1
|
Jantas D, Warszyński P, Lasoń W. Carnosic Acid Shows Higher Neuroprotective Efficiency than Edaravone or Ebselen in In Vitro Models of Neuronal Cell Damage. Molecules 2023; 29:119. [PMID: 38202702 PMCID: PMC10779571 DOI: 10.3390/molecules29010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This study compared the neuroprotective efficacy of three antioxidants-the plant-derived carnosic acid (CA), and two synthetic free radical scavengers: edaravone (ED) and ebselen (EB)-in in vitro models of neuronal cell damage. Results showed that CA protected mouse primary neuronal cell cultures against hydrogen peroxide-induced damage more efficiently than ED or EB. The neuroprotective effects of CA were associated with attenuation of reactive oxygen species level and increased mitochondrial membrane potential but not with a reduction in caspase-3 activity. None of the tested substances was protective against glutamate or oxygen-glucose deprivation-evoked neuronal cell damage, and EB even increased the detrimental effects of these insults. Further experiments using the human neuroblastoma SH-SY5Y cells showed that CA but not ED or EB attenuated the cell damage induced by hydrogen peroxide and that the composition of culture medium is the critical factor in evaluating neuroprotective effects in this model. Our data indicate that the neuroprotective potential of CA, ED, and EB may be revealed in vitro only under specific conditions, with their rather narrow micromolar concentrations, relevant cellular model, type of toxic agent, and exposure time. Nevertheless, of the three compounds tested, CA displayed the most consistent neuroprotective effects.
Collapse
Affiliation(s)
- Danuta Jantas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Poland;
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Poland;
| |
Collapse
|
2
|
Konno K, Yamasaki M, Miyazaki T, Watanabe M. Glyoxal fixation: An approach to solve immunohistochemical problem in neuroscience research. SCIENCE ADVANCES 2023; 9:eadf7084. [PMID: 37450597 PMCID: PMC10348680 DOI: 10.1126/sciadv.adf7084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The gold-standard fixative for immunohistochemistry is 4% formaldehyde; however, it limits antibody access to target molecules that are buried within specialized neuronal components, such as ionotropic receptors at the postsynapse and voltage-gated ion channels at the axon initial segment, often requiring additional antigen-exposing techniques to detect their authentic signals. To solve this problem, we used glyoxal, a two-carbon atom di-aldehyde. We found that glyoxal fixation greatly improved antibody penetration and immunoreactivity, uncovering signals for buried molecules by conventional immunohistochemical procedures at light and electron microscopic levels. It also enhanced immunosignals of most other molecules, which are known to be detectable in formaldehyde-fixed sections. Furthermore, we unearthed several specific primary antibodies that were once judged to be unusable in formaldehyde-fixed tissues, allowing us to successfully localize so far controversial synaptic adhesion molecule Neuroligin 1. Thus, glyoxal is a highly effective fixative for immunostaining, and a side-by-side comparison of glyoxal and formaldehyde fixation is recommended for routine immunostaining in neuroscience research.
Collapse
Affiliation(s)
- Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
3
|
Soejima-Kusunoki A, Okada K, Saito R, Watabe K. The Protective Effect of Edaravone on TDP-43 Plus Oxidative Stress-Induced Neurotoxicity in Neuronal Cells: Analysis of Its Neuroprotective Mechanisms Using RNA Sequencing. Pharmaceuticals (Basel) 2022; 15:ph15070842. [PMID: 35890141 PMCID: PMC9319738 DOI: 10.3390/ph15070842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Edaravone is a free-radical scavenger drug that was recently approved for the treatment of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. A pathological hallmark of ALS is the accumulation of ubiquitinated or phosphorylated aggregates of the 43-kDa transactive response DNA binding protein (TDP-43) within the cytoplasm of motor neurons. This study revealed the efficacy of edaravone in preventing neuronal cell death in a TDP-43 proteinopathy model and analyzed the molecular changes associated with the neuroprotection. The viability of the neuronal cells expressing TDP-43 was reduced by oxidative stress, and edaravone (≥10 μmol/L) protected in a concentration-dependent manner against the neurotoxic insult. Differential gene expression analysis revealed changes among pathways related to nuclear erythroid 2-related-factor (Nrf2)-mediated oxidative stress response in cells expressing TDP-43. In edaravone-treated cells expressing TDP-43, significant changes in gene expression were also identified among Nrf2-oxidative response, unfolded protein response, and autophagy pathways. In addition, the expression of genes belonging to phosphatidylinositol metabolism pathways was modified. These findings suggest that the neuroprotective effect of edaravone involves the prevention of TDP-43 misfolding and enhanced clearance of pathological TDP-43 in TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Aki Soejima-Kusunoki
- Research Unit of Neuroscience, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan
- Correspondence:
| | - Kinya Okada
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan; (K.O.); (R.S.)
