1
|
Dostálek T, Rydlová J, Kohout P, Kuťáková E, Kolaříková Z, Frouz J, Münzbergová Z. Beyond the rootzone: Unveiling soil property and biota gradients around plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175032. [PMID: 39059657 DOI: 10.1016/j.scitotenv.2024.175032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.
Collapse
Affiliation(s)
- Tomáš Dostálek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic.
| | - Jana Rydlová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Petr Kohout
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Institute of Microbiology, The Czech Academy of Science, Vídeňská 1043, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eliška Kuťáková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-907 36 Umeå, Sweden
| | - Zuzana Kolaříková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague, Czech Republic
| |
Collapse
|
2
|
Raphael B, Nicolás M, Martina J, Daphnée B, Daniel W, Pierre-Emmanuel C. The fine-tuning of mycorrhizal pathway in sorghum depends on both nitrogen-phosphorus availability and the identity of the fungal partner. PLANT, CELL & ENVIRONMENT 2022; 45:3354-3366. [PMID: 36030544 DOI: 10.1111/pce.14426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Sorghum is an important worldwide source of food, feed and fibres. Like most plants, it forms mutualistic symbioses with arbuscular mycorrhizal fungi (AMF), but the nutritional basis of mycorrhiza-responsiveness is largely unknown. Here, we investigated the transcriptional and physiological responses of sorghum to two different AMF species, Rhizophagus irregularis and Funneliformis mosseae, under 16 different conditions of nitrogen (N) and phosphorus (P) supply. Our experiment reveals fine-scale differences between two AMF species in the nutritional interactions with sorghum plants. Physiological and gene expression patterns (ammonium transporters: AMT; phosphate transporters: PHT) indicate the existence of generalist or specialist mycorrhizal pathway. While R. irregularis switched on the mycorrhizal pathway independently of the plant nutritional status, F. mosseae influenced the mycorrhizal pathway depending on the N-to-P plant ratio and soil supply. The differences between both AMF species suggest some AMT and PHT as ideal candidates to develop markers for improving efficiency of nutrient acquisition in sorghum under P and N limitation, and for the selection of plant genotypes.
Collapse
Affiliation(s)
- Boussageon Raphael
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marro Nicolás
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Janoušková Martina
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Brulé Daphnée
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Wipf Daniel
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Courty Pierre-Emmanuel
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
3
|
Fernández N, Knoblochová T, Kohout P, Janoušková M, Cajthaml T, Frouz J, Rydlová J. Asymmetric Interaction Between Two Mycorrhizal Fungal Guilds and Consequences for the Establishment of Their Host Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:873204. [PMID: 35755655 PMCID: PMC9218742 DOI: 10.3389/fpls.2022.873204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are the most abundant and widespread types of mycorrhizal symbiosis, but there is little and sometimes conflicting information regarding the interaction between AM fungi (AMF) and EcM fungi (EcMF) in soils. Their competition for resources can be particularly relevant in successional ecosystems, which usually present a transition from AM-forming herbaceous vegetation to EcM-forming woody species. The aims of this study were to describe the interaction between mycorrhizal fungal communities associated with AM and EcM hosts naturally coexisting during primary succession on spoil banks and to evaluate how this interaction affects growth and mycorrhizal colonization of seedlings of both species. We conducted a greenhouse microcosm experiment with Betula pendula and Hieracium caespitosum as EcM and AM hosts, respectively. They were cultivated in three-compartment rhizoboxes. Two lateral compartments contained different combinations of both host plants as sources of fungal mycelia colonizing the middle compartment, where fungal biomass, diversity, and community composition as well as the growth of each host plant species' seedlings were analyzed. The study's main finding was an asymmetric outcome of the interaction between the two plant species: while H. caespitosum and associated AMF reduced the abundance of EcMF in soil, modified the composition of EcMF communities, and also tended to decrease growth and mycorrhizal colonization of B. pendula seedlings, the EcM host did not have such effects on AM plants and associated AMF. In the context of primary succession, these findings suggest that ruderal AM hosts could hinder the development of EcM tree seedlings, thus slowing the transition from AM-dominated to EcM-dominated vegetation in early successional stages.
