1
|
Wang T, Jin Y, Wang M, Chen B, Sun J, Zhang J, Yang H, Deng X, Cao X, Wang L, Tang Y. SALL4 in gastrointestinal tract cancers: upstream and downstream regulatory mechanisms. Mol Med 2024; 30:46. [PMID: 38584262 PMCID: PMC11000312 DOI: 10.1186/s10020-024-00812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Effective therapeutic targets and early diagnosis are major challenges in the treatment of gastrointestinal tract (GIT) cancers. SALL4 is a well-known transcription factor that is involved in organogenesis during embryonic development. Previous studies have revealed that SALL4 regulates cell proliferation, survival, and migration and maintains stem cell function in mature cells. Additionally, SALL4 overexpression is associated with tumorigenesis. Despite its characterization as a biomarker in various cancers, the role of SALL4 in GIT cancers and the underlying mechanisms are unclear. We describe the functions of SALL4 in GIT cancers and discuss its upstream/downstream genes and pathways associated with each cancer. We also consider the possibility of targeting these genes or pathways as potential therapeutic options for GIT cancers.
Collapse
Affiliation(s)
- Tairan Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yan Jin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mengyao Wang
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Boya Chen
- First Clinical Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinyu Sun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinyao Deng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xingyue Cao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Kawaguchi T, Okamoto K, Fujimoto S, Bando M, Wada H, Miyamoto H, Sato Y, Muguruma N, Horimoto K, Takayama T. Lansoprazole inhibits the development of sessile serrated lesions by inducing G1 arrest via Skp2/p27 signaling pathway. J Gastroenterol 2024; 59:11-23. [PMID: 37989907 DOI: 10.1007/s00535-023-02052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Although the serrated-neoplasia pathway reportedly accounts for 15-30% of colorectal cancer (CRC), no studies on chemoprevention of sessile serrated lesions (SSLs) have been reported. We searched for effective compounds comprehensively from a large series of compounds by employing Connectivity Map (CMAP) analysis of SSL-specific gene expression profiles coupled with in vitro screening using SSL patient-derived organoids (PDOs), and validated their efficacy using a xenograft mouse model of SSL. METHODS We generated SSL-specific gene signatures based on DNA microarray data, and applied them to CMAP analysis with 1309 FDA-approved compounds to select candidate compounds. We evaluated their inhibitory effects on SSL-PDOs using a cell viability assay. SSL-PDOs were orthotopically transplanted into NOG mice for in vivo evaluation. The signal transduction pathway was evaluated by gene expression profile and protein expression analysis. RESULTS We identified 221 compounds by employing CMAP analysis of SSL-specific signatures, which should cancel the gene signatures, and narrowed them down to 17 compounds. Cell viability assay using SSL-PDOs identified lansoprazole as having the lowest IC50 value (47 µM) among 17 compounds. When SSL-PDO was orthotopically transplanted into murine intestinal tract, the tumor grew gradually. Administration of lansoprazole to mice inhibited the growth of SSL xenograft whereas the tumor in control mice treated with vehicle alone grew gradually over time. The Ki67 index in xenograft lesions from the lansoprazole group was significantly lower compared with the control group. Cell cycle analysis of SSL-PDOs treated with lansoprazole exhibited a significant increase in G1 phase cell population. Microarray and protein analysis revealed that lansoprazole downregulated Skp2 expression and upregulated p27 expression in SSL-PDOs. CONCLUSIONS Our data strongly suggest that lansoprazole is the most effective chemopreventive agent against SSL, and that lansoprazole induces G1 cell cycle arrest by downregulating Skp2 and upregulating p27 in SSL cells.
