1
|
Patel AN, Srinivasan K. Deep learning paradigms in lung cancer diagnosis: A methodological review, open challenges, and future directions. Phys Med 2025; 131:104914. [PMID: 39938402 DOI: 10.1016/j.ejmp.2025.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
Lung cancer is the leading cause of global cancer-related deaths, which emphasizes the critical importance of early diagnosis in enhancing patient outcomes. Deep learning has demonstrated significant promise in lung cancer diagnosis, excelling in nodule detection, classification, and prognosis prediction. This methodological review comprehensively explores deep learning models' application in lung cancer diagnosis, uncovering their integration across various imaging modalities. Deep learning consistently achieves state-of-the-art performance, occasionally surpassing human expert accuracy. Notably, deep neural networks excel in detecting lung nodules, distinguishing between benign and malignant nodules, and predicting patient prognosis. They have also led to the development of computer-aided diagnosis systems, enhancing diagnostic accuracy for radiologists. This review follows the specified criteria for article selection outlined by PRISMA framework. Despite challenges such as data quality and interpretability limitations, this review emphasizes the potential of deep learning to significantly improve the precision and efficiency of lung cancer diagnosis, facilitating continued research efforts to overcome these obstacles and fully harness neural network's transformative impact in this field.
Collapse
Affiliation(s)
- Aryan Nikul Patel
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
2
|
Liang T, Wang H, Yao W, Yang Q. Tongue shape classification based on IF-RCNet. Sci Rep 2025; 15:7301. [PMID: 40025207 PMCID: PMC11873170 DOI: 10.1038/s41598-025-91823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
The classification of tongue shapes is essential for objective tongue diagnoses. However, the accuracy of classification is influenced by numerous factors. First, considerable differences exist between individuals with the same tongue shape. Second, the lips interfere with tongue shape classification. Additionally, small datasets make it difficult to conduct network training. To address these issues, this study builds a two-level nested tongue segmentation and tongue image classification network named IF-RCNet based on feature fusion and mixed input methods. In IF-RCNet, RCA-UNet is used to segment the tongue body, and RCA-Net is used to classify the tongue shape. The feature fusion strategy can enhance the network's ability to extract tongue features, and the mixed input can expand the data input of RCA-Net. The experimental results show that tongue shape classification based on IF-RCNet outperforms many other classification networks (VGG 16, ResNet 18, AlexNet, ViT and MobileNetv4). The method can accurately classify tongues despite the negative effects of differences between homogeneous tongue shapes and the misclassification of normal versus bulgy tongues due to lip interference. The method exhibited better performance on a small dataset of tongues, thereby enhancing the accuracy of tongue shape classification and providing a new approach for tongue shape classification.
Collapse
Affiliation(s)
- Tiantian Liang
- School of Electrical Engineering, Dalian Jiaotong University, 794 Huanghe Road, Dalian, 116028, China
| | - Haowei Wang
- School of Electrical Engineering, Dalian Jiaotong University, 794 Huanghe Road, Dalian, 116028, China
| | - Wei Yao
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Qi Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
3
|
Li H, Hussin N, He D, Geng Z, Li S. Design of image segmentation model based on residual connection and feature fusion. PLoS One 2024; 19:e0309434. [PMID: 39361568 PMCID: PMC11449362 DOI: 10.1371/journal.pone.0309434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
With the development of deep learning technology, convolutional neural networks have made great progress in the field of image segmentation. However, for complex scenes and multi-scale target images, the existing technologies are still unable to achieve effective image segmentation. In view of this, an image segmentation model based on residual connection and feature fusion is proposed. The model makes comprehensive use of the deep feature extraction ability of residual connections and the multi-scale feature integration ability of feature fusion. In order to solve the problem of background complexity and information loss in traditional image segmentation, experiments were carried out on two publicly available data sets. The results showed that in the ISPRS Vaihingen dataset and the Caltech UCSD Birds200 dataset, when the model completed the 56th and 84th iterations, respectively, the average accuracy of FRes-MFDNN was the highest, which was 97.89% and 98.24%, respectively. In the ISPRS Vaihingen dataset and the Caltech UCSD Birds200 dataset, when the system model ran to 0.20s and 0.26s, the F1 value of the FRes-MFDNN method was the largest, and the F1 value approached 100% infinitely. The FRes-MFDNN segmented four images in the ISPRS Vaihingen dataset, and the segmentation accuracy of images 1, 2, 3 and 4 were 91.44%, 92.12%, 94.02% and 91.41%, respectively. In practical applications, the MSRF-Net method, LBN-AA-SPN method, ARG-Otsu method, and FRes-MFDNN were used to segment unlabeled bird images. The results showed that the FRes-MFDNN was more complete in details, and the overall effect was significantly better than the other three models. Meanwhile, in ordinary scene images, although there was a certain degree of noise and occlusion, the model still accurately recognized and segmented the main bird images. The results show that compared with the traditional model, after FRes-MFDNN segmentation, the completeness, detail, and spatial continuity of pixels have been significantly improved, making it more suitable for complex scenes.
