1
|
Li CH, Chan MH, Liang SM, Chang YC, Hsiao M. Fascin-1: Updated biological functions and therapeutic implications in cancer biology. BBA ADVANCES 2022; 2:100052. [PMID: 37082587 PMCID: PMC10074911 DOI: 10.1016/j.bbadva.2022.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Filopodia are cellular protrusions that respond to a variety of stimuli. Filopodia are formed when actin is bound to the protein Fascin, which may play a crucial role in cellular interactions and motility during cancer metastasis. Significantly, the noncanonical features of Fascin-1 are gradually being clarified, including the related molecular network contributing to metabolic reprogramming, chemotherapy resistance, stemness ac-tivity, and tumor microenvironment events. However, the relationship between biological characteristics and pathological features to identify effective therapeutic strategies needs to be studied further. The pur-pose of this review article is to provide a broad overview of the latest molecular networks and multiomics research regarding fascins and cancer. It also highlights their direct and indirect effects on available cancer treatments. With this multidisciplinary approach, researchers and clinicians can gain the most relevant in-formation on the function of fascins in cancer progression, which may facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Corresponding authors.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding authors.
| |
Collapse
|
2
|
Fascin-1 and its role as a serological marker in prostate cancer: a prospective case-control study. Future Sci OA 2021; 7:FSO745. [PMID: 34737886 PMCID: PMC8558850 DOI: 10.2144/fsoa-2021-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aims to investigate any modification of serological FSCN1 in prostate cancer patients compared with patients without neoplasia. Material & methods: Clinical data and blood specimens from patients with and without prostate cancer were obtained. A quantitative sandwich ELISA method was used to determine serological values of FSCN1. Results: Although serum values of FSCN1 were dissimilar in the two cohorts of patients (6.90 vs 7.33 ng/ml), the difference was not statistically significant (p = 0.20). Serum values of FSCN1 stratified for Gleason score groups were not significantly distinguishable (p = 0.65). A negative correlation (rho = -0.331; p = 0.009) was reported between FSCN1 and age. Conclusion: Further studies are required to evaluate a possible diagnostic role of FSCN1 in prostate cancer. FSCN1 is a potential novel biomarker that we investigated in patients with prostate cancer and evaluated in serum through a quantitative assay. Although FSCN1 serum values were dissimilar between patients with and without prostate cancer (with lower values in the first group), data are currently inconclusive. A negative correlation between FSCN1 and age was instead reported. Further studies are required to investigate a possible diagnostic role of FSCN1.
Collapse
|
3
|
Chen YJ, Chang JT, You GR, Huang CY, Fan KH, Cheng AJ. Panel biomarkers associated with cancer invasion and prognostic prediction for head-neck cancer. Biomark Med 2021; 15:861-877. [PMID: 34032473 DOI: 10.2217/bmm-2021-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: Cell invasion leading to metastasis is a major cause of treatment failure in head-neck cancers (HNCs). Identifying prognostic molecules associated with invasiveness is imperative for clinical applications. Materials & methods: A systemic approach was used to globally survey invasion-related genes, including transcriptomic profiling, pathway analysis, data mining and prognostic assessment using TCGA-HNSC dataset. Results: Six functional pathways and six hub molecules (LAMA3, LAMC2, THBS1, IGF1R, PDGFB and TGFβ1) were identified that significantly contributed to cell invasion, leading to poor survival in HNC patients. Combinations of multiple biomarkers substantially increased the probability of accurately predicting prognosis. Conclusion: Our six defined invasion-related molecules may be used as a panel signature in precision medicine for prognostic indicators or molecular therapeutic targets for HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical School, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Yu Huang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236017, Taiwan
| | - Ann-Joy Cheng