| | - Ryuta Saito
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan; (K.O.); (R.S.)
| | - Kazuhiko Watabe
- Faculty of Health Sciences, Kyorin University, Tokyo 181-8612, Japan;
| |
Collapse
|
4
|
Watkins JC, Evans RH, Bayés À, Booker SA, Gibb A, Mabb AM, Mayer M, Mellor JR, Molnár E, Niu L, Ortega A, Pankratov Y, Ramos-Vicente D, Rodríguez-Campuzano A, Rodríguez-Moreno A, Wang LY, Wang YT, Wollmuth L, Wyllie DJA, Zhuo M, Frenguelli BG. 21st century excitatory amino acid research: A Q & A with Jeff Watkins and Dick Evans. Neuropharmacology 2021; 198:108743. [PMID: 34363811 DOI: 10.1016/j.neuropharm.2021.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.
Collapse
Affiliation(s)
| | | | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alasdair Gibb
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Mark Mayer
- Bldg 35A, Room 3D-904, 35A Convent Drive, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Jack R Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Li Niu
- Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Arturo Ortega
- Department of Toxicology, Cinvestav, Mexico City, Mexico
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Yu Tian Wang
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Lonnie Wollmuth
- Depts. of Neurobiology & Behavior and Biochemistry & Cell Biology, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, 266000, China
| | | |
Collapse
|
5
|
Liu J, Zhang SQ, Wu MF, Piao Z, Yao J, Li JH, Wang XG. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats. Neural Regen Res 2015; 10:230-6. [PMID: 25883621 PMCID: PMC4392670 DOI: 10.4103/1673-5374.152376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 11/04/2022] Open
|
6
|
Ren Y, Wei B, Song X, An N, Zhou Y, Jin X, Zhang Y. Edaravone's free radical scavenging mechanisms of neuroprotection against cerebral ischemia: review of the literature. Int J Neurosci 2014; 125:555-65. [PMID: 25171224 DOI: 10.3109/00207454.2014.959121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Free radicals and oxidative stress play key roles in cerebral ischemic pathogenesis and represent pharmacological targets for treatment. Edaravone (Edv), one of antioxidant agents that have been used in acute ischemic stroke in both clinical settings and animal experiments, exerts neuroprotective effect on ischemic injured brains. This review is aimed to elaborate the latest molecular mechanisms of the neuroprotection of Edv on cerebral ischemia and provide reasonable evidence in its clinical application. It is found that Edv has neuroprotective influence on cerebral ischemia, which is closely related to the facets of scavenging reactive oxygen species (ROS), hydroxyl radical (ċOH) and reactive nitrogen species (RNS). And it is a good antioxidant agent that can be safely used in the treatment of cerebral ischemia and chronic neurodegenerative disorders as well as other ischemia/reperfusion (I/R)-related diseases. The combination of Edv with thrombolytic therapy also can be applied in clinical settings and will be greatly beneficial to patients with stroke.
Collapse
Affiliation(s)
- Yanxin Ren
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
7
|
A new mouse allele of glutamate receptor delta 2 with cerebellar atrophy and progressive ataxia. PLoS One 2014; 9:e107867. [PMID: 25250835 PMCID: PMC4176021 DOI: 10.1371/journal.pone.0107867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)-PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants.
