1
|
Ekram MAE, Wuchter C, Bijaksana S, Grice K, Russell J, Stevenson J, Vogel H, Coolen MJL. A Quaternary Sedimentary Ancient DNA ( sedaDNA) Record of Fungal-Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia). Microorganisms 2025; 13:1005. [PMID: 40431178 PMCID: PMC12113726 DOI: 10.3390/microorganisms13051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi-soil-plant interactions, particularly in undersampled, floristically diverse tropical forests. We recently conducted trnL-P6 amplicon sequencing to generate a sedimentary ancient DNA (sedaDNA) record of the regional catchment vegetation of the tropical waterbody Lake Towuti (Sulawesi, Indonesia), spanning over one million years (Myr) of the lake's developmental history. In this study, we performed 18SV9 amplicon sequencing to create a parallel paleofungal record to (a) infer the composition, origins, and functional guilds of paleofungal community members and (b) determine the extent to which downcore changes in fungal community composition reflect the late Pleistocene evolution of the Lake Towuti catchment. We identified at least 52 members of Ascomycota (predominantly Dothiodeomycetes, Eurotiomycetes, and Leotiomycetes) and 12 members of Basidiomycota (primarily Agaricales and Polyporales). Spearman correlation analysis of the relative changes in fungal community composition, geochemical parameters, and paleovegetation assemblages revealed that the overwhelming majority consisted of soil organic matter and wood-decaying saprobes, except for a necrotrophic phytopathogenic association between Mycosphaerellaceae (Cadophora) and wetland herbs (Alocasia) in more-than-1-Myr-old silts and peats deposited in a pre-lake landscape, dominated by small rivers, wetlands, and peat swamps. During the lacustrine stage, vegetation that used to grow on ultramafic catchment soils during extended periods of inferred drying showed associations with dark septate endophytes (Ploettnerulaceae and Didymellaceae) that can produce large quantities of siderophores to solubilize mineral-bound ferrous iron, releasing bioavailable ferrous iron needed for several processes in plants, including photosynthesis. Our study showed that sedaDNA metabarcoding paired with the analysis of geochemical parameters yielded plausible insights into fungal-plant-soil interactions, and inferred changes in the paleohydrology and catchment evolution of tropical Lake Towuti, spanning more than one Myr of deposition.
Collapse
Affiliation(s)
- Md Akhtar-E Ekram
- Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, WA 6102, Australia; (M.A.-E.E.); (C.W.); (K.G.)
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Cornelia Wuchter
- Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, WA 6102, Australia; (M.A.-E.E.); (C.W.); (K.G.)
| | - Satria Bijaksana
- Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia;
| | - Kliti Grice
- Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, WA 6102, Australia; (M.A.-E.E.); (C.W.); (K.G.)
| | - James Russell
- Department of Earth, Environmental, and Planetary Sciences (DEEPS), Brown University, Providence, RI 02912, USA;
| | - Janelle Stevenson
- ARC Centre of Excellence for Australian Biodiversity and Heritage and Archaeology and Natural History, School of Culture, History, and Language, Australian National University, Canberra, CAT 2601, Australia;
| | - Hendrik Vogel
- Institute of Geological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland;
| | - Marco J. L. Coolen
- Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, WA 6102, Australia; (M.A.-E.E.); (C.W.); (K.G.)
| |
Collapse
|
2
|
Liu YJ, Gong S, Wang YB, Yang ZL, Hu WH, Feng B. Biogeography and community assembly of soil fungi from alpine meadows in southwestern China show the importance of climatic selection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174477. [PMID: 38964412 DOI: 10.1016/j.scitotenv.2024.174477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Soil fungi are pivotal in alpine and arctic ecosystems that are vulnerable to climate changes. Previous studies have shown broad connections between soil fungi in the arctic and alpine regions, but most of these studies are mainly from Europe and North America, with more sporadic studies from East Asia. Currently, little is known about the biogeographic relationships between soil fungi in alpine meadows of southwestern China (AMSC) and other regions of the world. In addition, the regional-scale spatial patterns of fungal communities in the AMSC, as well as their driving factors and ecological processes, are also poorly understood. In this study, we collected roots and surrounding soils of two dominant ectomycorrhizal plants, Bistorta vivipara and B. macrophylla from the AMSC, and performed bioinformatic and statistical analyses based on high-throughput sequencing of ITS2 amplicons. We found that: (1) fungi from the AMSC were closely related with those from boreal forests and tundra, and saprotrophic fungi had higher dispersal potential than ectomycorrhizal fungi; (2) community compositions exhibited clear divergences among geographic regions and between root and soil samples; (3) climate was the predominant factor driving regional-scale spatial patterns but had less explanatory power for saprotrophic and total fungi from roots than those from soils; (4) homogeneous selection and drift were the key ecological processes governing community assembly, but in communities of saprotrophic and total fungi from soil samples, drift contributed less and its role was partially replaced by dispersal limitation. This study highlights the importance of climatic selection and stochastic processes on fungal community assembly in alpine regions, and emphasizes the significance of simultaneously investigating fungi with different trophic modes and from both roots and soils.
