1
|
Park JS, Goh TS, Lee JS, Lee C. Impact of asymmetric L4-L5 facet joint degeneration on lumbar spine biomechanics using a finite element approach. Sci Rep 2025; 15:12613. [PMID: 40221590 PMCID: PMC11993765 DOI: 10.1038/s41598-025-97021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
This study investigated the effects of asymmetric facet joint degeneration on spinal behavior and adjacent structures using finite element analysis (FEA). Facet joints play a critical role in providing spinal stability and facilitating movement. Degenerative changes in these joints can lead to reduced spinal function and pain. Specifically, asymmetric degeneration occurs when one side deteriorates more rapidly due to alignment issues, subsequently impacting adjacent structures. In this study, facet joint degeneration grades (G00, G40, G42, and G44) were assigned to the L4-L5 segment to simulate spinal behavior during extension, left and right lateral bending, and left and right axial rotations. As degeneration progressed, the range of motion in the affected segment decreased, resulting in altered stress distribution across the intervertebral discs and posterior bone. The analysis showed that the posterior bending angle during extension decreased with increasing degeneration severity. Additionally, during lateral bending, the bending angle in the corresponding direction decreased, while the anterior bending angle increased. Maximum equivalent stress analysis of the intervertebral disc in the affected segment revealed a decreasing trend as degeneration worsened, a pattern also observed during extension, left lateral bending, and right axial rotation. In the G40 model, the maximum equivalent stress in the posterior bone of L4 and L5 exhibited a significant disparity between the left and right sides. These findings provide quantitative insights into the progression of spinal degeneration, enhancing our understanding of how asymmetric facet joint degeneration (FJD) affects spinal motion and adjacent structures.
Collapse
Affiliation(s)
- Jun Sung Park
- Department of Biomedical Engineering, Graduate School, Pusan National University, Busan, 49241, Republic of Korea
| | - Tae Sik Goh
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University Hospital, Busan, 49241, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University Hospital, Busan, 49241, Republic of Korea.
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea.
| | - Chiseung Lee
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan, 49241, Republic of Korea.
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea.
| |
Collapse
|
2
|
Gruber G, Nicolini LF, Ribeiro M, Lerchl T, Wilke HJ, Jaramillo HE, Senner V, Kirschke JS, Nispel K. Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars. Front Bioeng Biotechnol 2024; 12:1391957. [PMID: 38903189 PMCID: PMC11188472 DOI: 10.3389/fbioe.2024.1391957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. Methods: We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and in vitro range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. Results: The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C01 from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R2 = 0.95), followed by the linear (R2 = 0.89) and nonlinear rebar models (R2 = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R2 = 0.85; IDP R2 = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R2 = 0.71 and 0.69; IDP R2 = 0.86 and 0.8, respectively). Discussion: The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.
Collapse
Affiliation(s)
- Gabriel Gruber
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luis Fernando Nicolini
- Department of Mechanical Engineering, Federal University of Santa Maria, Av. Santa Maria, Brazil
| | - Marx Ribeiro
- Department for Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tanja Lerchl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, University of Ulm, Ulm, Germany
| | | | - Veit Senner
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kati Nispel
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Associate Professorship of Sport Equipment and Sport Materials, School of Engineering and Design, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Singh NK, Singh NK, Verma R, Diwan AD. Validation and Estimation of Obesity-Induced Intervertebral Disc Degeneration through Subject-Specific Finite Element Modelling of Functional Spinal Units. Bioengineering (Basel) 2024; 11:344. [PMID: 38671766 PMCID: PMC11048157 DOI: 10.3390/bioengineering11040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Intervertebral disc degeneration has been linked to obesity; its potential mechanical effects on the intervertebral disc remain unknown. This study aimed to develop and validate a patient-specific model of L3-L4 vertebrae and then use the model to estimate the impact of increasing body weight on disc degeneration. (2) Methods: A three-dimensional model of the functional spinal unit of L3-L4 vertebrae and its components were developed and validated. Validation was achieved by comparing the range of motions (RoM) and intradiscal pressures with the previous literature. Subsequently, the validated model was loaded according to the body mass index and estimated stress, deformation, and RoM to assess disc degeneration. (3) Results: During validation, L3-L4 RoM and intradiscal pressures: flexion 5.17° and 1.04 MPa, extension 1.54° and 0.22 MPa, lateral bending 3.36° and 0.54 MPa, axial rotation 1.14° and 0.52 MPa, respectively. When investigating the impact of weight on disc degeneration, escalating from normal weight to obesity reveals an increased RoM, by 3.44% during flexion, 22.7% during extension, 29.71% during lateral bending, and 33.2% during axial rotation, respectively. Also, stress and disc deformation elevated with increasing weight across all RoM. (4) Conclusions: The predicted mechanical responses of the developed model closely matched the validation dataset. The validated model predicts disc degeneration under increased weight and could lay the foundation for future recommendations aimed at identifying predictors of lower back pain due to disc degeneration.
