1
|
Qu L, Simayi A, Ma X, Ma Y, Cao W, Zhu Q, Zhao X, Xu G. Dexmedetomidine Blocks NCOA4-Dependent Ferritinophagy to Confer Ferroptosis Resistance in Lung Ischemia Reperfusion Injury via Targeting NRF2. J Biochem Mol Toxicol 2025; 39:e70122. [PMID: 39887555 DOI: 10.1002/jbt.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/21/2024] [Indexed: 02/01/2025]
Abstract
Lung ischemia reperfusion injury (LIRI) represents an evitable but significant pathologic complication post pulmonary transplantation. Dexmedetomidine (Dex) that is extensively applied as an anesthetic adjuvant in the intensive care setting has increasingly presented outstandingly protective effect on LIRI. This article concerns the elaborate role of Dex in ferroptosis after LIRI and the correlative downstream mechanism. Upon hypoxia/reoxygenation (H/R) in human (A549) and mouse (MLE-12) alveolar epithelial cells, reverse transcription-quantitative PCR and western blot analysis tested nuclear receptor coactivator 4 (NCOA4) expression. CCK-8 kit determined cell viability. Western blot analysis and immunofluorescence assay estimated ferritinophagy. C11-BODIPY 581/591 staining, western blot analysis, assay kits and ferro-orange staining appraised ferroptosis. Molecular docking technology investigated the binding affinity between Dex and nuclear factor erythroid 2-related factor 2 (NRF2). Cell viability was eliminated and ferritinophagy was aggravated in A549 and MLE-12 cells in response to H/R. Disturbance of NCOA4 or treatment with Dex suppressed the ferroptosis in H/R-stimulated cells. Also, Dex docked with NRF2 and upregulated NRF2 to concentration-dependently obstruct NCOA4-mediated ferritinophagy and ferroptosis in H/R-challenged cells. Collectively, Dex might protect against NCOA4-mediated ferritinophagy through targeting NRF2, thereby alleviating ferroptosis during LIRI.
Collapse
Affiliation(s)
- Li Qu
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Alimujiang Simayi
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Xueping Ma
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Yankai Ma
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Wanying Cao
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Qianqian Zhu
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Xuan Zhao
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| | - Guiping Xu
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Urumqi, China
| |
Collapse
|
2
|
Zorrilla-Vaca A, Grant MC, Law M, Messinger CJ, Pelosi P, Varelmann D. Dexmedetomidine improves pulmonary outcomes in thoracic surgery under one-lung ventilation: A meta-analysis. J Clin Anesth 2024; 93:111345. [PMID: 37988813 PMCID: PMC11034816 DOI: 10.1016/j.jclinane.2023.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Dexmedetomidine improves intrapulmonary shunt in thoracic surgery and minimizes inflammatory response during one-lung ventilation (OLV). However, it is unclear whether such benefits translate into less postoperative pulmonary complications (PPCs). Our objective was to determine the impact of dexmedetomidine on the incidence of PPCs after thoracic surgery. METHODS Major databases were used to identify randomized trials that compared dexmedetomidine versus placebo during thoracic surgery in terms of PPCs. Our primary outcome was atelectasis within 7 days after surgery. Other specific PPCs included hypoxemia, pneumonia, and acute respiratory distress syndrome (ARDS). Secondary outcome included intraoperative respiratory mechanics (respiratory compliance [Cdyn]) and postoperative lung function (forced expiratory volume [FEV1]). Random effects models were used to estimate odds ratios (OR). RESULTS Twelve randomized trials, including 365 patients in the dexmedetomidine group and 359 in the placebo group, were analyzed in this meta-analysis. Patients in the dexmedetomidine group were less likely to develop postoperative atelectasis (2.3% vs 6.8%, OR 0.42, 95%CI 0.18-0.95, P = 0.04; low certainty) and hypoxemia (3.4% vs 11.7%, OR 0.26, 95%CI 0.10-0.68, P = 0.01; moderate certainty) compared to the placebo group. The incidence of postoperative pneumonia (3.2% vs 5.8%, OR 0.57, 95%CI 0.25-1.26, P = 0.17; moderate certainty) or ARDS (0.9% vs 3.5%, OR 0.39, 95%CI 0.07-2.08, P = 0.27; moderate certainty) was comparable between groups. Both intraoperative Cdyn and postoperative FEV1 were higher among patients that received dexmedetomidine with a mean difference of 4.42 mL/cmH2O (95%CI 3.13-5.72) and 0.27 L (95%CI 0.12-0.41), respectively. CONCLUSION Dexmedetomidine administration during thoracic surgery may potentially reduce the risk of postoperative atelectasis and hypoxemia. However, current evidence is insufficient to demonstrate an effect on pneumonia or ARDS.
Collapse
Affiliation(s)
- Andres Zorrilla-Vaca
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Universidad del Valle, Cali, Colombia.
| | - Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Martin Law
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Chelsea J Messinger
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Dirk Varelmann
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Hu B, Tian T, Li XT, Hao PP, Liu WC, Chen YG, Jiang TY, Chen PS, Cheng Y, Xue FS. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. Redox Rep 2023; 28:2158526. [PMID: 36738240 PMCID: PMC9904316 DOI: 10.1080/13510002.2022.2158526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To observe the protective effects of dexmedetomidine (Dex) postconditioning on myocardial ischemia/reperfusion injury (IRI) and to explore its potential molecular mechanisms. METHODS One-hundred forty-seven male Sprague-Dawley rats were randomly divided into five groups receiving the different treatments: Sham, ischemia/reperfusion (I/R), Dex, Brusatol, Dex + Brusatol. By the in vivo rat model of myocardial IRI, cardioprotective effects of Dex postconditioning were evaluated by assessing serum CK-MB and cTnI levels, myocardial HE and Tunel staining and infarct size. Furthermore, the oxidative stress-related markers including intracellular ROS level, myocardial tissue MDA level, SOD and GSH-PX activities were determined. RESULTS Dex postconditioning significantly alleviated myocardial IRI, decreased intracellular ROS and myocardial tissue MDA level, increased SOD and GSH-PX activities. Dex postconditioning significantly up-regulated myocardial expression of Bcl-2, down-regulated Bax and cleaved caspase-3 and decreased cardiomyocyte apoptosis rate. furthermores, Dex postconditioning promoted Nrf2 nuclear translocation, increased myocardial expression of Sirt3 and SOD2 and decreased Ac-SOD2. However, brusatol reversed cardioprotective benefits of Dex postconditioning, significantly decreased Dex-induced Nrf2 nuclear translocation and reduced myocardial expression of Sirt3 and SOD2. CONCLUSIONS Dex postconditioning can alleviate myocardial IRI by suppressing oxidative stress and apoptosis, and these beneficial effects are at least partly mediated by activating the Nrf2/Sirt3/SOD2 signaling pathway.
Collapse
Affiliation(s)
- Bin Hu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tian Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xin-Tao Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pei-Pei Hao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wei-Chao Liu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ying-Gui Chen
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Tian-Yu Jiang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Pei-Shan Chen
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Cheng
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China, Yi Cheng ; Fu-Shan Xue ; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing100050, People’s Republic of China
| | - Fu-Shan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China, Yi Cheng ; Fu-Shan Xue ; Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-An Road, Xi-Cheng District, Beijing100050, People’s Republic of China
| |
Collapse
|
4
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Zhang Q, Cheng S, Xin Z, Deng H, Wang Y, Li Q, Wu G, Chen W. 1,2,3,4,6-O-Pentagalloylglucose Protects against Acute Lung Injury by Activating the AMPK/PI3K/Akt/Nrf2 Pathway. Int J Mol Sci 2022; 23:ijms232214423. [PMID: 36430900 PMCID: PMC9699101 DOI: 10.3390/ijms232214423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
An acute lung injury (ALI) is a serious lung disease with a high mortality rate, warranting the development of novel therapies. Previously, we reported that 1,2,3,4,6-O-pentagalloylglucose (PGG) could afford protection against ALI, however, the PGG-mediated protective effects remain elusive. Herein, PGG (60 and 30 mg/kg) markedly inhibited the lung wet/drug weight ratio and attenuated histological changes in the lungs (p < 0.05). A pretreatment with PGG (60 and 30 mg/kg) reduced the number of total leukocytes and the production of pro-inflammatory cytokines IL-6 and IL-1β in bronchoalveolar lavage fluid (p < 0.05). In addition, PGG (60 and 30 mg/kg) also attenuated oxidative stress by reducing the formation of formation and the depletion of superoxide dismutase to treat an ALI (p < 0.05). To further explore the PGG-induced mechanism against an ALI, we screened the PGG pathway using immunohistochemical analysis, immunofluorescence assays, and Western blotting (WB). WB revealed that the expression levels of adenosine monophosphate-activated protein kinase phosphorylation (p-AMPK), phosphoinositide 3-kinase (PI3K), protein kinase B phosphorylation (P-Akt), and nuclear factor erythroid 2-related factor (Nrf2) were significantly higher in the PGG group (60 and 30 mg/kg) than in the lipopolysaccharide group (p < 0.05); these findings were confirmed by the immunohistochemical and immunofluorescence results. Accordingly, PGG could be effective against an ALI by inhibiting inflammation and oxidative stress via AMPK/PI3K/Akt/Nrf2 signaling, allowing for the potential development of this as a natural drug against an ALI.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Sai Cheng
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhiming Xin
- Fujian Research Center of Drug’s Non-Clinical Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Haohua Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Gangwei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350122, China
- Correspondence: (G.W.); (W.C.)
