1
|
Jaisankar E, Srikanth B, Siddiqui NA, Ahamad T, Hussain S, Thirumarimurugan M, Azarudeen RS. Synergistic inducement of programmed cell death in breast cancer cell line and microbial growth inhibition by methylcellulose blended polymeric nanofiber mats through controlled drug release. Int J Biol Macromol 2025; 310:143393. [PMID: 40268018 DOI: 10.1016/j.ijbiomac.2025.143393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/08/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer patients require a drug carrier for controlled release of anticancer drug alongside with the properties of eradicating microbial strains that causes severe side effects during treatments. Herein, the study reports the fabrication of electrospun nanofiber mats comprised of methylcellulose blended with 5-fluorouracil drug, polyethylene glycol and polylactic acid ingrained with silica nanoparticles for the eradication of cancer cells and pathogenic microbes via controlled drug release. The fabricated nanofiber mats were thoroughly characterized by various analytical techniques. The spherical shape and size of the nanoparticle were examined by scanning and transmission electron microscopies, and structural interactions by infra-red spectral and X-ray diffraction studies. The ionic interaction among nanoparticles, drug and macromolecules were found to be responsible for higher swelling capacity (346 %) and controlled drug release (>90 %) was observed at the end of 16th day. Zero order, Higuchi and Korsmeyer-Peppas kinetics confirmed the controlled release of drug from the mats via diffusion. The cytotoxicity study against MDA-MB-231 cancer cell line resulted 65 % and 75 % of cell death in a period of 24 h, respectively and further validated by apoptosis assay using Acridine Orange and Propidium Iodide staining method. The microscopic images revealed that more apoptotic cells appeared when cancer cells are exposed with methylcellulose and polyethylene glycol incorporated nanofiber mats. Furthermore, an excellent activity was observed in growth inhibition study against bacterial and fungal strains. Hence, the fabricated nanofiber mats were proposed as proficient implants for controlled drug release in cancer therapy.
Collapse
Affiliation(s)
- E Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641014, India
| | - Bandi Srikanth
- Department of Zoology, Osmania University, Hyderabad 500007, Telangana State, India
| | - Nasir A Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - M Thirumarimurugan
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641014, India
| | - Raja S Azarudeen
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641014, India.
| |
Collapse
|
2
|
Alharthi S, Alrashidi AA, Almawash S, Ebrahimi Shahmabadi H, Alavi SE. Targeted antibacterial and anticancer therapeutics: PEGylated liposomal delivery of turmeric and cinnamon extracts- in vitro and in vivo efficacy. Drug Dev Ind Pharm 2025; 51:231-243. [PMID: 39901813 DOI: 10.1080/03639045.2025.2463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVE This study presents the characterization and evaluation of polyethylene glycol (PEG)-coated liposomal formulations loaded with turmeric (TUR) and cinnamon (CINN) extracts for the treatment of bacterial infections. SIGNIFICANCE TUR/CINN-loaded PEGylated liposomes enhance the antibacterial effects of TUR and CINN both in vitro and in vivo. METHODS PEGylated liposomes loaded with TUR and CINN were synthesized using the reverse-phase evaporation method and characterized by dynamic light scattering and spectrophotometry. The formulations were also evaluated for biocompatibility, permeability, and antibacterial efficacy in both in vitro and in vivo environments. RESULTS The nanoparticles, with dimensions ranging from 155 to 164 nm, exhibited consistent size distribution (polydispersity index (PDI) of 0.219 to 0.23), stable zeta potentials (-20 to -13 mV), and effective drug encapsulation rates (86.8% to 93.6%), suggesting their potential for targeted drug delivery. In vitro experiments demonstrated their biocompatibility (cell viability exceeding 75% at 40 µg/mL), permeability (transfer rates of 20.2% to 21.5%), antibacterial activity (minimum inhibitory concentrations of 8 to 64 µg/mL), and their ability to generate reactive oxygen species (1.2- to 2-fold increase compared to the control). In an in vivo murine model of Pseudomonas aeruginosa skin infections, significant reductions in viable bacterial counts were observed, with PEG-Lip-TUR/CINN leaving only 102 colony-forming units/mL. Additionally, this formulation displayed anti-metastatic properties, inhibiting cancer cell migration by 99%. CONCLUSIONS This study highlights the potential of PEGylated liposomal formulations loaded with TUR and CINN as versatile therapeutic platforms for the treatment of antibiotic-resistant infections and cancer metastasis.