Collapse
|
8
|
Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 2014; 5:e1147. [PMID: 24675465 PMCID: PMC3973229 DOI: 10.1038/cddis.2014.123] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is often caused by accidents that damage the brain. TBI can induce glutamate excitotoxicity and lead to neuronal and glial cell death. In this study, we investigated the mechanism of cell death during the secondary damage caused by TBI in vivo and in vitro, as well as the protective effect of resveratrol (RV). Here we report that glycogen synthase kinase-3β (GSK-3β) activation and microtubule-associated protein light chain 3 processing were induced in rat brains exposed to TBI. In the in vitro TBI model, apoptotic and autophagic cell death were induced through glutamate-mediated GSK-3β activation in normal CTX TNA2 astrocytes. The GSK-3β inhibitor SB216763 or transfection of GSK-3β small-interfering RNA increases cell survival. By contrast, overexpression of GSK-3β enhanced glutamate excitotoxicity. Administration of RV reduced cell death in CTX TNA2 astrocytes by suppressing reactive oxygen species (ROS)-mediated GSK-3β activation, the mechanism by which RV also exerted protective effects in vivo. Mitochondrial damages, including the opening of mitochondrial permeability transition pore (MPTP) and mitochondrial depolarization, were induced by glutamate through the ROS/GSK-3β pathway. Moreover, cyclosporine A, an MPTP inhibitor, suppressed mitochondrial damage and the percentages of cells undergoing autophagy and apoptosis and thereby increased cell survival. Taken together, our results demonstrated that cell death occurring after TBI is induced through the ROS/GSK-3β/mitochondria signaling pathway and that administration of RV can increase cell survival by suppressing GSK-3β-mediated autophagy and apoptosis. Therefore, the results indicated that resveratrol may serve as a potential therapeutic agent in the treatment of TBI.
Collapse
|
9
|
Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, Yin G, Zhang N, Cai W. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res 2013; 1519:1-8. [DOI: 10.1016/j.brainres.2013.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
|
10
|
Fan J, Zhang N, Yin G, Zhang Z, Cheng G, Qian W, Long H, Cai W. Edaravone protects cortical neurons from apoptosis by inhibiting the translocation of BAX and Increasing the interaction between 14-3-3 and p-BAD. Int J Neurosci 2012; 122:665-74. [PMID: 22757651 DOI: 10.3109/00207454.2012.707714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Edaravone, a free radical scavenger, has shown neuroprotection properties in both animals and humans. To evaluate the mechanisms involved, we obtained a culture of almost pure neurons. The neurons, either untreated or prophylactically treated with edaravone, were exposed to 300 μM hydrogen peroxide. We examined alterations in mitochondria, the percent of apoptotic cells and the immunoblots of key regulatory proteins, and the protein-protein interactions and the cellular locations of cytochrome c. The levels of p-JNK (Thr183/Tyr185) and cytochrome c in cytosol and BAX in heavy membrane (HM), respectively, were increased at 0.5 h and reached the peak at 12 h after stimulation with hydrogen peroxide. The levels of p-BAD and BAX in the cytosol and the interaction between BAD and 14-3-3 were decreased in the untreated neurons. However, edaravone could prevent these changes. In addition, mitochondrial morphology was better preserved and the percentage of apoptosis was lower under the treatment with edaravone. In summary, the present study indicates that edaravone could protect neurons by inhibiting: (1) the activity of JNK, (2) the disassociation of BAD from 14-3-3, and (3) the translocation of BAX from cytosol to mitochondria.
Collapse
Affiliation(s)
- Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hamdi Y, Kaddour H, Vaudry D, Bahdoudi S, Douiri S, Leprince J, Castel H, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O. The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism. PLoS One 2012; 7:e42498. [PMID: 22927932 PMCID: PMC3424241 DOI: 10.1371/journal.pone.0042498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/06/2012] [Indexed: 12/18/2022] Open
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H2O2)-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo1–8[DLeu5]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H2O2-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H2O2 of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H2O2 on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.