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (G.W.); (W.C.)
| |
Collapse
|
6
|
Dexmedetomidine Alleviates Lung Oxidative Stress Injury Induced by Ischemia-Reperfusion in Diabetic Rats via the Nrf2-Sulfiredoxin1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5584733. [PMID: 35252452 PMCID: PMC8894003 DOI: 10.1155/2022/5584733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Oxidative stress injury (OSI) is an important pathological process in lung ischemia-reperfusion injury (LIRI), and diabetes mellitus (DM) can exacerbate this injury. Dexmedetomidine protects against LIRI by reducing OSI. However, the effect of dexmedetomidine on LIRI under diabetic conditions remains unclear. Therefore, this study is aimed at exploring the effects and mechanisms of dexmedetomidine on OSI induced by LIRI in diabetic rats. Rats were randomly divided into control+sham (CS), DM+sham (DS), control+ischemia-reperfusion (CIR), DM+ischemia-reperfusion (DIR), and DM+ischemia-reperfusion+dexmedetomidine (DIRD) groups (
). In the CS and DS groups, the nondiabetic and diabetic rats underwent thoracotomy only without LIRI. In the CIR, DIR, and DIRD groups, LIRI was induced through left hilum occlusion for 60 min, followed by reperfusion for 120 min in nondiabetic and diabetic rats, and rats in the DIRD group were administered dexmedetomidine (3, 5, and 10 μg/kg). Compared with those in the CS group, the OSI, lung compliance, apoptosis, and oxygenation indices deteriorated in the DS group (
), and these indices were further aggravated in the CIR and DIR groups (
), being the worst in the DIR group (
). Compared to those of the DIR group, the OSI, lung compliance (
vs.
), apoptosis (
vs.
), oxygenation (
vs.
), and caspase-3 and caspase-9 protein expression indices were attenuated, and Nrf2 and sulfiredoxin1 protein expression was increased in the DIRD group (
). And the lung injury, oxygenation, OSI, and Nrf2 and sulfiredoxin1 protein expression changed in a concentration-dependent manner. In conclusion, dexmedetomidine alleviated lung OSI and improved lung function in a diabetic rat LIRI model through the Nrf2-sulfiredoxin1 pathway.
Collapse
|
7
|
Li B, Chen T, Hu W, Wang Z, Wu J, Zhou Q, Li P. Poncirin ameliorates cardiac ischemia-reperfusion injury by activating PI3K/AKT/PGC-1α signaling. Eur J Pharmacol 2022; 917:174759. [PMID: 35032487 DOI: 10.1016/j.ejphar.2022.174759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/01/2023]
Abstract
Poncirin, a flavonoid glycoside derivative extracted from the fruits of Poncirus trifoliata (trifoliate orange or Chinese bitter orange), has a variety of documented bioactivities, including anti-tumor, anti-inflammatory, and antioxidant effects. Oxidative stress is a major underlying factor in the pathogenesis of cardiac ischemia-reperfusion (I/R) injury. Therefore, we investigated the protective efficacy of poncirin on primary cardiomyocytes subjected to anoxia-reoxygenation (A/R) injury in vitro, and on rat hearts subjected to ischemia-reperfusion (I/R) injury in vivo. Poncirin pretreatment enhanced cardiomyocyte survival, inhibited A/R-induced oxidative stress by upregulating cellular antioxidant capacity, suppressed mitochondrial depolarization, and ultimately inhibited apoptosis. Similarly, systemic poncirin treatment significantly reduced cardiomyocyte apoptosis and infarct size in rat hearts. In addition, activity of the PI3K/AKT/PGC-1α pathway was significantly increased by poncirin pretreatment in both A/R and I/R injury models, while PI3K and PGC-1α inhibitors abolished all poncirin related effects, suggesting that this pathway is essential for the cardioprotective effects of poncirin. Pretreatment with the PGC-1α inhibitor reversed effects of poncirin without affecting p-AKT expression, indicating that PGC-1α is downstream of AKT. In conclusion, both in vitro and in vivo studies suggested that poncirin alleviates cardiac ischemia-reperfusion injury by mitigating oxidative stress, which is dependent on activation of the PI3K/AKT/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Bingda Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Tianpeng Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Jiangxi, Nanchang, China
| | - Wenfeng Hu
- Department of Clinical Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiangxi, Jiujiang, China
| | - Zhenhua Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Ji Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Jiangxi, Nanchang, China
| | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China.
| |
Collapse
|
8
|
Yang FY, Zhang L, Zheng Y, Dong H. Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered 2022; 13:1377-1387. [PMID: 34974801 PMCID: PMC8805856 DOI: 10.1080/21655979.2021.2017611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dexmedetomidine (DEX) has been reported to attenuate the ischemia and reperfusion (I/R) induced cardiomyocyte apoptosis. However, mechanisms underlying these protective effect remain to be fully elucidated. Cardiomyocyte apoptosis is associated with ischemic heart disease. Here we investigated the role of DEX in I/R -induced cardiomyocyte apoptosis. Mice and H9c2 cardiomyocyte cells were subjected to cardiomyocyte I/R injury and hypoxia/reoxygenation (H/R) injury, respectively. The roles and mechanisms of DEX on H9c2 cardiomyocyte cells and mice cardiomyocyte cells exposured to H/R or I/R injury were explored. The results showed that DEX attenuates H/R injury-induced H9c2 cell apoptosis and alleviated mitochondrial oxidative stress; it also reduced myocardial infarct size and protected the cardiac function following cardiomyocyte I/R injury. In addition, H/R and I/R injury increased p53 expression and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling in H9c2 cardiomyocyte cells and cardiomyocytes. Targeting p53 expression or FOXO3a/PUMA signaling inhibited cell apoptosis and protected against H/R injury in H9c2 cardiomyocyte cells and cardiomyocytes. Pretreatment with DEX reduced the H/R or I/R injury-induced activation of p53 expression and FOXO3a/PUMA signaling, and alleviated H/R or I/R injury-induced apoptosis and mitochondrial oxidative stress. Therefore, DEX could alleviate H/R- or I/R-induced cardiomyocytes injury by reducing cell apoptosis and blocking p53 expression and FOXO3a/PUMA signaling. Targeting p53 or/and FOXO3a/PUMA signaling could alleviate cardiomyocyte I/R injury.
Collapse
Affiliation(s)
- Feng Yun Yang
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lu Zhang
- Emergency, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zheng
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - He Dong
- Departments of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Xiao K, Liu P, Yan P, Liu Y, Song L, Liu Y, Xie L. N6-methyladenosine reader YTH N6-methyladenosine RNA binding protein 3 or insulin like growth factor 2 mRNA binding protein 2 knockdown protects human bronchial epithelial cells from hypoxia/reoxygenation injury by inactivating p38 MAPK, AKT, ERK1/2, and NF-κB pathways. Bioengineered 2021; 13:11973-11986. [PMID: 34709120 PMCID: PMC9211071 DOI: 10.1080/21655979.2021.1999550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lung ischemia/reperfusion (I/R) injury (LIRI) is a common complication after lung transplantation, embolism, and trauma. N6-methyladenosine (m6A) methylation modification is implicated in the pathogenesis of I/R injury. However, there are no or few reports of m6A-related regulators in LIRI till now. In this text, dysregulated genes in lung tissues of LIRI rats versus the sham group were identified by RNA sequencing (RNA-seq). RNA-seq outcomes revealed that only YTH N6-methyladenosine RNA binding protein 3 (YTHDF3) and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were differentially expressed in the LIRI versus sham group among 20 m6A-related regulators. Next, the functions and molecular mechanisms of YTHDF3 and IGF2BP2 in LIRI were investigated in a hypoxia/reoxygenation-induced BEAS-2B cell injury model in vitro. Results showed that YTHDF3 or IGF2BP2 knockdown attenuated hypoxia/reoxygenation-mediated inhibitory effects on cell survival and cell cycle progression and inhibited hypoxia/reoxygenation-induced cell apoptosis and pro-inflammatory cytokine secretion in BEAS-2B cells. Genes that could be directly regulated by YTHDF3 or IGF2BP2 were identified based on prior experimental data and bioinformatics analysis. Moreover, multiple potential downstream pathways of YTHDF3 and IGF2BP2 were identified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis of the above-mentioned genes. Among these potential pathways, we demonstrated that YTHDF3 or IGF2BP2 knockdown inhibited hypoxia/reoxygenation-activated p38, ERK1/2, AKT, and NF-κB pathways in BEAS-2B cells. In conclusion, YTHDF3 or IGF2BP2 knockdown weakened hypoxia/reoxygenation-induced human lung bronchial epithelial cell injury by inactivating p38, AKT, ERK1/2, and NF-κB pathways.