Collapse
Affiliation(s)
- Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hironori Wada
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug Discovery (Molprof) National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- SOCIUM Inc, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
3
|
Iwaizumi M, Taniguchi T, Kurachi K, Osawa S, Sugimoto K, Baba S, Sugimura H, Maekawa M. Methylation of CpG island promoters at ZNF625, LONRF2, SDC2 and WDR17 in a patient with numerous non-granular type laterally spreading tumors and colorectal cancer: A case report. Oncol Lett 2023; 25:14. [PMID: 36478906 PMCID: PMC9713776 DOI: 10.3892/ol.2022.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with adenomatous polyposis syndromes such as familial adenomatous polyposis are at higher risk of colorectal cancer, hence continuous management is necessary. However, little is known about the etiology of patients with numerous laterally spreading tumors (LSTs), or how genetic alterations uniquely influence LSTs in colorectal carcinogenesis. The present case report investigated a woman with >150 non-granular type LSTs (LST-NG) and one sigmoid colon cancer. After subtotal colectomy via ileorectal anastomosis, genetic and epigenetic analyses were conducted by comparing the profiles of the patient's normal colonic mucosa, four LST-NG lesions and a cancer lesion. Using customized multigene panel testing, no pathogenic germline mutations were detected, including APC regulator of WNT signaling pathway, but identified a somatic pathogenic variant of APC in one LST-NG lesion, and both TP53 and F-box and WD repeat domain containing 7 somatic mutations in the cancer. Comprehensive genome-wide methylation analysis showed that CpG island promoters at zinc finger protein 625, LON peptidase N-terminal domain and ring finger 2, WD repeat domain 17 and syndecan 2 were methylated in both LST-NG and cancer, which may contribute to colorectal tumorigenesis as early as the LST-NG phase.
Collapse
Affiliation(s)
- Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kiyotaka Kurachi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
4
|
Zhu M, Zhang P, Yu S, Tang C, Wang Y, Shen Z, Chen W, Liu T, Cui Y. Targeting ZFP64/GAL-1 axis promotes therapeutic effect of nab-paclitaxel and reverses immunosuppressive microenvironment in gastric cancer. J Exp Clin Cancer Res 2022; 41:14. [PMID: 34996504 PMCID: PMC8740411 DOI: 10.1186/s13046-021-02224-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Chemoresistance is a main obstacle in gastric cancer (GC) treatment, but its molecular mechanism still needs to be elucidated. Here, we aim to reveal the underlying mechanisms of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) resistance in GC. Methods We performed RNA sequencing (RNA-seq) on samples from patients who were resistant or sensitive to nab-paclitaxel, and identified Zinc Finger Protein 64 (ZFP64) as critical for nab-paclitaxel resistance in GC. CCK8, flow cytometry, TUNEL staining, sphere formation assays were performed to investigate the effects of ZFP64 in vitro, while subcutaneous tumor formation models were established in nude mice or humanized mice to evaluate the biological roles of ZFP64 in vivo. Chromatin immunoprecipitation sequencing (CHIP-seq) and double-luciferase reporter gene assay were conducted to reveal the underlying mechanism of ZFP64. Results ZFP64 overexpression was linked with aggressive phenotypes, nab-paclitaxel resistance and served as an independent prognostic factor in GC. As a transcription factor, ZFP64 directly binds to Galectin-1 (GAL-1) promoter and promoted GAL-1 transcription, thus inducing stem-cell like phenotypes and immunosuppressive microenvironment in GC. Importantly, compared to treatment with nab-paclitaxel alone, nab-paclitaxel plus GAL-1 blockade significantly enhanced the anti-tumor effect in mouse models, particularly in humanized mice. Conclusions Our data support a pivotal role for ZFP64 in GC progression by simultaneously promoting cellular chemotherapy resistance and tumor immunosuppression. Treatment with the combination of nab-paclitaxel and a GAL-1 inhibitor might benefit a subgroup of GC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02224-x.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Tang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weidong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Rubio CA. Two histologic compartments in nonpolypoid conventional colon adenomas. J Gastroenterol Hepatol 2021; 36:910-917. [PMID: 32757480 DOI: 10.1111/jgh.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 12/09/2022]
Abstract
Two intertwined compartments coexisting in nonpolypoid conventional (i.e. tubular or villous) adenomas are highlighted in this review: one built of dysplastic tissue on top and the other portraying crypts with irregular, corrupted shapes, albeit lined with normal epithelium, below. The latter compartment has remained unattended in the literature. Recently, however, the histologic characteristics of the nondysplastic compartment in nonpolypoid conventional adenomas were closely examined, and some of its biological attributes were unveiled. Studies with the proliferation marker ki67 showed that the crypts with irregular, corrupted shapes in the nondysplastic compartment displayed haphazardly distributed proliferating cell-domains. Given that the proliferating cells are generated by stem cells, the relocation of proliferating cell-domains in those crypts seems to be the result of a reorganization of the stem cells within the crypts. The abnormal distribution of proliferating cells, the finding of p53-upregulated cells, and of crypts in asymmetric fission suggest that the crypts in that compartment are histo-biologically altered, probably somatically mutated. This new information might contribute to unravel the riddle of crypto-histogenesis of nonpolypoid conventional adenomas of the colon. More research along these lines is necessary, before the biology of the crypts in the nondysplastic compartment can be fully translated into molecular terms.