Collapse
Affiliation(s)
- Hong Li
- School of Information Engineering, Pingdingshan University, Pingdingshan, China
- Faculty of Engineering, Built Environment and Information Technology, SEGi University, Kota Damansara, Malaysia
| | - Norriza Hussin
- Faculty of Engineering, Built Environment and Information Technology, SEGi University, Kota Damansara, Malaysia
| | - Dandan He
- School of Information Engineering, Pingdingshan University, Pingdingshan, China
- Faculty of Engineering, Built Environment and Information Technology, SEGi University, Kota Damansara, Malaysia
| | - Zexun Geng
- School of Information Engineering, Pingdingshan University, Pingdingshan, China
| | - Shengpu Li
- School of Information Engineering, Pingdingshan University, Pingdingshan, China
| |
Collapse
|
4
|
Rauf Z, Khan AR, Sohail A, Alquhayz H, Gwak J, Khan A. Lymphocyte detection for cancer analysis using a novel fusion block based channel boosted CNN. Sci Rep 2023; 13:14047. [PMID: 37640739 PMCID: PMC10462751 DOI: 10.1038/s41598-023-40581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/13/2023] [Indexed: 08/31/2023] Open
Abstract
Tumor-infiltrating lymphocytes, specialized immune cells, are considered an important biomarker in cancer analysis. Automated lymphocyte detection is challenging due to its heterogeneous morphology, variable distribution, and presence of artifacts. In this work, we propose a novel Boosted Channels Fusion-based CNN "BCF-Lym-Detector" for lymphocyte detection in multiple cancer histology images. The proposed network initially selects candidate lymphocytic regions at the tissue level and then detects lymphocytes at the cellular level. The proposed "BCF-Lym-Detector" generates diverse boosted channels by utilizing the feature learning capability of different CNN architectures. In this connection, a new adaptive fusion block is developed to combine and select the most relevant lymphocyte-specific features from the generated enriched feature space. Multi-level feature learning is used to retain lymphocytic spatial information and detect lymphocytes with variable appearances. The assessment of the proposed "BCF-Lym-Detector" show substantial improvement in terms of F-score (0.93 and 0.84 on LYSTO and NuClick, respectively), which suggests that the diverse feature extraction and dynamic feature selection enhanced the feature learning capacity of the proposed network. Moreover, the proposed technique's generalization on unseen test sets with a good recall (0.75) and F-score (0.73) shows its potential use for pathologists' assistance.
Collapse
Affiliation(s)
- Zunaira Rauf
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
- PIEAS Artificial Intelligence Center (PAIC), Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
| | - Abdul Rehman Khan
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
| | - Anabia Sohail
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Hani Alquhayz
- Department of Computer Science and Information, College of Science in Zulfi, Majmaah University, 11952, Al-Majmaah, Saudi Arabia
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Asifullah Khan
- Pattern Recognition Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan.
- PIEAS Artificial Intelligence Center (PAIC), Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan.
- Center for Mathematical Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan.
| |
Collapse
|
5
|
Peng T, Gu Y, Zhang J, Dong Y, DI G, Wang W, Zhao J, Cai J. A Robust and Explainable Structure-Based Algorithm for Detecting the Organ Boundary From Ultrasound Multi-Datasets. J Digit Imaging 2023; 36:1515-1532. [PMID: 37231289 PMCID: PMC10406792 DOI: 10.1007/s10278-023-00839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Detecting the organ boundary in an ultrasound image is challenging because of the poor contrast of ultrasound images and the existence of imaging artifacts. In this study, we developed a coarse-to-refinement architecture for multi-organ ultrasound segmentation. First, we integrated the principal curve-based projection stage into an improved neutrosophic mean shift-based algorithm to acquire the data sequence, for which we utilized a limited amount of prior seed point information as the approximate initialization. Second, a distribution-based evolution technique was designed to aid in the identification of a suitable learning network. Then, utilizing the data sequence as the input of the learning network, we achieved the optimal learning network after learning network training. Finally, a scaled exponential linear unit-based interpretable mathematical model of the organ boundary was expressed via the parameters of a fraction-based learning network. The experimental outcomes indicated that our algorithm 1) achieved more satisfactory segmentation outcomes than state-of-the-art algorithms, with a Dice score coefficient value of 96.68 ± 2.2%, a Jaccard index value of 95.65 ± 2.16%, and an accuracy of 96.54 ± 1.82% and 2) discovered missing or blurry areas.