Collapse
Affiliation(s)
- Kun Xiao
- College of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Pengfei Liu
- College of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Peng Yan
- College of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanxin Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Licheng Song
- College of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuhong Liu
- College of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
10
|
Zhu Y, Zhao H, Zhang W, Ma X, Liu Y. Dexmedetomidine attenuates neuronal injury induced by cerebral ischemia‑reperfusion by regulating miR‑199a. Mol Med Rep 2021; 24:574. [PMID: 34109426 PMCID: PMC8201450 DOI: 10.3892/mmr.2021.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
As is well known, dexmedetomidine (DEX) serves a neuroprotective role in cerebral ischemia‑reperfusion (CIR) injury, and microRNA (miR)‑199a has been re‑ported to be associated with IR injury. However, the association between DEX and miR‑199a in CIR injury remains unknown. Thus, the aim of the present study was to verify whether the neuroprotective effect of DEX on cerebral ischemia‑reperfusion rats is associated with miR‑199a. A rat model of CIR was established, and the modified neurological severity score (mNSS) was evaluated. The effect of DEX on the patholog‑ical structure of the cerebral cortex in CIR rats was observed by hematoxylin and eosin and Nissl staining. Reverse transcription‑quantitative PCR was used to analyze the expression levels of miR‑199a in brain tissue following intracerebroventricular injection of miR‑199a antagomir. The co‑expression of NeuN and microtubule‑associated proteins 1A/1B light chain 3B in the cerebral cortex was analyzed by immunofluorescence staining. Western blotting and immunohistochemistry were performed to analyze the expression of autophagy‑associated proteins in the brain tissue. DEX inhibited the expression of miR‑199a, decreased the mNSS and improved pathological damage to the cerebral cortex. DEX also inhibited autophagy and expression levels of associated proteins and decreased nerve cell injury. In conclusion, DEX inhibited expression of miR‑199a and improved neurocyte injury induced by CIR.
Collapse
Affiliation(s)
- Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Huatang Zhao
- Department of Anesthesiology, The Second Hospital of Liaocheng Affiliated to Shan-dong First Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Wenshan Zhang
- Department of Anesthesiology, Laixi People's Hospital, Qingdao, Shandong 266600, P.R. China
| | - Xingang Ma
- Department of Anesthesiology, Zibo Maternal and Child Health Hospital, Zibo, Shandong 255000, P.R. China
| | - Ye Liu
- Department of Anesthesiology, Zibo Maternal and Child Health Hospital, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
11
|
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth 2021; 35:741-756. [PMID: 34003375 PMCID: PMC8128984 DOI: 10.1007/s00540-021-02940-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
A critical goal of patient management for anesthesiologists and intensivists is to maintain oxygen homeostasis in patients admitted to operation theaters and intensive care units. For this purpose, it is imperative to understand the strategies of the body against oxygen imbalance—especially oxygen deficiency (hypoxia). Adaptation to hypoxia and maintenance of oxygen homeostasis involve a wide range of responses that occur at different organizational levels in the body. These responses are greatly influenced by perioperative patient management including factors such as perioperative drugs. Herein, the influence of perioperative patient management on the body's response to oxygen imbalance was reviewed with a special emphasis on hypoxia-inducible factors (HIFs), transcription factors whose activity are regulated by the perturbation of oxygen metabolism. The 2019 Nobel Prize in Physiology or Medicine was awarded to three researchers who made outstanding achievements in this field. While previous studies have reported the effect of perioperatively used drugs on hypoxia-induced gene expression mediated by HIFs, this review focused on effects of subacute or chronic hypoxia changes in gene expression that are mediated by the transcriptional regulator HIFs. The clinical implications and perspectives of these findings also will be discussed. Understanding the basic biology of the transcription factor HIF can be informative for us since anesthesiologists manage patients during the perioperative period facing the imbalances the oxygen metabolism in organ and tissue. The clinical implications of hypoxia-dependent signaling in critical illness, including Coronavirus disease (COVID-19), in which disturbances in oxygen metabolism play a major role in its pathogenesis will also be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.
| |
Collapse
|
12
|
Fang H, Yang Z, Yang L. Protective effect of Houttuynia cordata extract on propofol-induced injury of rat hippocampal neurons by regulating PI3K/Akt and Toll-like receptor 4/NF-κB signaling pathway. Neuroreport 2021; 32:577-582. [PMID: 33850081 PMCID: PMC8048724 DOI: 10.1097/wnr.0000000000001627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was to detect the protective effects of Houttuynia cordata extract on the damage induced by propofol in hippocampal neuron of rats. METHODS Propofol-induced neuron injury model and H. cordata extract administration were conducted. Immunofluorescence and immunoblot were conducted for the effect of H. cordata extract on neuronal activity and inflammation were detected in this model. RESULTS H. cordata extracts increased neuronal activity, and reduced propofol-induced neuronal inflammation levels. H. cordata extract also reduced propofol-induced neuronal apoptosis. Mechanically, we noticed H. cordata extract activated phosphoinositide 3-kinase/AKT pathway and suppressed Toll-like receptor 4/nuclear factor kappaB pathway, therefore protected propofol-induced injury of rat hippocampal neurons. CONCLUSION Our findings provide references for anesthetic use in infants and young children.
Collapse
Affiliation(s)
- Hao Fang
- Department of Anesthesiology, Wuhan Children’s Hospital
| | - Zhen Yang
- Department of Anesthesiology, Wuhan JinYinTan Hospital, Wuhan City, Hubei Province
| | - Liu Yang
- Department of Anesthesiology, Bishan Hospital, Chongqing, China
| |
Collapse
|
13
|
Dexmedetomidine ameliorates lipopolysaccharide-induced acute lung injury by inhibiting the PI3K/Akt/FoxO1 signaling pathway. J Anesth 2021; 35:394-404. [PMID: 33821300 PMCID: PMC8021217 DOI: 10.1007/s00540-021-02909-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/13/2021] [Indexed: 11/05/2022]
Abstract
Purpose Dexmedetomidine (DEX) has been associated with inflammation, oxidative stress, and apoptosis, but its effects on lipopolysaccharide (LPS)-induced lung injury remain uncertain. The present study explored the effects of DEX on LPS-induced lung injury and studied the possible molecular mechanisms by testing the effects of the phosphoinositide-3 kinase (PI3K) inhibitor LY294002 and BEZ235. Methods Seventy C57BL/6 mice were randomly divided into the control, LPS, LPS + DEX, LPS + LY294002, LPS + BEZ235, LPS + DEX + LY294002, and LPS + DEX + BEZ235groups. Lung samples were collected 48 h after LPS treatment. Results DEX significantly inhibited LPS-induced increases in the lung weight/body weight ratio and lung wet/dry weight ratio, decreased inflammatory cell infiltration, and decreased the production of proinflammatory factors, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α)in the lungs. DEX also markedly attenuated the increases in malondialdehyde 5 (MDA 5) and inositol-dependent enzyme a (IRE-a), attenuated the decrease in superoxide dismutase 1(SOD-1), reversed the low expression of B-cell lymphoma-2 (Bcl-2), and the high expressions of Bax and Caspase-3. DEX also decreased the expression of phosphorylated PI3K and phosphorylated Akt and increased the expression of phosphorylated forkhead box-O transcription factor 1 (FoxO1). More interestingly, LY294002 or BEZ235 pretreatment significantly abolished the inhibitory effects of DEX on LPS-induced lung inflammation, oxidative stress, and apoptosis. Conclusions These data suggest that DEX ameliorates LPS-induced acute lung injury partly through the PI3K/Akt/FoxO1 signaling pathway.