Collapse
Affiliation(s)
- Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - David Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Jérôme Leprince
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Helene Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
- * E-mail: (MA), (HV)
| | - Marie-Christine Tonon
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
- * E-mail: (MA), (HV)
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
12
|
Abstract
Free radicals are highly reactive and unstable compounds. These highly reactive molecules cause oxidative damage to cellular components such as DNA, proteins and lipids. They play central role in the mechanism of cell injury and cell death. Free radical scavengers either prevent these reactive species from being formed, or remove them before they can damage vital components of the cell. Oxidative stress defines an imbalance in production of oxidizing chemical species and their effective removal by protective antioxidants and scavenger enzymes. Evidence of massive oxidative stress is well established in critical illnesses characterized by tissue ischaemia-reperfusion injury and by an intense systemic inflammatory response such as during sepsis and acute respiratory distress syndrome, acute lung injury. Several clinical trials have been performed in order to reduce oxidative stress by supplementation of antioxidants alone or in combination with standard therapies. Antioxidant supplementation at an early stage of illness may lead to improved therapies in the treatment of critically ill patients. Several intravenous anaesthetic drugs act as reactive oxygen species scavengers. Anaesthetic preconditioning is of particular interest to anaesthesiologist, in which lasting protection of myocardium is elicited by brief exposure to a inhalational anaesthetic agent. These anasthetics may also mediate protective effects in other organs, such as the brain and kidney It is important for the anaesthesiologist to understand the mechanism of damage caused by free radicals and how free radical scavengers work so that this knowledge can be applied to varied pathological conditions. The topic was hand searched in text books and electronically searched from PubMed and Google scholar using text words.
Collapse
Affiliation(s)
- Milind S Hatwalne
- Department of Anaesthesiology, KBN Institute of Medical Sciences, Gulbarga, Karnataka, India
| |
Collapse
|
13
|
Kuffler DP. Hyperbaric oxygen therapy: can it prevent irradiation-induced necrosis? Exp Neurol 2012; 235:517-27. [PMID: 22465460 DOI: 10.1016/j.expneurol.2012.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/27/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
Abstract
Radiosurgery is an important non-invasive procedure for the treatment of tumors and vascular malformations. However, in addition to killing target tissues, cranial irradiation induces damage to adjacent healthy tissues leading to neurological deterioration in both pediatric and adult patients, which is poorly understood and insufficiently treatable. To minimize irradiation damage to healthy tissue, not the optimal therapeutic irradiation dose required to eliminate the target lesion is used but lower doses. Although the success rate of irradiation surgery is about 95%, 5% of patients suffer problems, most commonly neurological, that are thought to be a direct consequence of irradiation-induced inflammation. Although no direct correlation has been demonstrated, the appearance and disappearance of inflammation that develops following irradiation commonly parallel the appearance and disappearance of neurological side effects that are associated with the neurological function of the irradiated brain regions. These observations have led to the hypothesis that brain inflammation is causally related to the observed neurological side effects. Studies indicate that hyperbaric oxygen therapy (HBOT) applied after the appearance of irradiation-induced neurological side effects reduces the incidence and severity of those side effects. This may result from HBOT reducing inflammation, promoting angiogenesis, and influencing other cellular functions thereby suppressing events that cause the neurological side effects. However, it would be significantly better for the patient if rather than waiting for neurological side effects to become manifest they could be avoided. This review examines irradiation-induced neurological side effects, methods that minimize or resolve those side effects, and concludes with a discussion of whether HBOT applied following irradiation, but before manifestation of neurological side effects may prevent or reduce the appearance of irradiation-induced neurological side effects.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, Puerto Rico.
| |
Collapse
|
14
|
Im DS, Jeon JW, Lee JS, Won SJ, Cho SI, Lee YB, Gwag BJ. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion. Brain Res 2012; 1455:114-23. [PMID: 22483792 DOI: 10.1016/j.brainres.2012.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/28/2022]
Abstract
Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO.