Collapse
Affiliation(s)
- Natalia Fernández
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue - IPATEC, Bariloche, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tereza Knoblochová
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Petr Kohout
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martina Janoušková
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jan Frouz
- Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jana Rydlová
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| |
Collapse
|
4
|
Is the Age of Novel Ecosystem the Factor Driving Arbuscular Mycorrhizal Colonization in Poa compressa and Calamagrostis epigejos? PLANTS 2021; 10:plants10050949. [PMID: 34068665 PMCID: PMC8151521 DOI: 10.3390/plants10050949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Some sites transformed or created by humans (novel ecosystem) are different both in vegetation and ecosystems establishment and development. The unknown habitat conditions and new species composition is resulting in new abiotic and biotic systems. To improve the understanding of the process governing the relationships between the environmental factors, plant species assemblages and their arbuscular mycorrhizal fungi (AMF) inoculation were studied in chronosequence on post-coal mine heaps. We hypothesized that AMF root colonization will be dependent on the age of heap and not on the dominant plant species (vegetation type). The high frequency of mycorrhizal colonization of roots (F%) of Poa compressa- and Calamagrostis epigejos-dominated vegetation type was stated. All mycorrhizal parameters were lower in C. epigejos roots when compared to P. compressa (ranging from 60% to 90%). The highest relative mycorrhizal intensity, M%, and mean abundance of arbuscula, A%, in the roots of both examined plants were recorded in vegetation patches dominated by Daucus carota. Positive and statistically significant correlations were found between F%, M%, and A%, and lack of correlation between the heaps’ age and mycorrhizal parameters, and statistically significant correlations between A% and potassium and magnesium content were revealed. The interspecific relations in the novel ecosystems become more complex along with the increase of diversity.
Collapse
|
5
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z, Zeng F. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep 2020; 10:2084. [PMID: 32034269 PMCID: PMC7005850 DOI: 10.1038/s41598-020-59180-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
We previously reported on the strong symbiosis of AMF species (Rhizophagus irregularis CD1) with the cotton (Gossypium hirsutum L.) which is grown worldwide. In current study, it was thus investigated in farmland to determine the biological control effect of AMF on phosphorus acquisition and related gene expression regulation, plant growth and development, and a series of agronomic traits associated with yield and fiber quality in cotton. When AMF and cotton were symbiotic, the expression of the specific phosphate transporter family genes and P concentration in the cotton biomass were significantly enhanced. The photosynthesis, growth, boll number per plant and the maturity of the fiber were increased through the symbiosis between cotton and AMF. Statistical analysis showed a highly significant increase in yield for inoculated plots compared with that from the non inoculated controls, with an increase percentage of 28.54%. These findings clearly demonstrate here the benefits of AMF-based inoculation on phosphorus acquisition, growth, seed cotton yield and fiber quality in cotton. Further improvement of these beneficial inoculants on crops will help increase farmers' income all over the world both now and in the future.
Collapse
Affiliation(s)
- Xinpeng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
- Novogene Bioinformatics Institute, Beijing, 100083, P. R. China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Changyu Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Yan Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Junmei Wei
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Aiyun Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| |
Collapse
|
7
|
Knoblochová T, Kohout P, Püschel D, Doubková P, Frouz J, Cajthaml T, Kukla J, Vosátka M, Rydlová J. Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. MYCORRHIZA 2017; 27:775-789. [PMID: 28752181 DOI: 10.1007/s00572-017-0792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.
Collapse
Affiliation(s)
- Tereza Knoblochová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Petr Kohout
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
- Institute of Microbiology, Czech Academy of Science, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - David Püschel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Pavla Doubková
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jan Frouz
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Jaroslav Kukla
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 128 44, Prague, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Jana Rydlová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| |
Collapse
|
8
|
Krüger C, Kohout P, Janoušková M, Püschel D, Frouz J, Rydlová J. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil. Front Microbiol 2017; 8:719. [PMID: 28473828 PMCID: PMC5397529 DOI: 10.3389/fmicb.2017.00719] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 02/01/2023] Open
Abstract
Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age.
Collapse
Affiliation(s)
- Claudia Krüger
- Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czechia
| | - Petr Kohout
- Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czechia.,Faculty of Science, Charles UniversityPrague, Czechia.,Institute of Microbiology, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Martina Janoušková
- Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czechia
| | - David Püschel
- Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czechia
| | - Jan Frouz
- Faculty of Science, Charles UniversityPrague, Czechia
| | - Jana Rydlová
- Institute of Botany, Academy of Sciences of the Czech RepublicPrůhonice, Czechia
| |
Collapse
|