Collapse
|
14
|
Bag-1L Protects against Cell Apoptosis in an In Vitro Model of Lung Ischemia-Reperfusion Injury through the C-Terminal "Bag" Domain. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8822807. [PMID: 34056003 PMCID: PMC8123090 DOI: 10.1155/2021/8822807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional and antiapoptotic protein that binds to the antiapoptosis regulator Bcl-2 and promotes cell survival. To investigate the protective function of Bag-1, we examined the effects of Bag-1L, one isoform of Bag-1, in an in vitro cell culture model of lung ischemia-reperfusion injury (LIRI) generated by treatment of A549 cells with hypoxia/reoxygenation. Overexpression of full-length Bag-1L increased the viability of A549 cells and reduced cell apoptosis in response to 6 h of hypoxia/reoxygenation treatment. Furthermore, Bag-1L overexpression enhanced the heat shock protein 70 (HSP70) and Bcl-2 protein levels, increased the phosphorylation of AKT, decreased Bax and cleaved caspase-3 levels, and was able to overcome cell cycle arrest. These effects were not observed in A549 cells overexpressing a truncated form of Bag-1L lacking the "Bag domain," denoted Bag-1L△C. The "Bag domain" is the C-terminal 47 amino acids. Taken together, the results of this study suggest that Bag-1L overexpression can protect against oxidative stress and apoptosis in an in vitro LIRI model, with a dependence on the Bag domain.
Collapse
|
15
|
Prajumwongs P, Waenphimai O, Vaeteewoottacharn K, Wongkham S, Sawanyawisuth K. Reversine, a selective MPS1 inhibitor, induced autophagic cell death via diminished glucose uptake and ATP production in cholangiocarcinoma cells. PeerJ 2021; 9:e10637. [PMID: 33505802 PMCID: PMC7797171 DOI: 10.7717/peerj.10637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Reversine is a selective inhibitor of mitotic kinase monopolar spindle 1 (MPS1) and has been reported as an anticancer agent in various cancers. The effects of reversine on bile duct cancer, cholangiocarcinoma (CCA), a lethal cancer in Northeastern Thailand, were investigated. This study reports that reversine inhibited cell proliferation of CCA cell lines in dose- and time-dependent manners but had less inhibitory effect on an immortalized cholangiocyte cell line. Reversine also triggered apoptotic cell death by decreasing anti-apoptotic proteins, Bcl-XL and Mcl-1, increasing Bax pro-apoptotic protein and activating caspase-3 activity. Moreover, reversine induced autophagic cell death by increasing LC3-II and Beclin 1 while decreasing p62. Reversine activated autophagy via the AKT signaling pathway. Additionally, this study demonstrated for the first time that reversine could diminish the expression of Hypoxia-Inducible Factor 1- alpha (HIF-1α) and glucose transporter 1 (GLUT1), resulting in a reduction of glucose uptake and energy production in CCA cell lines. These findings suggest that reversine could be a good candidate as an alternative or supplementary drug for CCA treatment.
Collapse
Affiliation(s)
- Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Waenphimai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
16
|
Liu X, Liu L, Chen K, Sun L, Li W, Zhang S. Huaier shows anti-cancer activities by inhibition of cell growth, migration and energy metabolism in lung cancer through PI3K/AKT/HIF-1α pathway. J Cell Mol Med 2020; 25:2228-2237. [PMID: 33377619 PMCID: PMC7882940 DOI: 10.1111/jcmm.16215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Huaier has been verified to have anti-cancer effects on many tumours. However, little information is available about the effects of Huaier on non-small cell lung cancer (NSCLC). We sought to probe the anti-cancer effects and related mechanisms of Huaier on lung cancer. A549 cells were pre-treated with 2, 4 and 8 mg/mL Huaier at different time points. Thereafter, cell viability was analysed by CCK-8 and the migration and invasion were detected by Scratch test and Transwell chamber migration assay. Moreover, ELISA, Western blot, shRNA transfection and RT-PCR were conducted to discover the related gene and protein expressions of energy metabolism and phosphatidylinositol 3-kinase (PI3K)/AKT/hypoxia-inducible factor 1α (HIF-1α) pathway. Furthermore, tumour xenografts were accomplished to inspect the anti-cancer effects of Huaier. Our consequences suggested that Huaier considerably repressed cell viability and migration in a dose-dependent way. In addition, Huaier statistically suppressed glycolysis, glucose transport and lactic acid (LA) accumulation. Besides, we detected that Huaier could inactivate the PI3K/AKT/HIF-1α pathway. The in vivo data confirmed that Huaier obviously decreased tumour volume and tumour growth, reduced the glycolysis, glucose transport and HIF-1α expression in the tumour-bearing tissues. Our results suggested Huaier revealed anti-tumour effects in both in vivo and in vitro possibly through PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Xiangli Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lidan Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Lei Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenya Li
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zhang Y, Zhu S, Yuan Z, Li Q, Ding R, Bao X, Zhen T, Fu Z, Fu H, Xing K, Yuan H, Chen T. Risk factors and socio-economic burden in pancreatic ductal adenocarcinoma operation: a machine learning based analysis. BMC Cancer 2020; 20:1161. [PMID: 33246424 PMCID: PMC7694304 DOI: 10.1186/s12885-020-07626-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Surgical resection is the major way to cure pancreatic ductal adenocarcinoma (PDAC). However, this operation is complex, and the peri-operative risk is high, making patients more likely to be admitted to the intensive care unit (ICU). Therefore, establishing a risk model that predicts admission to ICU is meaningful in preventing patients from post-operation deterioration and potentially reducing socio-economic burden. METHODS We retrospectively collected 120 clinical features from 1242 PDAC patients, including demographic data, pre-operative and intra-operative blood tests, in-hospital duration, and ICU status. Machine learning pipelines, including Supporting Vector Machine (SVM), Logistic Regression, and Lasso Regression, were employed to choose an optimal model in predicting ICU admission. Ordinary least-squares regression (OLS) and Lasso Regression were adopted in the correlation analysis of post-operative bleeding, total in-hospital duration, and discharge costs. RESULTS SVM model achieved higher performance than the other two models, resulted in an AU-ROC of 0.80. The features, such as age, duration of operation, monocyte count, and intra-operative partial arterial pressure of oxygen (PaO2), are risk factors in the ICU admission. The protective factors include RBC count, analgesic pump dexmedetomidine (DEX), and intra-operative maintenance of DEX. Basophil percentage, duration of the operation, and total infusion volume were risk variables for staying in ICU. The bilirubin, CA125, and pre-operative albumin were associated with the post-operative bleeding volume. The operation duration was the most important factor for discharge costs, while pre-lymphocyte percentage and the absolute count are responsible for less cost. CONCLUSIONS We observed that several new indicators such as DEX, monocyte count, basophil percentage, and intra-operative PaO2 showed a good predictive effect on the possibility of admission to ICU and duration of stay in ICU. This work provided an essential reference for indication in advance to PDAC operation.
Collapse
Affiliation(s)
- Yijue Zhang
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiqing Yuan
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiwei Li
- Department of General Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | | | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, 200003 China
| | | | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai, 200003 China
| | - Tao Chen
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Pujin Street, Minhang District, Shanghai, 201100 China
| |
Collapse
|
18
|
Zhu L, Zhang Y, Zhang Z, Ding X, Gong C, Qian Y. Activation of PI3K/Akt/HIF-1α Signaling is Involved in Lung Protection of Dexmedetomidine in Patients Undergoing Video-Assisted Thoracoscopic Surgery: A Pilot Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5155-5166. [PMID: 33262576 PMCID: PMC7699453 DOI: 10.2147/dddt.s276005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Background Lung resection and one lung ventilation (OLV) during video-assisted thoracoscopic surgery (VATS) may lead to acute lung injury. Dexmedetomidine (DEX), a highly selective α2 adrenergic receptor agonist, improves arterial oxygenation in adult patients undergoing thoracic surgery. The aim of this pilot study was to explore possible mechanism related to lung protection of DEX in patients undergoing VATS. Patients and Methods Seventy-four patients scheduled for VATS were enrolled in this study. Three timepoints (before anesthesia induction (T0), 40 min after OLV (T1), and 10 min after two-lung ventilation (T2)) of arterial blood gas were obtained. Meanwhile, lung histopathologic examination, immunohistochemistry analysis (occludin and ZO-1), levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in lung tissue and plasma, and activation of phosphoinositide-3-kinase (PI3K)/AKT/hypoxia-inducible factor (HIF)-1α signaling were detected. Postoperative outcomes including duration of withdrawing the pleural drainage tube, length of hospital stay, hospitalization expenses, and postoperative pulmonary complications (PPCs) were also recorded. Results Sixty-seven patients were randomly divided into DEX group (group D, n=33) and control group (group N, n=34). DEX improved oxygenation at T1 and T2 (group D vs group N; T1: 191.8 ± 49.8 mmHg vs 159.6 ± 48.1 mmHg, P = 0.009; T2: 406.0 mmHg [392.2–423.7] vs 374.5 mmHg [340.2–378.2], P = 0.001). DEX alleviated the alveolar capillary epithelial structure damage, increased protein expression of ZO-1 and occludin, inhibited elevation of the expression of TNF-α and IL-6 in lung tissue and plasma, and increased protein expression of p-PI3K, p-AKT and HIF-1α. Dex administered had better postoperative outcomes with less risk of PPCs and hospitalization expenses as well as shorter duration of withdrawing the pleural drainage tube and length of hospital stay. Conclusion Activation of PI3K/Akt/HIF-1α signaling might be involved in lung protection of DEX in patients undergoing VATS.