Collapse
Affiliation(s)
- Carlos A Rubio
- Gastrointestinal Research Laboratory, Department of Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Kim JE, Choi J, Sung CO, Hong YS, Kim SY, Lee H, Kim TW, Kim JI. High prevalence of TP53 loss and whole-genome doubling in early-onset colorectal cancer. Exp Mol Med 2021; 53:446-456. [PMID: 33753878 PMCID: PMC8080557 DOI: 10.1038/s12276-021-00583-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
The global incidence of early-onset colorectal cancer (EO-CRC) is rapidly rising. However, the reason for this rise in incidence as well as the genomic characteristics of EO-CRC remain largely unknown. We performed whole-exome sequencing in 47 cases of EO-CRC and targeted deep sequencing in 833 cases of CRC. Mutational profiles of EO-CRC were compared with previously published large-scale studies. EO-CRC and The Cancer Genome Atlas (TCGA) data were further investigated according to copy number profiles and mutation timing. We classified colorectal cancer into three subgroups: the hypermutated group consisted of mutations in POLE and mismatch repair genes; the whole-genome doubling group had early functional loss of TP53 that led to whole-genome doubling and focal oncogene amplification; the genome-stable group had mutations in APC and KRAS, similar to conventional colon cancer. Among non-hypermutated samples, whole-genome doubling was more prevalent in early-onset than in late-onset disease (54% vs 38%, Fisher's exact P = 0.04). More than half of non-hypermutated EO-CRC cases involved early TP53 mutation and whole-genome doubling, which led to notable differences in mutation frequencies between age groups. Alternative carcinogenesis involving genomic instability via loss of TP53 may be related to the rise in EO-CRC.
Collapse
Affiliation(s)
- Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunjung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Takahashi S, Okamoto K, Tanahashi T, Fujimoto S, Nakagawa T, Bando M, Ma B, Kawaguchi T, Fujino Y, Mitsui Y, Kitamura S, Miyamoto H, Sato Y, Muguruma N, Bando Y, Sato T, Fujimori T, Takayama T. S100P Expression via DNA Hypomethylation Promotes Cell Growth in the Sessile Serrated Adenoma/Polyp-Cancer Sequence. Digestion 2021; 102:789-802. [PMID: 33395688 DOI: 10.1159/000512575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor lesion of colon cancer. Although the relevance of DNA hypermethylation in the SSA/P-cancer sequence is well documented, the role of DNA hypomethylation is unknown. We investigated the biological relevance of DNA hypomethylation in the SSA/P-cancer sequence by using 3-dimensional organoids of SSA/P. METHODS We first analyzed hypomethylated genes using datasets from our previous DNA methylation array analysis on 7 SSA/P and 2 cancer in SSA/P specimens. Expression levels of hypomethylated genes in SSA/P specimens were determined by RT-PCR and immunohistochemistry. We established 3-dimensional SSA/P organoids and performed knockdown experiments using a lentiviral shRNA vector. DNA hypomethylation at CpG sites of the gene was quantitated by MassARRAY analysis. RESULTS The mean number of hypomethylated genes in SSA/P and cancer in SSA/P was 41.6 ± 27.5 and 214 ± 19.8, respectively, showing a stepwise increment in hypomethylation during the SSA/P-cancer sequence. S100P, S100α2, PKP3, and MUC2 were most commonly hypomethylated in SSA/P specimens. The mRNA and protein expression levels of S100P, S100α2, and MUC2 were significantly elevated in SSA/P compared with normal colon tissues, as revealed by RT-PCR and immunohistochemistry, respectively. Among these, mRNA and protein levels were highest for S100P. Knockdown of the S100P gene using a lentiviral shRNA vector in 3-dimensional SSA/P organoids inhibited cell growth by >50% (p < 0.01). The mean diameter of SSA/P organoids with S100P gene knockdown was significantly smaller compared with control organoids. MassARRAY analysis of DNA hypomethylation in the S100P gene revealed significant hypomethylation at specific CpG sites in intron 1, exon 1, and the 5'-flanking promoter region. CONCLUSION These results suggest that DNA hypomethylation, including S100P hypomethylation, is supposedly associated with the SSA/P-cancer sequence. S100P overexpression via DNA hypomethylation plays an important role in promoting cell growth in the SSA/P-cancer sequence.