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, 33333, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
4
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
5
|
Qiao W, Liu H, Guo W, Li P, Deng M. Prognostic and clinical significance of syndecan-1 expression in breast cancer: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 45:1132-1137. [PMID: 30598194 DOI: 10.1016/j.ejso.2018.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/09/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognostic value of syndecan-1 (SDC1, also called CD138) in breast cancer remains controversial. Therefore, we performed a meta-analysis to assess the clinical significance of SDC1 expression in breast cancer. MATERIALS AND METHODS Various databases were searched to evaluate possible correlations between SDC1 protein or mRNA expression and prognostic significance in breast cancer. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were applied to perform a quantitative meta-analysis. RESULTS A total of 1305 breast cancer patients from 9 eligible studies were included in this meta-analysis. Significant associations between elevated SDC1 protein expression and poor disease-free survival (DFS) (HR = 1.55, 95% CI: 1.12-2.14; P = 0.007) and overall survival (OS) (HR = 2.08, 95% CI: 1.61-2.69; P < 0.001) were observed. In addition, enhanced SDC1 protein expression correlated with negative estrogen receptor (ER) expression (OR, 2.38; 95% CI, 1.64-3.44; P < 0.001) and positive human epidermal growth factor receptor 2 (HER2) expression (OR, 1.77; 95% CI, 1.14-2.76; P = 0.01). However, increased SDC1 protein expression did not correlate with relapse-free survival (RFS) (HR = 0.33, 95% CI: 0.03-3.13; P = 0.33). There were no additional significant correlations observed between SDC1 protein expression and other clinical factors, including tumor size, lymph node involvement, nuclear grade, and progesterone receptor (PR) expression. CONCLUSION The results of this meta-analysis demonstrate that increased SDC1 protein expression in breast cancer is significantly associated with worse prognosis in terms of DFS and OS, and an aggressive phenotype is associated with negative ER expression and positive HER2 expression.
Collapse
Affiliation(s)
- Weiqiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Heyang Liu
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Wanying Guo
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Peng Li
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Miao Deng
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
6
|
Fascin 1 promoted the growth and migration of non-small cell lung cancer cells by activating YAP/TEAD signaling. Tumour Biol 2016; 37:10909-15. [DOI: 10.1007/s13277-016-4934-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 12/28/2022] Open
|
7
|
Jones RP, Bird NTE, Smith RA, Palmer DH, Fenwick SW, Poston GJ, Malik HZ. Prognostic molecular markers in resected extrahepatic biliary tract cancers; a systematic review and meta-analysis of immunohistochemically detected biomarkers. Biomark Med 2015. [PMID: 26223884 DOI: 10.2217/bmm.15.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Better prognostic information for resected extrahepatic cholangiocarcinoma could guide treatment strategies and potentially improve outcome. This study performed a systematic review and meta-analysis to identify prognostic biomarkers for further investigation. METHODS Relevant literature was identified using Medline, EMBASE and Web of Science. Primary end point was overall survival assessed on univariate analysis. Log hazard ratio and variance were calculated and pooled using a random effects inverse variance approach. Hazard ratio and 95% confidence intervals were calculated. RESULTS Thirty-seven studies, including 2371 patients, met the inclusion criteria. Subsequently nine biomarkers predictive of OS were identified (HR, 95% CI): VEGF (2.32, 1.57-3.44), COX-2 (1.94, 1.01-3.71), GLUT-1 (2.09, 1.52-2.89), Cyclin D1 (1.96, 1.02-3.76), p16 (0.68, 0.47-0.98), p27 (0.48, 0.3-0.78), E-Cadherin (0.47, 0.35-0.63), Fascin (2.19, 1.35-3.55), and Ki-67 (1.69, 1.02-2.79). CONCLUSION Meta-analysis has identified a number of prognostic biomarkers for resected extrahepatic cholangiocarcinoma. These markers warrant further investigation as potential therapeutic targets and validation in a prospective setting.