Collapse
Affiliation(s)
- Linjia Zhu
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yang Zhang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhenfeng Zhang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiahao Ding
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chanjuan Gong
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
19
|
Zuo X, Li L, Sun L. Plantamajoside inhibits hypoxia-induced migration and invasion of human cervical cancer cells through the NF-κB and PI3K/akt pathways. J Recept Signal Transduct Res 2020; 41:339-348. [PMID: 32865085 DOI: 10.1080/10799893.2020.1808679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plantamajoside (PMS) is a major compound of Plantago asiatica and possesses anti-tumor property in several types of cancers. However, the effect of PMS on cervical cancer has not been investigated. This study aimed to investigate the effect of PMS on the migration and invasion of cervical cancer cell lines under hypoxic condition. Our results demonstrated that PMS significantly inhibited hypoxia-caused increases in cell migration and invasion of cervical cancer cells. The hypoxia-induced epithelial-mesenchymal transition (EMT) process was prevented by PMS with increased E-cadherin expression, and decreased expression levels of N-cadherin and vimentin in cervical cancer cells. Besides, the expression levels of transcription factors slug and snail were suppressed by PMS in hypoxia-induced cervical cancer cells. The increased mRNA and protein levels of hypoxia-inducible factor 1alpha (HIF-1α) in hypoxia-induced cervical cancer cells were prevented by PMS. Furthermore, PMS blocked the hypoxia-induced activation of NF-κB and PI3K/Akt pathway in cervical cancer cells. Taken together, these findings suggest that PMS exerted an anti-tumor activity in cervical cancer through preventing the hypoxia-induced EMT. Thus, PMS might serve as a therapeutic agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xia Zuo
- Department Gynecology, Xi'an Fourth Hospital, Xi'an, China
| | - Liming Li
- Department of Disease Prevention and Control, Qingdao Special Service Men Recuperation Center of PLA Navy, Qingdao, China
| | - Ling Sun
- Department of Pharmacy, Lianyungang Oriental Hospital, Lianyungang, China
| |
Collapse
|
20
|
Dexmedetomidine Ameliorates Lung Injury Induced by Intestinal Ischemia/Reperfusion by Upregulating Cannabinoid Receptor 2, Followed by the Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6120194. [PMID: 32655771 PMCID: PMC7327571 DOI: 10.1155/2020/6120194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Intestinal ischemia/reperfusion (I/R) is a clinical emergency, which often causes lung injury with high morbidity and mortality. Although dexmedetomidine has been identified to have a protective effect on lung injury caused by intestinal I/R, its specific mechanism is still elucidated. In recent years, the cannabinoid (CB2) receptor pathway has been found to be involved in I/R injury of some organs. In the current study, we investigated whether the CB2 receptor pathway contributes to the protective effect of dexmedetomidine on the intestinal I/R-induced lung injury in rats. Dexmedetomidine treatment upregulated the expression of CB2 receptor and suppressed the I/R-induced increases in lung injury scores, inflammatory cell infiltration, lung wet/dry ratio, MPO activity, MDA level, inflammatory cytokines, and caspase-3 expression while augmenting SOD activity and Bcl-2 expression, indicating attenuation of lung injury. Dexmedetomidine treatment also increased the expression of Akt. The protective effects of dexmedetomidine treatment were reversed by the CB2 receptor antagonist AM630 or the PI3K inhibitor wortmannin. And the CB2 receptor antagonist AM630 also downregulated the expression of Akt. Thus, our findings suggest that treatment with dexmedetomidine provides a protective role against lung injury caused by intestinal I/R in rats, possibly due to the upregulation of the CB2 receptor, followed by the activation of the PI3K/Akt pathway.
Collapse
|
21
|
Wu H, Tang J, Pan J, Han M, Cai H, Zhang H. Effects of dexmedetomidine on stress hormones in patients undergoing cardiac valve replacement: a randomized controlled trial. BMC Anesthesiol 2020; 20:142. [PMID: 32505177 PMCID: PMC7275125 DOI: 10.1186/s12871-020-00993-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Stress response always occurs in cardiac valve replacement patients undergoing cardiopulmonary bypass (CPB). Methods 60 patients undergoing cardiac valve replacement were recruited and randomized into control and Dex groups. Dex group received 1.0 μg·kg-1 of Dex for 10 min intravenously before anesthesia, followed by 0.5 μg·kg-1·h-1 of Dex, steadily administered throughout the procedure. And controlled group received the identical velocity of saline as Dex group. Plasma level of cortisol (Cor), epinephrine (E), norepinephrine (NE), and serotonin (5-HT) were evaluated at four timepoints: Before administration (T0), sawn sternum (T1), end of extracorporeal circulation (T2), and 24 h post operation (T3). General data of operation and recovery such as heart rate (HR), mean arterial pressure (MAP), intraoperative bispectral index (BIS), and hospitalization time in the intensive care unit (ICU) were also compared. Results Increase of Cor, E, NE, and 5-HT for the Dex group was significant lesser than that in the control group (P < 0.05), and ICU hospitalization time and ventilator support time was significantly shorter in the Dex group. The proportion of patients discharged from the hospital with better prognosis was significantly higher than that in the control group, while there were no significant differences in hospitalization costs and vasoactive drugs use between the two groups. Conclusions Dex reduces plasma Cor, E and NE elevations in patients after CPB, alleviates the stress reaction of the body, shortens the hospitalization time and ventilator support time in ICU, and plays a positive role in the rehabilitation of patients undergoing cardiac valve replacement. Trial registration China Clinical Trial Registry (No. ChiCTR-IPR-17010954) March 22rd, 2017.
Collapse
Affiliation(s)
- Hanhua Wu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou Province, China
| | - Jinqing Tang
- Department of Anesthesiology, Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Jiamei Pan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou Province, China
| | - Ming Han
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou Province, China
| | - Huijun Cai
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou Province, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
22
|
König KS, Verhaar N, Hopster K, Pfarrer C, Neudeck S, Rohn K, Kästner SBR. Ischaemic preconditioning and pharmacological preconditioning with dexmedetomidine in an equine model of small intestinal ischaemia-reperfusion. PLoS One 2020; 15:e0224720. [PMID: 32348301 PMCID: PMC7190151 DOI: 10.1371/journal.pone.0224720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Small intestinal strangulation associated with ischaemia-reperfusion injury (IRI) is common in horses. In laboratory animals IRI can be ameliorated by ischaemic preconditioning (IPC) and pharmacological preconditioning (PPC) with dexmedetomidine. The aim of this study was to determine the effect of PPC with dexmedetomidine or IPC in an equine model of small intestinal ischaemia-reperfusion (IR). In a randomized controlled experimental trial, 15 horses were assigned to three groups: control (C), IPC, and PPC with dexmedetomidine (DEX). All horses were placed under general anaesthesia and 90% jejunal ischaemia was induced for 90 minutes, followed 30 minutes of reperfusion. In group IPC, three short bouts of ischaemia and reperfusion were implemented, and group DEX received a continuous rate infusion of dexmedetomidine prior to the main ischaemia. Jejunal biopsies were collected before ischaemia (P), and at the end of ischaemia (I) and reperfusion (R). Mucosal injury was assessed by the Chiu-Score, inflammatory cells were stained by cytosolic calprotectin. The degree of apoptosis and cell necrosis was assessed by cleaved-caspase-3 and TUNEL. Parametric data were analyzed by two-way ANOVA for repeated measurements followed by Dunnetts t-test. Non parametric data were compared between groups at the different time points by a Kruskal-Wallis-Test and a Wilcoxon-2-Sample-test. The mucosal injury score increased during I in all groups. After reperfusion, IRI further progressed in group C, but not in IPC and DEX. In all groups the number of cleaved caspase-3 and TUNEL positive cells increased from P to I. The number of TUNEL positive cells were lower in group DEX compared to group C after I and R. Infiltration with calprotectin positive cells was less pronounced in group DEX compared to group C, whereas in group IPC more calprotectin positive cells were seen. In conclusion, IPC and DEX exert protective effects in experimental small intestinal ischaemia in horses.