Collapse
Affiliation(s)
- Nitesh Kumar Singh
- Computational Biomechanics Lab, Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| | - Nishant K. Singh
- Computational Biomechanics Lab, Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| | - Rati Verma
- Biomechanics Lab, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India;
| | - Ashish D. Diwan
- Spine Labs & Spine Service, St George & Sutherland Campus, Clinical School of Faculty of Health & Medicine, University of New South Wales, Sydney, NSW 2502, Australia;
| |
Collapse
|
4
|
Park JS, Goh TS, Lee JS, Lee C. Analyzing isolated degeneration of lumbar facet joints: implications for degenerative instability and lumbar biomechanics using finite element analysis. Front Bioeng Biotechnol 2024; 12:1294658. [PMID: 38600941 PMCID: PMC11005061 DOI: 10.3389/fbioe.2024.1294658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
The facet joint contributes to lumbar spine stability as it supports the weight of body along with the intervertebral discs. However, most studies on the causes of degenerative lumbar diseases focus on the intervertebral discs and often overlook the facet joints. This study aimed to investigate the impact of facet joint degeneration on the degenerative changes and diseases of the lumbar spine. A finite element model of the lumbar spine (L1-S1) was fabricated and validated to study the biomechanical characteristics of the facet joints. To simulate degeneration of the facet joint, the model was divided into four grades based on the number of degenerative segments (L4-L5 or L4-S1) and the contact condition between the facet joint surfaces. Finite element analysis was performed on four spine motions: flexion, extension, lateral bending, and axial torsion, by applying a pure moment to the upper surface of L1. Important parameters that could be used to confirm the effect of facet joint degeneration on the lumbar spine were calculated, including the range of motion (ROM) of the lumbar segments, maximum von Mises stress on the intervertebral discs, and reaction force at the facet joint. Facet joint degeneration affected the biomechanical characteristics of the lumbar spine depending on the movements of the spine. When analyzed by dividing it into degenerative onset and onset-adjacent segments, lumbar ROM and the maximum von Mises stress of the intervertebral discs decreased as the degree of degeneration increased in the degenerative onset segments. The reaction force at the facet joint decreased with flexion and increased with lateral bending and axial torsion. In contrast, lumbar ROM of the onset-adjacent segments remained almost unchanged despite severe degeneration of the facet joint, and the maximum von Mises stress of the intervertebral discs increased with flexion and extension but decreased with lateral bending and axial torsion. Additionally, the facet joint reaction force increased with extension, lateral bending, and axial rotation. This analysis, which combined the ROM of the lumbar segment, maximum von Mises stress on the intervertebral disc, and facet joint reaction force, confirmed the biomechanical changes in the lumbar spine due to the degeneration of isolated facet joints under the load of spinal motion. In the degenerative onset segment, spinal instability decreased, whereas in the onset-adjacent segment, a greater load was applied than in the intact state. When conducting biomechanical studies on the lumbar spine, considering facet joint degeneration is important since it can lead to degenerative spinal diseases, including adjacent segment diseases.
