y, Chinnaperumal S, Marappan R, Raju SK, Sadiq AT, Farhan AK, Srinivasan P. Multi-Layered Non-Local Bayes Model for Lung Cancer Early Diagnosis Prediction with the Internet of Medical Things. Bioengineering (Basel) 2023; 10:bioengineering10020138. [PMID: 36829633 PMCID: PMC9952033 DOI: 10.3390/bioengineering10020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
The Internet of Things (IoT) has been influential in predicting major diseases in current practice. The deep learning (DL) technique is vital in monitoring and controlling the functioning of the healthcare system and ensuring an effective decision-making process. In this study, we aimed to develop a framework implementing the IoT and DL to identify lung cancer. The accurate and efficient prediction of disease is a challenging task. The proposed model deploys a DL process with a multi-layered non-local Bayes (NL Bayes) model to manage the process of early diagnosis. The Internet of Medical Things (IoMT) could be useful in determining factors that could enable the effective sorting of quality values through the use of sensors and image processing techniques. We studied the proposed model by analyzing its results with regard to specific attributes such as accuracy, quality, and system process efficiency. In this study, we aimed to overcome problems in the existing process through the practical results of a computational comparison process. The proposed model provided a low error rate (2%, 5%) and an increase in the number of instance values. The experimental results led us to conclude that the proposed model can make predictions based on images with high sensitivity and better precision values compared to other specific results. The proposed model achieved the expected accuracy (81%, 95%), the expected specificity (80%, 98%), and the expected sensitivity (80%, 99%). This model is adequate for real-time health monitoring systems in the prediction of lung cancer and can enable effective decision-making with the use of DL techniques.
Collapse
Affiliation(s)
- Yossra Hussain Ali
- Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq
| | - Seelammal Chinnaperumal
- Department of Computer Science and Engineering, Solamalai College of Engineering, Madurai 625020, India
| | - Raja Marappan
- School of Computing, Sastra Deemed University, Thanjavur 613401, India
| | - Sekar Kidambi Raju
- School of Computing, Sastra Deemed University, Thanjavur 613401, India
- Correspondence:
| | - Ahmed T. Sadiq
- Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq
| | - Alaa K. Farhan
- Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq
| | | |
Collapse
|
11
|
Ragab M, Katib I, Sharaf SA, Assiri FY, Hamed D, Al-Ghamdi AAM. Self-Upgraded Cat Mouse Optimizer With Machine Learning Driven Lung Cancer Classification on Computed Tomography Imaging. IEEE ACCESS 2023; 11:107972-107981. [DOI: 10.1109/access.2023.3313508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Affiliation(s)
- Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iyad Katib
- Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanaa Abdullah Sharaf
- Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatmah Yousef Assiri
- Software Engineering Department, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Diaa Hamed
- Faculty of Earth Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Al-Malaise Al-Ghamdi
- Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
New bag-of-feature for histopathology image classification using reinforced cat swarm algorithm and weighted Gaussian mixture modelling. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe progress in digital histopathology for computer-aided diagnosis leads to advancement in automated histopathological image classification system. However, heterogeneity and complexity in structural background make it a challenging process. Therefore, this paper introduces robust and reliable new bag-of-feature framework. The optimal visual words are obtained by applying proposed reinforcement cat swarm optimization algorithm. Moreover, the frequency of occurrence of each visual words is depicted through histogram using new weighted Gaussian mixture modelling method. Reinforcement cat swarm optimization algorithm is evaluated on the IEEE CEC 2017 benchmark function problems and compared with other state-of-the-art algorithms. Moreover, statistical test analysis is done on acquired mean and the best fitness values from benchmark functions. The proposed classification model effectively identifies and classifies the different categories of histopathological images. Furthermore, the comparative experimental result analysis of proposed reinforcement cat swarm optimization-based bag-of-feature is performed on standard quality metrics measures. The observation states that reinforcement cat swarm optimization-based bag-of-feature outperforms the other methods and provides promising results.
Collapse
|
13
|
A Multi-Colony Social Learning Approach for the Self-Organization of a Swarm of UAVs. DRONES 2022. [DOI: 10.3390/drones6050104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research offers an improved method for the self-organization of a swarm of UAVs based on a social learning approach. To start, we use three different colonies and three best members i.e., unmanned aerial vehicles (UAVs) randomly placed in the colonies. This study uses max-min ant colony optimization (MMACO) in conjunction with social learning mechanism to plan the optimized path for an individual colony. Hereinafter, the multi-agent system (MAS) chooses the most optimal UAV as the leader of each colony and the remaining UAVs as agents, which helps to organize the randomly positioned UAVs into three different formations. Afterward, the algorithm synchronizes and connects the three colonies into a swarm and controls it using dynamic leader selection. The major contribution of this study is to hybridize two different approaches to produce a more optimized, efficient, and effective strategy. The results verify that the proposed algorithm completes the given objectives. This study also compares the designed method with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to prove that our method offers better convergence and reaches the target using a shorter route than NSGA-II.
Collapse
|
14
|
Efficient tumor volume measurement and segmentation approach for CT image based on twin support vector machines. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Vijh S, Pandey HM, Gaurav P. Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Yan Y, Yao XJ, Wang SH, Zhang YD. A Survey of Computer-Aided Tumor Diagnosis Based on Convolutional Neural Network. BIOLOGY 2021; 10:biology10111084. [PMID: 34827077 PMCID: PMC8615026 DOI: 10.3390/biology10111084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Simple Summary One of the hottest areas in deep learning is computerized tumor diagnosis and treatment. The identification of tumor markers, the outline of tumor growth activity, and the staging of various tumor kinds are frequently included. There are several deep learning models based on convolutional neural networks that have high performance and accurate identification, with the potential to improve medical tasks. Breakthroughs and updates in computer algorithms and hardware devices, and intelligent algorithms applied in medical images have a diagnostic accuracy that doctors cannot match in some diseases. This paper reviews the progress of tumor detection from traditional computer-aided methods to convolutional neural networks and demonstrates the potential of the practical application of convolutional neural networks from practical cases to transform the detection model from experiment to clinical application. Abstract Tumors are new tissues that are harmful to human health. The malignant tumor is one of the main diseases that seriously affect human health and threaten human life. For cancer treatment, early detection of pathological features is essential to reduce cancer mortality effectively. Traditional diagnostic methods include routine laboratory tests of the patient’s secretions, and serum, immune and genetic tests. At present, the commonly used clinical imaging examinations include X-ray, CT, MRI, SPECT scan, etc. With the emergence of new problems of radiation noise reduction, medical image noise reduction technology is more and more investigated by researchers. At the same time, doctors often need to rely on clinical experience and academic background knowledge in the follow-up diagnosis of lesions. However, it is challenging to promote clinical diagnosis technology. Therefore, due to the medical needs, research on medical imaging technology and computer-aided diagnosis appears. The advantages of a convolutional neural network in tumor diagnosis are increasingly obvious. The research on computer-aided diagnosis based on medical images of tumors has become a sharper focus in the industry. Neural networks have been commonly used to research intelligent methods to assist medical image diagnosis and have made significant progress. This paper introduces the traditional methods of computer-aided diagnosis of tumors. It introduces the segmentation and classification of tumor images as well as the diagnosis methods based on CNN to help doctors determine tumors. It provides a reference for developing a CNN computer-aided system based on tumor detection research in the future.
Collapse
|
17
|
Lang Q, Zhong C, Liang Z, Zhang Y, Wu B, Xu F, Cong L, Wu S, Tian Y. Six application scenarios of artificial intelligence in the precise diagnosis and treatment of liver cancer. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-10023-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|