Collapse
Affiliation(s)
- Yong Jie Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China; School of Life Sciences, Yunnan University, China
| | - Sai Gong
- School of Horticulture, Anhui Agricultural University, China
| | - Yuan Bing Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Zhu L Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China
| | - Wei Hong Hu
- School of Life Sciences, Yunnan University, China.
| | - Bang Feng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, China.
| |
Collapse
|
3
|
Artificial Cultivation Changes Foliar Endophytic Fungal Community of the Ornamental Plant Lirianthe delavayi. Microorganisms 2023; 11:microorganisms11030775. [PMID: 36985348 PMCID: PMC10059682 DOI: 10.3390/microorganisms11030775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Many wild ornamental plant species have been introduced to improve the landscape of cities; however, until now, no study has been performed to explore the composition and function of foliar endophytes associated with cultivated rare plants in cities after their introduction. In this study, we collected the leaves of the healthy ornamental plant Lirianthe delavayi from wild and artificially cultivated habitats in Yunnan and compared their diversity, species composition, and functional predictions of their foliar endophytic fungal community based on high-throughput sequencing technology. In total, 3125 ASVs of fungi were obtained. The alpha diversity indices of wild L. delavayi populations are similar to those of cultivated samples; however, the species compositions of endophytic fungal ASVs were significantly varied in the two habitats. The dominant phylum is Ascomycota, accounting for more than 90% of foliar endophytes in both populations; relatively, artificial cultivation trends to increase the frequency of common phytopathogens of L. delavayi, such as Alternaria, Erysiphe. The relative abundance of 55 functional predictions is different between wild and cultivated L. delavayi leaves (p < 0.05); in particular, chromosome, purine metabolism, and peptidases are significantly increased in wild samples, while flagellar assembly, bacterial chemotaxis, and fatty acid metabolism are significantly enhanced in cultivated samples. Our results indicated that artificial cultivation can greatly change the foliar endophytic fungal community of L. delavayi, which is valuable for understanding the influence of the domestication process on the foliar fungal community associated with rare ornamental plants in urban environments.
Collapse
|
4
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
5
|
Botnen SS, Mundra S, Kauserud H, Eidesen PB. Glacier retreat in the High Arctic: opportunity or threat for ectomycorrhizal diversity? FEMS Microbiol Ecol 2021; 96:5894921. [PMID: 32816005 DOI: 10.1093/femsec/fiaa171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Climate change causes Arctic glaciers to retreat faster, exposing new areas for colonization. Several pioneer plants likely to colonize recent deglaciated, nutrient-poor areas depend on fungal partners for successful establishment. Little is known about general patterns or characteristics of facilitating fungal pioneers and how they vary with regional climate in the Arctic. The High Arctic Archipelago Svalbard represents an excellent study system to address these questions, as glaciers cover ∼60% of the land surface and recent estimations suggest at least 7% reduction of glacier area since 1960s. Roots of two ectomycorrhizal (ECM) plants (Salix polaris and Bistorta vivipara) were sampled in eight glacier forelands. Associated ECM fungi were assessed using DNA metabarcoding. About 25% of the diversity was unknown at family level, indicating presence of undescribed species. Seven genera dominated based on richness and abundance, but their relative importance varied with local factors. The genus Geopora showed surprisingly high richness and abundance, particularly in dry, nutrient-poor forelands. Such forelands will diminish along with increasing temperature and precipitation, and faster succession. Our results support a taxonomical shift in pioneer ECM diversity with climate change, and we are likely to lose unknown fungal diversity, without knowing their identity or ecological importance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway.,The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - S Mundra
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway.,The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway.,Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al-Ain, Abu Dhabi, UAE
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| |
Collapse
|
6
|