Collapse
Affiliation(s)
- Jun Sung Park
- Department of Biomedical Engineering, Graduate School, Pusan National University, Busan, Republic of Korea
| | - Tae Sik Goh
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chiseung Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Li CR, Chen SH, Chen WH, Tsou HK, Tzeng CY, Chen TY, Lin MS. A Retrospective Observational Study to Evaluate Adjacent Segmental Degenerative Change with the Dynesys-Transition-Optima Instrumentation System. J Clin Med 2024; 13:582. [PMID: 38276088 PMCID: PMC10816879 DOI: 10.3390/jcm13020582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND This study evaluates the impact of hybrid dynamic stabilization using the Dynesys-Transition-Optima (DTO) system on adjacent segment disease (ASD) in lumbar spinal stenosis patients with spondylolisthesis. METHODS From 2012 to 2020, 115 patients underwent DTO stabilization at a single center by a single neurosurgeon. After exclusions for lack of specific stabilization and incomplete data, 31 patients were analyzed. Follow-up was conducted at 6, 12, and 24 months postoperatively, assessing disc height, listhesis distance, and angular motion changes at L2-L3, L3-L4, and L5-S1. RESULTS L3-L4 segment (the index level), demonstrated a delayed increase in listhesis distance, contrasting with earlier changes in other segments. At two years, L3-L4 exhibited less increase in listhesis distance and less disc height reduction compared to L2-L3 and L5-S1. Notably, the L3-L4 segment showed a significant reduction in angular motion change over two years. CONCLUSIONS In conclusion, while ASD was not significantly prevented, the study indicates minor and delayed degeneration at the index level. The L3-L4 segment experienced reduced angular change in motion, suggesting a potential benefit of DTO in stabilizing this specific segment.
Collapse
Affiliation(s)
- Chi-Ruei Li
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-R.L.); (M.-S.L.)
| | - Shih-Hao Chen
- Department of Orthopaedics, Tzuchi General Hospital, Taichung 427, Taiwan;
| | - Wen-Hsien Chen
- Department of Radiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Tse-Yu Chen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-R.L.); (M.-S.L.)
| | - Mao-Shih Lin
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-R.L.); (M.-S.L.)
| |
Collapse
|
6
|
Huang S, Ling Q, Lin X, Qin H, Luo X, Huang W. Biomechanical evaluation of a novel anterior transpedicular screw-plate system for anterior cervical corpectomy and fusion (ACCF): a finite element analysis. Front Bioeng Biotechnol 2023; 11:1260204. [PMID: 38026869 PMCID: PMC10665523 DOI: 10.3389/fbioe.2023.1260204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background and objective: Cervical fusion with vertebral body screw (VBS)-plate systems frequently results in limited biomechanical stability. To address this issue, anterior transpedicular screw (ATPS) fixation has been developed and applied preliminarily to multilevel spinal fusion, osteoporosis, and three-column injury of the cervical spine. This study aimed to compare the biomechanical differences between unilateral ATPS (UATPS), bilateral ATPS (BATPS), and VBS fixation using finite element analysis. Materials and methods: A C6 corpectomy model was performed and a titanium mesh cage (TMC) and bone were implanted, followed by implantation of a novel ATPS-plate system into C5 and C7 to simulate internal fixation with UATPS, BATPS, and VBS. Internal fixation with UATPS comprises ipsilateral transpedicular screw-contralateral vertebral body screw (ITPS-CVBS) and cross transpedicular screw-vertebral body screw (CTPS-VBS) fixations. Mobility, the maximal von Mises stress on TMC, the stress distribution and maximal von Mises stress on the screws, and the maximum displacement of the screw were compared between the four groups. Results: Compared with the original model, each group had a reduced range of motion (ROM) under six loads. After ACCF, the stress was predominantly concentrated at two-thirds of the length from the tail of the screw, and it was higher on ATPS than on VBS. The stress of the ATPS from the cranial part was higher than that of the caudal part. The similar effect happened on VBS. The screw stress cloud maps did not show any red areas reflective of a concentration of the stress on VBS. Compared with VBS, ATPS can bear a greater stress from cervical spine movements, thus reducing the stress on TMC. The maximal von Mises stress was the lowest with bilateral transpedicular TMC and increased with cross ATPS and with ipsilateral ATPS. ITPS-CVBS, CTPS-VBS, and BATPS exhibited a reduction of 2.3%-22.1%, 11.9%-2.7%, and 37.9%-64.1% in the maximum displacement of screws, respectively, compared with that of VBS. Conclusion: In FEA, the comprehensive stability ranked highest for BATPS, followed by CTPS-VBS and ITPS-CVBS, with VBS demonstrating the lowest stability. Notably, utilizing ATPS for fixation has the potential to reduce the occurrence of internal fixation device loosening after ACCF when compared to VBS.