Collapse
Affiliation(s)
- Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Amal Abdullah Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Alharthi S, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H, Alavi SE. Developing Engineered Nano-Immunopotentiators for the Stimulation of Dendritic Cells and Inhibition and Prevention of Melanoma. Pharm Res 2024; 41:1163-1181. [PMID: 38839718 DOI: 10.1007/s11095-024-03722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAFV600E peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice. METHODS PEG-PLGA-IMQ-BRAFV600E nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAFV600E, and IMQ. Characterization included size measurement and drug release profiling. Efficacy was assessed in inhibiting BPD6 melanoma cell growth and activating immature bone marrow DCs, T cells, macrophages, and splenocyte cells through MTT and ELISA assays. In vivo, therapeutic and immunogenic effects potential was evaluated, comparing it to IMQ + BRAFV600E and PLGA-IMQ-BRAFV600E nanoparticles in inhibiting subcutaneous BPD6 tumor growth. RESULTS The results highlight the successful synthesis of PEG-PLGA-IMQ-BRAFV600E nanoparticles (203 ± 11.1 nm), releasing 73.4% and 63.2% of IMQ and BARFV600E, respectively, within the initial 48 h. In vitro, these nanoparticles demonstrated a 1.3-fold increase in potency against BPD6 cells, achieving ~ 2.8-fold enhanced cytotoxicity compared to PLGA-IMQ-BRAFV600E. Moreover, PEG-PLGA-IMQ-BRAFV600E exhibited a 1.3-fold increase in potency for enhancing IMQ cytotoxic effects and a 1.1- to ~ 2.4-fold increase in activating DCs, T cells, macrophages, and splenocyte cells compared to IMQ-BRAFV600E and PLGA-IMQ-BRAFV600E. In vivo, PEG-PLGA-IMQ-BRAFV600E displayed a 1.3- to 7.5-fold increase in potency for inhibiting subcutaneous BPD6 tumor growth compared to the other formulations. CONCLUSIONS The findings suggest that PEG-PLGA nanoparticles effectively promote DC maturation, T cell activation, and potentially macrophage activation. The study highlights the promising role of this nanocomposite in vaccine development.
Collapse
Affiliation(s)
- Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi, 11961, Saudi Arabia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| | - Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
4
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
5
|
Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081579. [PMID: 36015204 PMCID: PMC9415106 DOI: 10.3390/pharmaceutics14081579] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
This review focuses on the biomedical application of mesoporous silica nanoparticles (MSNs), mainly focusing on the therapeutic application of MSNs for cancer treatment and specifically on overcoming the challenges of currently available anthelmintics (e.g., low water solubility) as repurposed drugs for cancer treatment. MSNs, due to their promising features, such as tunable pore size and volume, ability to control the drug release, and ability to convert the crystalline state of drugs to an amorphous state, are appropriate carriers for drug delivery with the improved solubility of hydrophobic drugs. The biomedical applications of MSNs can be further improved by the development of MSN-based multimodal anticancer therapeutics (e.g., photosensitizer-, photothermal-, and chemotherapeutics-modified MSNs) and chemical modifications, such as poly ethyleneglycol (PEG)ylation. In this review, various applications of MSNs (photodynamic and sonodynamic therapies, chemotherapy, radiation therapy, gene therapy, immunotherapy) and, in particular, as the carrier of anthelmintics for cancer therapy have been discussed. Additionally, the issues related to the safety of these nanoparticles have been deeply discussed. According to the findings of this literature review, the applications of MSN nanosystems for cancer therapy are a promising approach to improving the efficacy of the diagnostic and chemotherapeutic agents. Moreover, the MSN systems seem to be an efficient strategy to further help to decrease treatment costs by reducing the drug dose.