Collapse
Affiliation(s)
- Robert P Jones
- School of Cancer Studies, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZK, UK.,Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Nicholas T E Bird
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Richard A Smith
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Daniel H Palmer
- School of Cancer Studies, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 7ZK, UK.,Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Steven W Fenwick
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Graeme J Poston
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| | - Hassan Z Malik
- Liverpool Hepatobiliary Unit, Aintree University Hospital, Liverpool, L9 7AL, UK
| |
Collapse
|
8
|
Kanda Y, Kawaguchi T, Kuramitsu Y, Kitagawa T, Kobayashi T, Takahashi N, Tazawa H, Habelhah H, Hamada JI, Kobayashi M, Hirahata M, Onuma K, Osaki M, Nakamura K, Kitagawa T, Hosokawa M, Okada F. Fascin regulates chronic inflammation-related human colon carcinogenesis by inhibiting cell anoikis. Proteomics 2014; 14:1031-41. [PMID: 24574163 DOI: 10.1002/pmic.201300414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/21/2014] [Accepted: 02/21/2014] [Indexed: 12/31/2022]
Abstract
By a proteomics-based approach, we identified an overexpression of fascin in colon adenocarcinoma cells (FPCKpP-3) that developed from nontumorigenic human colonic adenoma cells (FPCK-1-1) and were converted to tumorigenic by foreign-body-induced chronic inflammation in nude mice. Fascin overexpression was also observed in the tumors arising from rat intestinal epithelial cells (IEC 6) converted to tumorigenic in chronic inflammation which was induced in the same manner. Upregulation of fascin expression in FPCK-1-1 cells by transfection with sense fascin cDNA converted the cells tumorigenic, whereas antisense fascin-cDNA-transfected FPCKpP-3 cells reduced fascin expression and lost their tumor-forming ability in vivo. The tumorigenic potential by fascin expression was consistent with their ability to survive and grow in the three-dimensional multicellular spheroids. We found that resistance to anoikis (apoptotic cell death as a consequence of insufficient cell-to-substrate interactions), which is represented by the three-dimensional growth of solid tumors in vivo, was regulated by fascin expression through caspase-dependent apoptotic signals. From these, we demonstrate that fascin is a potent suppressor to caspase-associated anoikis and accelerator of the conversion of colonic adenoma cells into adenocarcinoma cells by chronic inflammation.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Barbouri D, Afratis N, Gialeli C, Vynios DH, Theocharis AD, Karamanos NK. Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol 2014; 4:4. [PMID: 24551591 PMCID: PMC3910246 DOI: 10.3389/fonc.2014.00004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/09/2014] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs), a family of transmembrane heparan sulfate proteoglycans (HSPGs). Specifically, heparan sulfate (HS) chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases, ADAM as well as ADAMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble SDCs "shed SDCs" in the ECM interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed SDCs, upon binding to several matrix effectors, such as growth factors, chemokines, and cytokines, have the ability to act as competitive inhibitors for membrane proteoglycans, and modulate the inflammatory microenvironment of cancer cells. It is notable that SDCs and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of SDCs in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.
Collapse
Affiliation(s)
- Despoina Barbouri
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikolaos Afratis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H. Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
10
|
Fascin expression predicts lymph node metastasis and worse survival in small intestinal carcinoma. Pathology 2014; 46:21-4. [DOI: 10.1097/pat.0000000000000024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Teng Y, Xu S, Yue W, Ma L, Zhang L, Zhao X, Guo Y, Zhang C, Gu M, Wang Y. Serological investigation of the clinical significance of fascin in non-small-cell lung cancer. Lung Cancer 2013; 82:346-52. [DOI: 10.1016/j.lungcan.2013.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 01/02/2023]
|
12
|
Prognostic significance of syndecan-1 expression in squamous cell carcinoma of the tonsil. Int J Clin Oncol 2013; 19:247-53. [DOI: 10.1007/s10147-013-0552-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
|
13
|
Andrén-Sandberg Å. Molecular biology of gallbladder cancer: potential clinical implications. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:435-41. [PMID: 23112962 PMCID: PMC3482772 DOI: 10.4103/1947-2714.101979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer (GBC) is a common malignancy of the biliary tract and involves the changes in multiple oncogenes and multiple genetic genes. Since over the past decade there has been an advance in the knowledge of the genetic basis of cancer, mainly as a result of the rapid progression of molecular technology; however, conventional therapeutic approaches have not had much impact on the course of this aggressive neoplasm. Knowledge of the molecular biology of GBC is rapidly growing. Genetic alterations in GBC include adenosine triphosphate-binding cassette transporter ABCG8, membrane-bound enzyme ADAM-17 of multi-functional gene family, and other genes including p53, COX2, XPC, and RASSF1A. The advances in molecular biology have potential implications for the detection of this disease, using Synuclein-gamma, Syndecan-1, glycoprotein 72 (TAG-72), tumor endothelial marker 8 protein (TEM8) and TNF-alpha. The use of these molecular diagnostic methods is of clinical importance for the gene replacement therapy, genetic prodrug activation therapy, and antisense immunology technology for the treatment of malignancy. The author reviewed recent publications on PubMed, and summarized molecular biology of GBC, with an emphasis on features of potential clinical implications for diagnosis and management.