Wang Y, Zhao Y, Xu Y, Ma J, Babalola BJ, Fan Y. Ectomycorrhizal fungal communities associated with Larix gemelinii Rupr. in the Great Khingan Mountains, China. PeerJ 2021; 9:e11230. [PMID: 33959418 PMCID: PMC8053382 DOI: 10.7717/peerj.11230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Larix gemelinii is an important tree species in the Great Khingan Mountains in Northeast China with a high economic and ecological value for its role in carbon sequestration and as a source of lumber and nuts. However, the ectomycorrhizal (EM) fungal diversity and community composition of this tree remain largely undefined. We examined EM fungal communities associated with L. gemelinii from three sites in the Great Khingan Mountains using Illumina Miseq to sequence the rDNA ITS2 region and evaluated the impact of spatial, soil, and climatic variables on the EM fungal community. A total of 122 EM fungal operational taxonomic units (OTUs) were identified from 21 pooled-root samples, and the dominant EM fungal lineages were /tricholoma, /tomentella-thelephora, /suillus-rhizopogon, and /piloderma. A high proportion of unique EM fungal OTUs were present; some abundant OTUs largely restricted to specific sites. EM fungal richness and community assembly were significantly correlated with spatial distance and climatic and soil variables, with mean annual temperature being the most important predictor for fungal richness and geographic distance as the largest determinant for community turnover. Our findings indicate that L. gemelinii has a rich and distinctive EM fungal community contributing to our understanding of the montane EM fungal community structure from the perspective of a single host plant that has not been previously reported.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| | - Jianjun Ma
- College of Life Science, Langfang Normal University, Langfang, Hebei, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China
| | - Yongjun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, Inner Mongolia, China
| |
Collapse
|
7
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
8
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Li XC, Lü PP, Zheng Y, Guo LD. Host plant phylogeny and geographic distance strongly structure Betulaceae-associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiol Ecol 2020; 95:5393368. [PMID: 30889238 DOI: 10.1093/femsec/fiz037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/17/2019] [Indexed: 11/14/2022] Open
Abstract
Environmental filtering and dispersal limitation are two of the primary drivers of community assembly in ecosystems, but their effects on ectomycorrhizal (EM) fungal communities associated with wide ranges of Betulaceae taxa at a large scale are poorly documented. In this study, we examined EM fungal communities associated with 23 species from four genera (Alnus, Betula, Carpinus and Corylus) of Betulaceae in Chinese secondary forest ecosystems, using Illumina MiSeq sequencing of the ITS2 region. Effects of host plant phylogeny, soil, climate and geographic distance on EM fungal community were explored. In total, we distinguished 1738 EM fungal operational taxonomic units (OTUs) at a 97% sequence similarity level. The EM fungal communities of Alnus had significantly lower OTU richness than those associated with the other three plant genera. The EM fungal OTU richness was significantly affected by geographic distance, host plant phylogeny, soil and climate. The EM fungal community composition was significantly influenced by host plant phylogeny (12.1% of variation explained in EM fungal community), geographic distance (7.7%), soil (4.6%) and climate (1.1%). This finding highlights that environmental filtering linked to host plant phylogeny and dispersal limitation strongly influence EM fungal communities associated with Betulaceae plants in Chinese secondary forest ecosystems.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wang YL, Gao C, Chen L, Ji NN, Wu BW, Lü PP, Li XC, Qian X, Maitra P, Babalola BJ, Zheng Y, Guo LD. Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Front Microbiol 2020; 10:3105. [PMID: 32038548 PMCID: PMC6986194 DOI: 10.3389/fmicb.2019.03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction between aboveground and belowground biotic communities drives community assembly of plants and soil microbiota. As an important component of belowground microorganisms, root-associated fungi play pivotal roles in biodiversity maintenance and community assembly of host plants. The Betulaceae plants form ectomycorrhizae with soil fungi and widely distribute in various ecosystems. However, the community assembly of endophytic fungi in ectomycorrhizae is less investigated at a large spatial scale. Here, we examined the endophytic fungal communities in ectomycorrhizae of 22 species in four genera belonging to Betulaceae in Chinese forest ecosystems, using Illumina Miseq sequencing of internal transcribed spacer 2 amplicons. The relative contribution of host phylogeny, climate and soil (environmental filtering) and geographic distance (dispersal limitation) on endophytic fungal community was disentangled. In total, 2,106 endophytic fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level, dominated by Leotiomycetes, Agaricomycetes, Eurotiomycetes, and Sordariomycetes. The endophytic fungal OTU richness was significantly related with host phylogeny, geographic distance, soil and climate. The endophytic fungal community composition was significantly affected by host phylogeny (19.5% of variation explained in fungal community), geographic distance (11.2%), soil (6.1%), and climate (1.4%). This finding suggests that environmental filtering by plant and abiotic variables coupled with dispersal limitation linked to geographic distance determines endophytic fungal community assembly in ectomycorrhizae of Betulaceae plants, with host phylogeny being a stronger determinant than other predictor variables at the regional scale.