Collapse
Affiliation(s)
- Kathrin S. König
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Hopster
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stephan Neudeck
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine B. R. Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
23
|
Bunte S, Behmenburg F, Majewski N, Stroethoff M, Raupach A, Mathes A, Heinen A, Hollmann MW, Huhn R. Characteristics of Dexmedetomidine Postconditioning in the Field of Myocardial Ischemia-Reperfusion Injury. Anesth Analg 2020; 130:90-98. [PMID: 31633505 DOI: 10.1213/ane.0000000000004417] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Timing and onset of myocardial ischemia are mostly unpredictable. Therefore, postconditioning could be an effective cardioprotective intervention. Because ischemic postconditioning is an invasive and not practicable treatment, pharmacological postconditioning would be a more suitable alternative cardioprotective measure. For the α2-adrenoreceptor agonist, dexmedetomidine postconditioning has been shown. However, data on a concentration-dependent effect of dexmedetomidine are lacking. Furthermore, it is unclear whether the time point and/or duration of dexmedetomidine administration in the reperfusion period is of relevance. We set out to determine whether infarct size reduction by dexmedetomidine is concentration dependent and whether time point and/or duration of dexmedetomidine application has an impact on the effect size of cardio protection. METHODS Hearts of male Wistar rats were randomized and placed on a Langendorff system perfused with Krebs-Henseleit buffer at a constant pressure of 80 mm Hg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. In part I of the study, a concentration-response effect was determined by perfusing hearts with various concentrations of dexmedetomidine (0.3-100 nM) at the onset of reperfusion. Based on these results, part II of the study was conducted with 3 nM dexmedetomidine. Application of dexmedetomidine started directly at the onset of reperfusion (Dex60) and 15 minutes (Dex15), 30 minutes (Dex30), or 45 minutes (Dex45) after the start of reperfusion and lasted always until the end of the reperfusion period. Infarct size was determined by triphenyltetrazolium chloride staining. RESULTS In part I, infarct size in control (Con) hearts was 62% ± 4%. Three-nanometer dexmedetomidine was the lowest most effective cardioprotective concentration and reduced infarct size to 24% ± 7% (P < .0001 versus Con). Higher concentrations did not confer stronger protection. Infarct size in control hearts from part II was 66% ± 6%. Different starting times and/or durations of application resulted in similar infarct size reduction (all P < .0001 versus Con). CONCLUSIONS Postconditioning by dexmedetomidine is concentration dependent in ranges between 0.3 and 3 nM. Increased concentrations above 3 nM do not further enhance this cardioprotective effect. This cardioprotective effect is independent of time point and length of application in the reperfusion period.
Collapse
Affiliation(s)
- Sebastian Bunte
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Friederike Behmenburg
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nicole Majewski
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Stroethoff
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Alexander Mathes
- Department of Anesthesiology, University Hospital Cologne, Cologne, Germany
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam Universitair Medische Centra (UMC), University of Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
24
|
Chai Y, Zhu K, Li C, Wang X, Shen J, Yong F, Jia H. Dexmedetomidine alleviates cisplatin‑induced acute kidney injury by attenuating endoplasmic reticulum stress‑induced apoptosis via the α2AR/PI3K/AKT pathway. Mol Med Rep 2020; 21:1597-1605. [PMID: 32016445 PMCID: PMC7003053 DOI: 10.3892/mmr.2020.10962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Cisplatin (CP) is an effective antineoplastic agent; however, CP-induced acute kidney injury (AKI) seriously affects the prognosis of patients with cancer. Endoplasmic reticulum (ER) stress (ERS)-induced apoptosis serves a pivotal role in the pathogenesis of CP-induced AKI. Dexmedetomidine (Dex), a potent α2 adrenergic agonist, has been reported to exert protective effects against AKI. However, the protective effects of Dex against CP-induced AKI and the potential molecular mechanisms remain unknown. In the present study, male Sprague-Dawley rats were divided into four groups (n=10/group), as follows: Control group; CP group, rats received an intraperitoneal (i.p.) injection of 5 mg/kg CP; Dex + CP group, rats received an i.p. injection of 25 µg/kg Dex immediately after CP treatment; and Dex + CP + atipamezole (Atip) group, rats received an i.p. injection of 250 µg/kg Atip, an α2 adrenoreceptor (α2AR) antagonist, and then received the same treatment as the Dex + CP group. Rats were anesthetized and sacrificed 96 h after CP injection. Subsequently, serum blood urea nitrogen (BUN) and serum creatinine (Scr) were analyzed, and kidney samples were collected for analyses. Pathological changes were examined using hematoxylin and eosin staining, and protein expression levels were assessed using western blotting and immunohistochemical staining. In addition, apoptosis was examined using a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The present results suggested that Dex protected against CP-induced AKI by attenuating histological changes in the kidney, serum BUN and Scr production. Furthermore, the expression levels of 78-kDa glucose-regulated protein, C/EBP homologous protein and caspase-12, and the apoptotic rate in the kidney were decreased following Dex treatment. In addition, the expression levels of phosphorylated (p)-PI3K and p-AKT in the Dex + CP group were significantly increased. Conversely, the renoprotective effects of Dex were attenuated following the addition of Atip. In conclusion, Dex may alleviate CP-induced AKI by attenuating ERS-induced apoptosis, at least in part, via the α2AR/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yejing Chai
- Department of Medical Periodical Press, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Kangsheng Zhu
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chao Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaofan Wang
- Graduate School of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Junmei Shen
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Fangfang Yong
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huiqun Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
25
|
Guo A, Wang W, Shi H, Wang J, Liu T. Identification of Hub Genes and Pathways in a Rat Model of Renal Ischemia-Reperfusion Injury Using Bioinformatics Analysis of the Gene Expression Omnibus (GEO) Dataset and Integration of Gene Expression Profiles. Med Sci Monit 2019; 25:8403-8411. [PMID: 31699960 PMCID: PMC6863034 DOI: 10.12659/msm.920364] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to identify hub genes and pathways in a rat model of renal ischemia-reperfusion injury (IRI) using bioinformatics analysis of the Gene Expression Omnibus (GEO) microarray dataset and integration of gene expression profiles. Material/Methods GEO software and the GEO2R calculation method were used to analyze two mRNA profiles, including GSE 39548 and GSE 108195. The co-expression of differentially expressed genes (DEGs) were identified and searched in the DAVID and STRING databases for pathway and protein-protein interaction (PPI) analysis. Cytoscape was used to draw the PPI network. DEGs were also analyzed using the Molecular Complex Detection (MCODE) algorithm. Cytoscape and cytoHubba were used to analyze the hub genes and visualize the molecular interaction networks. Rats (n=20) included the IRI model group (n=10) and a control group (n=10). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to measure and compare the expression of the identified genes in rat renal tissue in the IRI model and the control group. Results Ten hub genes were identified, STAT3, CD44, ITGAM, CCL2, TIMP1, MYC, THBS1, IGF1, SOCS3, and CD14. Apart from IGF1, qRT-PCR showed that expression of these genes was significantly increased in renal tissue in the rat model of IRI. The HIF-1α signaling pathway was involved in IRI in the rat model, which was supported by MCODE analysis. Conclusions In a rat model of renal IRI, bioinformatics analysis of the GEO dataset and integration of gene expression profiles identified involvement of HIF-1α signaling and the STAT3 hub gene.