Collapse
Affiliation(s)
- Doo Soon Im
- GNT Pharma Research Institute, Gomae-Dong 381-1, Giheung-Gu, Yongin-Si, 446-901, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. J Neurosci 2011; 31:7700-14. [PMID: 21613483 DOI: 10.1523/jneurosci.5665-10.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
2-Arachidonoylglycerol (2-AG) is the endocannabinoid that mediates retrograde suppression of neurotransmission in the brain. In the present study, we investigated the 2-AG signaling system at mossy cell (MC)-granule cell (GC) synapses in the mouse dentate gyrus, an excitatory recurrent circuit where endocannabinoids are thought to suppress epileptogenesis. First, we showed by electrophysiology that 2-AG produced by diacylglycerol lipase α (DGLα) mediated both depolarization-induced suppression of excitation and its enhancement by group I metabotropic glutamate receptor activation at MC-GC synapses, as they were abolished in DGLα-knock-out mice. Immunohistochemistry revealed that DGLα was enriched in the neck portion of GC spines forming synapses with MC terminals, whereas cannabinoid CB(1) receptors accumulated in the terminal portion of MC axons. On the other hand, the major 2-AG-degrading enzyme, monoacylglycerol lipase (MGL), was absent at MC-GC synapses but was expressed in astrocytes and some inhibitory terminals. Serial electron microscopy clarified that a given GC spine was innervated by a single MC terminal and also contacted nonsynaptically by other MC terminals making synapses with other GC spines in the neighborhood. MGL-expressing elements, however, poorly covered GC spines, amounting to 17% of the total surface of GC spines by astrocytes and 4% by inhibitory terminals. Our findings provide a basis for 2-AG-mediated retrograde suppression of MC-GC synaptic transmission and also suggest that 2-AG released from activated GC spines is readily accessible to nearby MC-GC synapses by escaping from enzymatic degradation. This molecular-anatomical configuration will contribute to adjust network activity in the dentate gyrus after enhanced excitation.
Collapse
|
16
|
Takasaki C, Yamasaki M, Uchigashima M, Konno K, Yanagawa Y, Watanabe M. Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex. Eur J Neurosci 2010; 32:1326-36. [DOI: 10.1111/j.1460-9568.2010.07377.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Effect of mild and moderate hypothermia on hypoxic injury in nearly pure neuronal culture. J Anesth 2010; 24:726-32. [PMID: 20683733 DOI: 10.1007/s00540-010-0999-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE The effects of mild and moderate hypothermic therapy on cerebral injury are still controversial. Our hypothesis is that mild and moderate hypothermia should have some effects on neurons themselves if they really have protective effects. By using a nearly pure neuronal culture, we evaluated the effects and mechanism of hypothermia against hypoxic insult. METHODS A nearly pure neuronal culture from cortices of 18-day-old Wister rats was used. The neurons were exposed to below 1% oxygen at 3 different temperatures (30, 33 and 37°C). First, cell viability was measured by assessing viable neurons with trypan blue. Second, to evaluate the mechanism, the extracellular glutamate concentration was measured by high-performance liquid chromatography after hypoxia; cell viability after exposure to extrinsic glutamate was also evaluated. Next, mitochondrial membrane potential was estimated, by monitoring aggregation of MitoCapture™, and the percentage of apoptotic cells was evaluated by staining with Hoechst 33342 and propidium iodide. RESULTS After 24-h hypoxic insult, cell viability at 30 and 33°C was significantly higher than at 37°C. There was no significant difference between extracellular concentrations of glutamate after hypoxia or cell viability after glutamate exposure among the 3 temperature groups. In moderate hypothermia, the number of neurons with mitochondrial injury and the percentage of apoptotic cells were significantly reduced. CONCLUSION Mild and moderate hypothermia inhibited hypoxic neuronal cell death. The mechanism of this effect may be related to protection of mitochondrial function, presumably followed by inhibition of apoptosis, at least in moderate hypothermia.
Collapse
|