Collapse
Affiliation(s)
- Sayo Takahashi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihito Tanahashi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tadahiko Nakagawa
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Beibei Ma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuteru Fujino
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuhiro Mitsui
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinji Kitamura
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | | | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan,
| |
Collapse
|
8
|
Jiang J, Zhang J, Fu K, Zhang T. Function and mechanism exploration of zinc finger protein 64 in lung adenocarcinoma cell growth and metastasis. J Recept Signal Transduct Res 2020; 41:457-465. [PMID: 33054540 DOI: 10.1080/10799893.2020.1825490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper aims to discover the effect of Zinc Finger Protein 64 (ZFP64) and Notch pathway on lung adenocarcinoma cell. ZFP64 expression in cancer tissue and overall survival analysis was identified by TCGA-LUAD. ZFP64 expressions in tumor tissue (n = 30) and adjacent tissue (n = 30), and in human nontumorigenic bronchial epithelial cell line BEAS-2B and human lung adenocarcinoma cell lines (H23, H1975, H2228, and H2085) were measured via quantitative real-time polymerase chain reaction (qRT-PCR). H1975 cell viability, cell cycle progression, and migration after transfection or under Notch inhibitor MK-0752 treatment were detected through MTT assay, flow cytometer, and wound healing assay, respectively. Expressions of notch intracellular domain (NICD) and hairy and enhancer of split 1 (Hes-1) in H1975 cell were determined by western blot. Epithelial-mesenchymal transition (EMT)-related proteins (E-Cadherin and Vimentin) expressions were identified through qRT-PCR and western blot. ZFP64 expression in lung adenocarcinoma tissue and lung adenocarcinoma cell lines was higher and related to poor prognosis. After transfection, H1975 cell viability, migration, and expressions of Vimentin, NICD and Hes-1 were upregulated yet cell percentage in G0/G1 phase, E-cadherin expression was downregulated by overexpressed ZFP64. However, Notch inhibitor MK-0752 inhibited the effects of overexpressed ZFP64 on H1975 cell viability, cell cycle, migration, EMT progress, and Notch pathway activation. Overexpressed ZFP64 promoted the development of lung adenocarcinoma cells by activating Notch pathway.