Collapse
Affiliation(s)
- Ao Guo
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Weitie Wang
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Hongyu Shi
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jiping Wang
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Tiecheng Liu
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
26
|
Chen HY, Li GH, Tan GC, Liang H, Lai XH, Huang Q, Zhong JY. Dexmedetomidine enhances hypoxia-induced cancer cell progression. Exp Ther Med 2019; 18:4820-4828. [PMID: 31772647 PMCID: PMC6861874 DOI: 10.3892/etm.2019.8136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Dexmedetomidine (DEX) is widely used in perioperative settings for analgesia and sedation; however, little is known about its effects on the hypoxia-induced progression of tumor cells. In the present study, the effects of DEX on hypoxia-induced growth and metastasis of lung cancer cells and colorectal cancer cells was examined. A549 cells and HCT116 cells were treated with normoxia, hypoxia, co-treatment of hypoxia and DEX, and atipamezole (an α2 adrenoceptor antagonist) for 4 h. The proliferation rate of cells was determined by MTT assays. Cell metastatic potential was evaluated by Transwell assays. Survivin and hypoxia inducible factor (HIF)-1α were detected by western blotting. Matrix metalloproteinase (MMP)-2 and MMP-9 were measured using reverse transcription-quantitative PCR. It was demonstrated that hypoxia treatment promoted the proliferation and may promote the metastasis of the two cancer cell lines. DEX substantially contributed to the survival and aggressiveness of the two cancer cell lines following hypoxia. Furthermore, DEX upregulated the expression of survivin, MMP-2, MMP-9 and HIF-1α in the two cancer cell lines in response to hypoxia. Finally, the effects of DEX on the hypoxia-induced growth and metastatic potential of cancer cells were reversed by atipamezole. Collectively, DEX enhances the hypoxia-induced progression of lung cancer cells and colorectal cancer cells by regulating HIF-1α signaling, which may be associated with the α2 adrenoceptor pathway.
Collapse
Affiliation(s)
- Hua Yan Chen
- Department of Anesthesiology, Affiliated FoShan Hospital of Sun Yat-Sen University, Foshan, Guangdong 528000, P.R. China
| | - Geng Hua Li
- Department of Anesthesiology, Affiliated Luoding Hospital of Guangdong Medical University, Luoding, Guangdong 527200, P.R. China
| | - Guo Cheng Tan
- Department of Anesthesiology, Affiliated Luoding Hospital of Guangdong Medical University, Luoding, Guangdong 527200, P.R. China
| | - Hua Liang
- Department of Anesthesiology, Affiliated FoShan Hospital of Sun Yat-Sen University, Foshan, Guangdong 528000, P.R. China
| | - Xiao Hong Lai
- Department of Anesthesiology, Affiliated FoShan Hospital of Sun Yat-Sen University, Foshan, Guangdong 528000, P.R. China
| | - Qiong Huang
- Department of Medical Statistics, Affiliated Chancheng Central Hospital of Guangdong Medical University, Foshan, Guangdong 528000, P.R. China
| | - Ji Ying Zhong
- Department of Anesthesiology, Affiliated FoShan Hospital of Sun Yat-Sen University, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
27
|
Luo X, Lin B, Gao Y, Lei X, Wang X, Li Y, Li T. Genipin attenuates mitochondrial-dependent apoptosis, endoplasmic reticulum stress, and inflammation via the PI3K/AKT pathway in acute lung injury. Int Immunopharmacol 2019; 76:105842. [PMID: 31466050 DOI: 10.1016/j.intimp.2019.105842] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
The protective effects of genipin against lipopolysaccharide (LPS)-induced acute lung injury (ALI) have been reported; however, the mechanism is unclear. Genipin performs its pharmacological effects via activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In the present study, we aimed to determine whether the PI3K/AKT pathway is involved in the protective effects of genipin against mitochondrial-dependent apoptosis, endoplasmic reticulum stress (ERS), and inflammation in ALI. We constructed in vivo and in vitro models of LPS-induced ALI. PI3K/AKT signaling was inhibited using LY294002. Pretreatment with genipin increased AKT phosphorylation, indicating that PI3K/AKT signaling was upregulated. Genipin pretreatment prevented LPS-induced histopathological deterioration, increased pulmonary edema, and decreased oxygenation index, all of which were inhibited using LY294002. In addition, genipin pretreatment attenuated LPS-mediated mitochondrial apoptosis, as indicated by improved mitochondrial dysfunction, downregulation of BAX (BCL2 associated X, apoptosis regulator), upregulation of BCL2 (BCL2 apoptosis regulator), inhibited the release of cytochrome c, activation of caspase-3, and cell apoptosis. Genipin pretreatment inhibited the LPS-induced upregulation of AF4/FMR2 family member 4 (CHOP), glucose-regulated protein, 78 kDa (GRP78), and X-box binding protein 1 (XBP1) levels, indicating ERS suppression. Moreover, genipin pretreatment alleviated LPS-induced inflammation, indicating by blockade of nuclear factor kappa b (NF-κB) signaling activation and reduced tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 levels in the lung and bronchoalveolar lavage fluid. LY294002 could inhibit these genipin-induced protective effects against apoptosis, ERS, and inflammation. Thus, genipin significantly activates PI3K/AKT signaling to ameliorate mitochondria-dependent apoptosis, ERS, and inflammation in LPS-induced ALI.
Collapse
Affiliation(s)
- Xu Luo
- Department of Critical Care Medicine, The People's Hospital of Longhua, Shenzhen 518109, China
| | - Bo Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University/The First School of Clinical Medicine, Fujian Medical University, Fuzhou 350005, China
| | - Youguang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University/The First School of Clinical Medicine, Fujian Medical University, Fuzhou 350005, China
| | - Xianghui Lei
- Department of Pathology, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China
| | - Yunfeng Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou/Affiliated Chenzhou Hospital, Southern Mdical University of China, Chenzhou 423000, China.
| |
Collapse
|
28
|
Liao Y, Li H, Pi Y, Li Z, Jin S. Cardioprotective effect of IGF-1 against myocardial ischemia/reperfusion injury through activation of PI3K/Akt pathway in rats in vivo. J Int Med Res 2019; 47:3886-3897. [PMID: 31342837 PMCID: PMC6726826 DOI: 10.1177/0300060519857839] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective It remains unknown whether insulin-like growth factor-1 (IGF-1) can attenuate myocardial ischemia/reperfusion (I/R) injury in vivo by activating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway. This study investigated the possible interaction of IGF-1 with the PI3K/Akt pathway in cardioprotection against in vivo myocardial I/R injury in rats. Methods We established a myocardial I/R model in rats through left anterior descending artery ligation for 40 minutes followed by 6 hours reperfusion. The PI3K/Akt inhibitor, LY294002 (0.3 mg/kg), was injected through the caudal vein 30 minutes before myocardial ischemia, and IGF-1 (1 µg/kg or 5 µg/kg) was injected through the caudal vein 10 minutes before myocardial ischemia. Results IGF-1 treatment decreased myocardial infarct size; myocardial cell apoptosis; and serum lactate dehydrogenase, creatine kinase MB, and cardiac troponin I levels in rats with myocardial I/R in vivo. Moreover, IGF-1 treatment led to significant increases in expression levels of p-Akt (Ser473) and B cell lymphoma 2, while reducing expression levels of caspase-9 mRNA and cleaved caspase-9 protein in rats with myocardial I/R. However, pretreatment with LY294002 significantly reduced the cardioprotective effects of IGF-1. Conclusion Treatment with IGF-1 may confer cardiac protection against in vivo myocardial I/R injury via the PI3K/Akt pathway in rats.
Collapse
Affiliation(s)
- Yaojun Liao
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Hong Li
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanna Pi
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zijia Li
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Sanqing Jin
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Li J, Dou X, Li D, He M, Han M, Zhang H. Dexmedetomidine Ameliorates Post-CPB Lung Injury in Rats by Activating the PI3K/Akt Pathway. J INVEST SURG 2019; 33:576-583. [PMID: 30913929 DOI: 10.1080/08941939.2018.1529839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: To investigate the protective effects of dexmedetomidine (Dex) on post cardiopulmonary bypass (CPB) lung injury in rats and to explore the possibility of underlying mechanisms involving phosphatidylinositol 3-kinase (PI3K)/Akt. Materials and Methods: Forty healthy male Sprague-Dawley rats were randomly divided into five groups (n = 8 for each). A left lung ischemia-reperfusion injury model of CPB was established in all five groups. Rats were given saline, dexmedetomidine (Dex), dimethyl sulfoxide (DMSO), wortmannin (Wtm), and Dex plus Wtm during the CPB process, in Group Saline, Dex, DMSO, Wtm, and Dex + Wtm, respectively. Mean arterial pressure, oxygenation index (OI), and respiratory index (RI) were measured at the following three timepoints: before CPB (T1), at the onset of opening of the left hilus pulmonis (T2), and at the end of the CPB process (T3). At T3, hematoxylin and eosin (H&E) staining was conducted to evaluate pathology of lung injury. The rate of lung tissue apoptosis was determined by flow-cytometry. The expression of Akt, p-Akt, caspase-3, and caspase-9 was assessed by Western blot. Results: Dex treatment during CPB protected rat lungs from post-CPB lung injury, manifested by improved lung function, mitigated pathological damage, and reduced lung tissue apoptosis. The expression and phosphorylation of Akt was significantly enhanced by Dex treatment compared to the saline/DMSO-treated group. Wtm, a recognized PI3K inhibitor, abolished the protective effect of Dex. The levels of caspase-3 and caspase-9 were also significantly elevated in the Wtm-treated group. Conclusions: Dex reduces post-CPB lung injury in rats, at least partially, by activating the PI3K/Akt pathway and inhibiting lung tissue apoptosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuejiao Dou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dongdong Li
- Department of Anesthesiology, Yi Du Central Hospital, Weifang, China
| | - Miao He
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Han
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Sun Y, Zhu Y, Zhong X, Chen X, Wang J, Ying G. Crosstalk Between Autophagy and Cerebral Ischemia. Front Neurosci 2019; 12:1022. [PMID: 30692904 PMCID: PMC6339887 DOI: 10.3389/fnins.2018.01022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
With the use of advanced electron microscopy and molecular biology tools, several studies have shown that autophagy is involved in the development of ischemic stroke. A series of molecular mechanisms are involved in the regulation of autophagy. In this work, the possible molecular mechanisms involved in autophagy during ischemic stroke were reviewed and new potential targets for the study and treatment of ischemic stroke were provided.