Collapse
Affiliation(s)
- Maedeh Koohi Moftakhari Esfahani
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
6
|
Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2020; 29:131-154. [PMID: 32815741 DOI: 10.1080/1061186x.2020.1812614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs) are a particular example of innovative nanomaterials for the development of drug delivery systems. MSNPs have recently received more attention for biological and pharmaceutical applications due to their capability to deliver therapeutic agents. Due to their unique structure, they can function as an effective carrier for the delivery of therapeutic agents to mitigate diseases progress, reduce inflammatory responses and consequently improve cancer treatment. The potency of MSNPs for the diagnosis and management of various diseases has been studied. This literature review will take an in-depth look into the properties of various types of MSNPs (e.g. shape, particle and pore size, surface area, pore volume and surface functionalisation), and discuss their characteristics, in terms of cellular uptake, drug delivery and release. MSNPs will then be discussed in terms of their therapeutic applications (passive and active tumour targeting, theranostics, biosensing and immunostimulative), biocompatibility and safety issues. Also, emerging trends and expected future advancements of this carrier will be provided.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Molecular Design and Synthesis Discipline, Queensland University of Technology, Brisbane, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Sitah Al Harthi
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Dawadmi, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
7
|
Al Harthi S, Alavi SE, Radwan MA, El Khatib MM, AlSarra IA. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer's disease. Sci Rep 2019; 9:9563. [PMID: 31266990 PMCID: PMC6606601 DOI: 10.1038/s41598-019-46032-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/17/2019] [Indexed: 11/29/2022] Open
Abstract
This study aims to prepare, characterize and evaluate the pharmacokinetics of liposomal donepezil HCl (LDH) dispersed into thiolated chitosan hydrogel (TCH) in rabbits. Various hydrogels including TCH were prepared, and after characterization, TCH was selected for subsequent evaluations, due to the promising results. TCH was then incorporated with LDH prepared by reverse phase evaporation method. The hydrogel was characterized using scanning electron microscope, dialysis membrane technique, and ultra-performance liquid chromatography methods. The optimized resultant was then evaluated in terms of pharmacokinetics in an in vivo environment. The mean size of LDH and drug entrapment efficiency were 438.7 ± 28.3 nm and 62.5% ± 0.6, respectively. The controlled drug release pattern results showed that the half-life of the loaded drug was approximately 3.5 h. Liposomal hydrogel and free liposomes were more stable at 4 °C compared to those in 20 °C. The pharmacokinetics study in the rabbit showed that the optimized hydrogel increased the mean peak drug concentration and area under the curve by 46% and 39%, respectively, through nasal route compared to the oral tablets of DH. Moreover, intranasal delivery of DH through liposomal hydrogel increased the mean brain content of the drug by 107% compared to the oral DH tablets. The results suggested that liposomes dispersed into TCH is a promising device for the nasal delivery of DH and can be considered for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sitah Al Harthi
- Department of Pharmaceutical Science, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Riyadh, Saudi Arabia
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Seyed Ebrahim Alavi
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Mahasen Ali Radwan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Egyptian Russian University, Bader City, Egypt
| | - Mona Mohamed El Khatib
- Department of Pharmaceutics, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ibrahim Abdullah AlSarra
- Department of Pharmaceutical Science, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Hatamihanza H, Alavi SE, Ebrahimi Shahmabadi H, Akbarzadeh A. Preparation, Characterization and Immunostimulatory Effects of CRD2 and CRD3 from TNF Receptor-1 Encapsulated into Pegylated Liposomal Nanoparticles. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09882-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|