Collapse
Affiliation(s)
- Åke Andrén-Sandberg
- Department of Surgery, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
14
|
Schmitt J, Heisel S, Keller A, Leidinger P, Ludwig N, Habel N, Furtwängler R, Nourkami-Tutdibi N, Wegert J, Grundy P, Gessler M, Graf N, Lenhof HP, Meese E. Multicenter study identified molecular blood-born protein signatures for Wilms Tumor. Int J Cancer 2011; 131:673-82. [PMID: 21913182 DOI: 10.1002/ijc.26419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/24/2011] [Indexed: 01/06/2023]
Abstract
Wilms Tumor (WT) is the most common renal childhood tumor. Recently, we reported a cDNA microarray expression pattern that varied between WTs with different risk histology. Since the Societé Internationale d'Oncologie Pédiatrique (SIOP) in Europe initiates treatment without a histological confirmation, it is important to identify blood-born markers that indicate WT development. In a multicenter study, we established an autoantibody signature by using an array with 1,827 recombinant E. coli clones. This array was screened with sera of patients with WT recruited by SIOP or the Children's Oncology Group (COG). We report an extended number of antigens that are reactive with autoantibodies present in sera from patients with WT. We established an autoantibody signature that separates untreated patients with WT recruited in SIOP from non-WT controls with a specificity of 0.83 and a sensitivity of 0.82 at standard deviations of 0.02 and 0.04, respectively. Likewise, patients recruited in the COG in the United States were separated from the controls with an accuracy of 0.83 at a standard deviation of 0.02. Proteins that were most significant include zinc finger proteins (e.g., ZFP 346), ribosomal proteins and the protein fascin that has been associated with various types of cancer including renal cell carcinoma. Our study provides first evidence for autoantibody signatures for WTs and suggests that these may be most informative before chemotherapy. We present the first multicenter study of autoantibody signatures in patients with WT. We established an autoantibody signature that separates patients with WT from controls.
Collapse
Affiliation(s)
- Jana Schmitt
- Department of Human Genetics, Medical School, Saarland University, 66421 Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ishikawa T, Kramer RH. Sdc1 negatively modulates carcinoma cell motility and invasion. Exp Cell Res 2009; 316:951-65. [PMID: 20036233 DOI: 10.1016/j.yexcr.2009.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
During cancer progression, tumor cells eventually invade the surrounding collagen-rich extracellular matrix. Here we show that squamous cell carcinoma cells strongly adhere to Type I collagen substrates but display limited motility and invasion on collagen barriers. Further analysis revealed that in addition to the alpha2beta1 integrin, a second collagen receptor was identified as Syndecan-1 (Sdc1), a cell surface heparan sulfate proteoglycan. We demonstrate that siRNA-mediated depletion of Sdc1 reduced adhesion efficiency to collagen I, whereas knockdown of Sdc4 was without effect. Importantly, silencing Sdc1 expression caused reduced focal adhesion plaque formation and enhanced cell spreading and motility on collagen I substrates, but did not alter cell motility on other ECM substrates. Sdc1 depletion ablated adhesion-induced RhoA activation. In contrast, Rac1 was strongly activated following Sdc1 knockdown, suggesting that Sdc1 may mediate the link between integrin-induced actin remodeling and motility. Taken together, these data substantiate the existence of a co-adhesion receptor system in tumor cells, whereby Sdc1 functions as a key regulator of cell motility and cell invasion by modulating RhoA and Rac activity. Downregulation of Sdc1 expression during carcinoma progression may represent a mechanism by which tumor cells become more invasive and metastatic.
Collapse
Affiliation(s)
- Tohru Ishikawa
- Department of Cell and Tissue Biology, University of California San Francisco, 521 Parnassus Avenue, Room C-640, San Francisco, CA 94143-0640, USA
| | | |
Collapse
|