Collapse
Affiliation(s)
- Yong-Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Niu-Niu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin-Wei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng-Peng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Geographical Science, Fujian Normal University, Fuzhou, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Isotope ecology detects fine-scale variation in Svalbard reindeer diet: implications for monitoring herbivory in the changing Arctic. Polar Biol 2019. [DOI: 10.1007/s00300-019-02474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Wutkowska M, Vader A, Mundra S, Cooper EJ, Eidesen PB. Dead or Alive; or Does It Really Matter? Level of Congruency Between Trophic Modes in Total and Active Fungal Communities in High Arctic Soil. Front Microbiol 2019; 9:3243. [PMID: 30671045 PMCID: PMC6333106 DOI: 10.3389/fmicb.2018.03243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022] Open
Abstract
Describing dynamics of belowground organisms, such as fungi, can be challenging. Results of studies based on environmental DNA (eDNA) may be biased as the template does not discriminate between metabolically active cells and dead biomass. We analyzed ribosomal DNA (rDNA) and ribosomal RNA (rRNA) coextracted from 48 soil samples collected from a manipulated snow depth experiment in two distinct vegetation types in Svalbard, in the High Arctic. Our main goal was to compare if the rDNA and rRNA metabarcoding templates produced congruent results that would lead to consistent ecological interpretation. Data derived from both rDNA and rRNA clustered according to vegetation types. Different sets of environmental variables explained the community composition based on the metabarcoding template. rDNA and rRNA-derived community composition of symbiotrophs and saprotrophs, unlike pathotrophs, clustered together in a similar way as when the community composition was analyzed using all OTUs in the study. Mean OTU richness was higher for rRNA, especially in symbiotrophs. The metabarcoding template was more important than vegetation type in explaining differences in richness. The proportion of symbiotrophic, saprotrophic and functionally unassigned reads differed between rDNA and rRNA, but showed similar trends. There was no evidence for increased snow depth influence on fungal community composition or richness. Our findings suggest that template choice may be especially important for estimating biodiversity, such as richness and relative abundances, especially in Helotiales and Agaricales, but not for inferring community composition. Differences in study results originating from rDNA or rRNA may directly impact the ecological conclusions of one’s study, which could potentially lead to false conclusions on the dynamics of microbial communities in a rapidly changing Arctic.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.,Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anna Vader
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway
| | - Sunil Mundra
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Pernille B Eidesen
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
12
|
Koizumi T, Hattori M, Nara K. Ectomycorrhizal fungal communities in alpine relict forests of Pinus pumila on Mt. Norikura, Japan. MYCORRHIZA 2018; 28:129-145. [PMID: 29330574 DOI: 10.1007/s00572-017-0817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Ectomycorrhizal (ECM) symbioses are indispensable for the establishment of host trees, yet available information of ECM symbiosis in alpine forests is scarce. Pinus pumila is a typical ice age relict tree species in Japan and often forms monodominant dwarf vegetation above the tree line in mountains. We studied ECM fungi colonizing P. pumila on Mt. Norikura, Japan, with reference to host developmental stages, i.e., from current-year seedlings to mature trees. ECM fungal species were identified based on rDNA ITS sequences. Ninety-two ECM fungal species were confirmed from a total of 2480 root tips examined. Species in /suillus-rhizopogon and /wilcoxina were dominant in seedling roots. ECM fungal diversity increased with host development, due to the addition of species-rich fungal lineages (/cenococcum, /cortinarius, and /russula-lactarius) in late-successional stages. Such successional pattern of ECM fungi is similar to those in temperate pine systems, suggesting the predominant role of /suillus-rhizopogon in seedling establishment, even in relict alpine habitats fragmented and isolated for a geological time period. Most of the ECM fungi detected were also recorded in Europe or North America, indicating their potential Holarctic distribution and the possibility of their comigration with P. pumila through land bridges during ice ages. In addition, we found significant effects of soil properties on ECM fungal communities, which explained 34.1% of the total variation of the fungal communities. While alpine vegetation is regarded as vulnerable to the ongoing global warming, ECM fungal communities associated with P. pumila could be altered by the edaphic change induced by the warming.
Collapse
Affiliation(s)
- Takahiko Koizumi
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|