Collapse
Affiliation(s)
- Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiaojun Zhong
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xinle Chen
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jun Wang
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Guozheng Ying
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
31
|
Jiang T, Zhou ML, Fan J. Inhibition of GLUT-1 expression and the PI3K/Akt pathway to enhance the chemosensitivity of laryngeal carcinoma cells in vitro. Onco Targets Ther 2018; 11:7865-7872. [PMID: 30464533 PMCID: PMC6228052 DOI: 10.2147/ott.s176818] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The mechanism of chemoresistance remains unknown. Here, we investigated if glucose transporter-1 (GLUT-1) and PI3K/Akt pathways are associated with the sensitivity to cisplatin in Hep-2 laryngeal carcinoma cells and whether the inhibition of GLUT-1 and the PI3K/Akt pathways enhances the chemosensitivity of Hep-2 cells. Method The effects of inhibiting GLUT-1 by a GLUT-1 siRNA, and PI3K/Akt by Ly294002, on cisplatin-induced effects were assessed in vitro. Results GLUT-1 siRNA and cisplatin showed a synergistic effect in inhibiting the proliferation of Hep-2. LY294002 and cisplatin also showed a synergistic effect in inhibiting the proliferation of Hep-2. GLUT-1 siRNA, LY294002 and cisplatin effectively inhibited the mRNA expressions and protein expressions of GLUT-1, Akt, PI3k and HIF-1α in Hep-2 cells. Furthermore, GLUT-1 siRNA and cisplatin demonstrated a synergism to inhibit the mRNA expression of HIF-1α. Moreover, it was found in this study that GLUT-1 siRNA, LY294002 and cisplatin induced the suppression of the cell cycle at G1/G2 and the increasing of apoptosis in Hep-2 cells. Conclusion This study showed that inhibiting GLUT-1, by a GLUT-1 siRNA and inhibiting PI3K/Akt by Ly294002, could suppress the proliferation of Hep-2 alone and together with cisplatin synergistically, which demonstrated the potentials to treat laryngeal carcinoma in the future therapy. Additionally, the synergistic effect between LY294002 and cisplatin to suppress the proliferation of Hep-2 might not be from GLUT-1, Akt, PI3k and HIF-1α; the synergistic effect between GLUT-1 siRNA and cisplatin to suppress the proliferation of Hep-2 might not be from GLUT-1, Akt and PI3k and might be more or less related to HIF-1α.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Otolaryngology, Yinzhou People's Hospital of Ningbo City Zhejiang Province, Zhejiang, China,
| | | | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine Zhejiang University, Zhejiang, China
| |
Collapse
|
32
|
Zhang W, Zhang S, Li B, Sun M, Zhang J. Paravertebral dexmedetomidine as an adjuvant to ropivacaine protects against independent lung injury during one-lung ventilation: a preliminary randomized clinical trial. BMC Anesthesiol 2018; 18:67. [PMID: 29907082 PMCID: PMC6003137 DOI: 10.1186/s12871-018-0532-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
Background To investigate the effect of paravertebral dexmedetomidine as an adjuvant to ropivacaine on independent lung injury during one-lung ventilation. Methods In total, 120 patients who underwent elective radical resection of pulmonary carcinoma were randomly assigned to one of six groups (n = 20): normal saline (C group), ropivacaine (R group), intravenous dexmedetomidine (Div group), 0.5 μg/kg paravertebral dexmedetomidine as an adjuvant to ropivacaine (RD0.5 group), 1.0 μg/kg paravertebral dexmedetomidine as an adjuvant to ropivacaine (RD1.0 group), or 2.0 μg/kg paravertebral dexmedetomidine as an adjuvant to ropivacaine (RD2.0 group). Patients in the R, Div, RD0.5, RD1.0 and RD2.0 groups underwent a thoracic paravertebral block, and normal saline was administered as a control to C group. Small marginal lung samples next to the tumor were harvested immediately after the tumor tissues were excised. Lung injury was evaluated as follows: an injury score was determined via light microscopy, and cell apoptosis was determined via a TUNEL assay. TNF-α, IL-6, miRNA-210, HIF-1α, Tom20 and ISCU2 were also detected. Results Both intravenous and paravertebral dexmedetomidine attenuated independent lung injury. Downregulation of HIF-1α and miRNA-210 and upregulation of Tom20 and ISCU2 may be the underlying mechanism. No difference was observed between the Div and RD0.5 groups, and no further improvement of lung injury was found in the RD1.0 and RD2.0 groups with increased paravertebral dexmedetomidine doses. Conclusions Paravertebral dexmedetomidine as an adjuvant to ropivacaine, which is comparable to intravenous dexmedetomidine, could protect against independent lung injury during one-lung ventilation. Trial registration ISRCTN, 13000406; retrospectively registered on 22.05.2018.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou City, Henan Province, China
| | - Shanfeng Zhang
- Department of Biochemistry and Molecular Biology, The Academy of Medical Science, Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Bing Li
- Department of Anesthesiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou City, Henan Province, China
| | - Mingyang Sun
- Department of Anesthesiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou City, Henan Province, China
| | - Jiaqiang Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Zhengzhou City, Henan Province, China.
| |
Collapse
|
33
|
Liu Y, Bian W, Liu P, Zang X, Gu X, Chen W. Dexmedetomidine improves the outcomes in paediatric cardiac surgery: a meta-analysis of randomized controlled trials. Interact Cardiovasc Thorac Surg 2018. [PMID: 29522148 DOI: 10.1093/icvts/ivy043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yang Liu
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weishuai Bian
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ping Liu
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Zang
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuyun Gu
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
The Cardioprotective Effect of Dexmedetomidine in Rats Is Dose-Dependent and Mediated by BKCa Channels. J Cardiovasc Pharmacol 2017; 69:228-235. [DOI: 10.1097/fjc.0000000000000466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Beckers PAJ, Gielis JF, Van Schil PE, Adriaensen D. Lung ischemia reperfusion injury: the therapeutic role of dipeptidyl peptidase 4 inhibition. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:129. [PMID: 28462209 DOI: 10.21037/atm.2017.01.41] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a cell surface protease that has been reported to play a role in glucose homeostasis, cancer, HIV, autoimmunity, immunology and inflammation. A role for DPP4 in ischemia-reperfusion injury (IRI) in the heart has been established. Dipeptidyl peptidase 4 inhibition (DPP4i) appeared to decrease infarct size, improves cardiac function and promotes myocardial regeneration. Lung ischemia reperfusion injury is caused by a complex mechanism in which macrophages and neutrophils play an important role. Generation of reactive oxygen species (ROS), uncoupling of nitric oxide synthase (NOS), activation of nuclear factor-κB (NF-κB), activation of nicotinamide adenine dinucleotide phosphate metabolism, and generation of pro-inflammatory cytokines lead to acute lung injury (ALI). In this review we present the current knowledge on DPP4 as a target to treat IRI in the lung. We also provide evidence of the roles of the DPP4 substrates glucagon-like peptide 1 (GLP-1), vasoactive intestinal peptide (VIP) and stromal cell-derived factor-1α (SDF-1α) in protection against oxidative stress through activation of the mitogen-activated protein kinase (MAPK) 1/2 and phosphatidylinositol 3'-kinase (PI3K)/Akt signal transduction pathways.
Collapse
Affiliation(s)
- Paul A J Beckers
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Jan F Gielis
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Paul E Van Schil
- Antwerp Surgical Training, Anatomy & Research Center, Department of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|