Collapse
Affiliation(s)
- Jiuyang Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Kai Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Tiewa Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
9
|
Nagai K, Hayashi Y, Honma K, Sakatani A, Yoshii S, Fujinaga T, Maekawa A, Tsujii Y, Hiyama S, Shinzaki S, Watabe K, Iijima H, Tsujii M, Mizushima T, Morii E, Takehara T. Adenoma of colorectal laterally spreading tumor nongranular type with biological phenotypic features similar to cancer. J Gastroenterol Hepatol 2018; 33:1853-1863. [PMID: 29767452 DOI: 10.1111/jgh.14284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/03/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Colorectal laterally spreading tumors (LSTs) are morphologically subdivided into granular (LST-G) and nongranular (LST-NG) categories. We aimed to elucidate the differences in oncogenic characteristics between the two types. METHODS Laterally spreading tumors resected by endoscopic submucosal dissection and surgery from March 2009 to May 2017 were examined for p53 positivity, Ki-67 labeling index (LI), microvessel density, degree of fibrosis, intensities of inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), and expression of acid mucins. We compared these factors between adenomas, noninvasive cancers, and invasive cancers, both LST-G and LST-NG. RESULTS Ninety-three LST-G (53 adenomas [LST-GA] and 40 cancers [LST-GC]) and 55 LST-NG (24 adenomas [LST-NGA] and 31 cancers [LST-NGC]) were evaluated. Although p53 positivity was lower in LST-GA than in LST-NGA (P < 0.001), there was no difference between LST-GC and LST-NGC. Ki-67 LI was higher in LST-NGA than in LST-GA (P < 0.001) and higher in LST-NGC than in LST-GC of noninvasive cancers (P < 0.001). Microvessel density and degree of fibrosis were higher in LST-NGA than in LST-GA (P < 0.001), and intensities of iNOS and NT were also higher in LST-NGA than in LST-GA (P < 0.001). Expression of acid mucins was lower in LST-NGA than in LST-GA (P < 0.001). Although there were significant differences in p53 positivity, Ki-67 LI, microvessel density, degree of fibrosis, intensities of iNOS and NT, and expression of acid mucins between LST-GA and LST-NGA, these factors were only slightly different between LST-GC and LST-NGC of invasive cancers. CONCLUSIONS Unlike LST-GA, LST-NGA possessed phenotypic features similar to cancer.
Collapse
Affiliation(s)
- Kengo Nagai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichiro Honma
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuji Fujinaga
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Maekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Hiyama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Watabe
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
吴 杰, 霍 继, 王 东, 汪 春, 吕 梁. [Expression of Wnt and integrin pathways in colorectal laterally spreading tumors and their correlation with endoscopic subtypes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1234-1241. [PMID: 28951368 PMCID: PMC6765489 DOI: 10.3969/j.issn.1673-4254.2017.09.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the expression of Wnt and integrin pathways in colorectal laterally spreading tumors (LSTs) and their correlation with the different endoscopic subtypes of LSTs to better understand the special growth mechanism of LSTs. METHODS Fifty-two patients with colorectal LSTs were randomly selected from the cases diagnosed between January 1, 2010 and June 10, 2015 in our hospital, including 37 of nodular mixed type (LST-G-M), 60 of homogeneous type (LST-G-H), 5 of flat elevated type (LST-NG-FE), and 4 of pseudodepressed type (LST-NG-PD). The expression of β-catenin, phospho- GSK-3β, paxillin and ILK in 52 colorectal LSTs and 15 protruded adenomas (PAs) were investigated by immunohistochemical staining. The correlation of β-catenin, phospho-GSK-3β, paxillin and ILK expressions among the endoscopic subtypes of LSTs were analyzed. RESULTS β-catenin expression was significantly higher in LSTs than in Pas (P<0.05). β-catenin, phospho-GSK-3β, paxillin and ILK expressions were significantly higher in LST-NG-PD than in Pas (P<0.05). The expressions of β-catenin, phospho-GSK-3β and ILK expression were significantly correlated in LSTs (P<0.05) but not in PAs (P>0.05). CONCLUSION The macroscopic feature of LST-NG-PD may result from a special mechanism of development distinct from other endoscopic subtypes; ILK may play a role in regulating Wnt signaling in LSTs.
Collapse
Affiliation(s)
- 杰 吴
- />中南大学湘雅二医院消化内科,湖南 长沙 410011Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - 继荣 霍
- />中南大学湘雅二医院消化内科,湖南 长沙 410011Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - 东 王
- />中南大学湘雅二医院消化内科,湖南 长沙 410011Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - 春莲 汪
- />中南大学湘雅二医院消化内科,湖南 长沙 410011Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - 梁 吕
- />中南大学湘雅二医院消化内科,湖南 长沙 410011Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|