Collapse
Affiliation(s)
- Tao Peng
- School of Future Science and Engineering, Soochow University, Suzhou, China
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX USA
| | - Yidong Gu
- School of Future Science and Engineering, Soochow University, Suzhou, China
- Department of Medical Ultrasound, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu China
| | - Ji Zhang
- Department of Radiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Yan Dong
- Department of Ultrasonography, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gongye DI
- Department of Ultrasonic, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, China
| | - Wenjie Wang
- Department of Radio-Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu China
| | - Jing Zhao
- Department of Ultrasound, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jing Cai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
6
|
Wu Y, Wu B, Zhang Y, Wan S. A novel method of data and feature enhancement for few-shot image classification. Soft comput 2023. [DOI: 10.1007/s00500-023-07816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Yan J, Cai J, Xu Z, Guo R, Zhou W, Yan H, Xu Z, Wang Y. Tongue crack recognition using segmentation based deep learning. Sci Rep 2023; 13:511. [PMID: 36627326 PMCID: PMC9832139 DOI: 10.1038/s41598-022-27210-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Tongue cracks refer to fissures with different depth and shapes on the tongue's surface, which can characterize the pathological characteristics of spleen and stomach. Tongue cracks are of great significance to the objective study of tongue diagnosis. However, tongue cracks are small and complex, existing methods are difficult to extract them effectively. In order to achieve more accurate extraction and identification of tongue crack, this paper proposes to apply a deep learning network based on image segmentation (Segmentation-Based Deep-Learning, SBDL) to extract and identify tongue crack. In addition, we have studied the quantitative description of tongue crack features. Firstly, the pre-processed tongue crack samples were amplified by using adding salt and pepper noise, changing the contrast and horizontal mirroring; secondly, the annotation tool Crack-Tongue was used to label tongue crack; thirdly, the tongue crack extraction model was trained by using SBDL; fourthly, the cracks on the tongue surface were detected and located by the segmentation network, and then the output and features of the segmentation network were put into the decision network for the classification of crack tongue images; finally, the tongue crack segmentation and identification results were quantitatively evaluated. The experimental results showed that the tongue crack extraction and recognition results based on SBDL were better than Mask Region-based Convolutional Neural Network (Mask R-CNN), DeeplabV3+, U-Net, UNet++ and Semantic Segmentation with Adversarial Learning (SegAN). This method effectively solved the inaccurate tongue crack extraction caused by the tongue crack's color being close to the surrounding tongue coating's color. This method can achieve better tongue crack extraction and recognition results on a small tongue crack data set and provides a new idea for tongue crack recognition, which is of practical value for tongue diagnosis objectification.
Collapse
Affiliation(s)
- Jianjun Yan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinxing Cai
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zi Xu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rui Guo
- Comprehensive Laboratory of Four Diagnostic Methods, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haixia Yan
- Comprehensive Laboratory of Four Diagnostic Methods, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhaoxia Xu
- Comprehensive Laboratory of Four Diagnostic Methods, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiqin Wang
- Comprehensive Laboratory of Four Diagnostic Methods, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
8
|
Voon W, Hum YC, Tee YK, Yap WS, Salim MIM, Tan TS, Mokayed H, Lai KW. Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images. Sci Rep 2022; 12:19200. [PMID: 36357456 PMCID: PMC9649772 DOI: 10.1038/s41598-022-21848-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Computer-aided Invasive Ductal Carcinoma (IDC) grading classification systems based on deep learning have shown that deep learning may achieve reliable accuracy in IDC grade classification using histopathology images. However, there is a dearth of comprehensive performance comparisons of Convolutional Neural Network (CNN) designs on IDC in the literature. As such, we would like to conduct a comparison analysis of the performance of seven selected CNN models: EfficientNetB0, EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2 with transfer learning. To implement each pre-trained CNN architecture, we deployed the corresponded feature vector available from the TensorFlowHub, integrating it with dropout and dense layers to form a complete CNN model. Our findings indicated that the EfficientNetV2B0-21k (0.72B Floating-Point Operations and 7.1 M parameters) outperformed other CNN models in the IDC grading task. Nevertheless, we discovered that practically all selected CNN models perform well in the IDC grading task, with an average balanced accuracy of 0.936 ± 0.0189 on the cross-validation set and 0.9308 ± 0.0211on the test set.
Collapse
Affiliation(s)
- Wingates Voon
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia.
| | - Yee Kai Tee
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia
| | - Wun-She Yap
- Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia
| | - Maheza Irna Mohamad Salim
- Diagnostic Research Group, School of Biomedical Engineering and Health Sciences, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Tian Swee Tan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Hamam Mokayed
- Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, Luleå, Sweden
| | - Khin Wee Lai
- Department of Biomedical Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|