Collapse
Affiliation(s)
- Shengbin Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Qinjie Ling
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinxin Lin
- Department of Orthopedics, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Hao Qin
- Department of Orthopedics, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Xiang Luo
- Department of Orthopedics, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Hsiao CK, Hsiao HY, Tsai YJ, Hsu CM, Tu YK. Influence of Simulated State of Disc Degeneration and Axial Stiffness of Coupler in a Hybrid Performance Stabilisation System on the Biomechanics of a Spine Segment Model. Bioengineering (Basel) 2023; 10:1042. [PMID: 37760144 PMCID: PMC10525081 DOI: 10.3390/bioengineering10091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal fusion surgery leads to the restriction of mobility in the vertebral segments postoperatively, thereby causing stress to rise at the adjacent levels, resulting in early degeneration and a high risk of adjacent vertebral fractures. Thus, to address this issue, non-fusion surgery applies some pedicle screw-based dynamic stabilisation systems to provide stability and micromotion, thereby reducing stress in the fusion segments. Among these systems, the hybrid performance stabilisation system (HPSS) combines a rigid rod, transfer screw, and coupler design to offer a semi-rigid fixation method that preserves some mobility near the fusion site and reduces the adjacent segment compensatory effects. However, further research and confirmation are needed regarding the biomechanical effects of the dynamic coupler stiffness of the HPSS on the intrinsic degenerated adjacent segment. Therefore, this study utilised the finite element method to investigate the impact of the coupler stiffness of the HPSS on the mobility of the lumbar vertebral segments and the stress distribution in the intervertebral discs under flexion, extension, and lateral bending, as well as the clinical applicability of the HPSS on the discs with intrinsic moderate and severe degeneration at the adjacent level. The analytical results indicated that, regardless of the degree of disc degeneration, the use of a dynamic coupler stiffness of 57 N/mm in the HPSS may reduce the stress concentrations at the adjacent levels. However, for severely degenerated discs, the postoperative stress on the adjacent segments with the HPSS was still higher compared with that of the discs with moderate degeneration. We conclude that, when the discs had moderate degeneration, increasing the coupler stiffness led to a decrease in disc mobility. In the case of severe disc degeneration, the effect on disc mobility by coupler stiffness was less pronounced. Increasing the coupler stiffness ked to higher stress on intervertebral discs with moderate degeneration, while its effect on stress was less pronounced for discs with severe degeneration. It is recommended that patients with severe degeneration who undergo spinal dynamic stabilisation should remain mindful of the risk of accelerated adjacent segment degeneration.
Collapse
Affiliation(s)
- Chih-Kun Hsiao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; (C.-K.H.); (Y.-J.T.)
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hao-Yuan Hsiao
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Jung Tsai
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; (C.-K.H.); (Y.-J.T.)
| | - Chao-Ming Hsu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| |
Collapse
|
8
|
Hsu FC, Chen CS, Yao YC, Lin HH, Wang ST, Chang MC, Liu CL, Chou PH. Shorter screw lengths in dynamic Dynesys fixation have less screw loosening: From clinical investigation to finite-element analysis. J Chin Med Assoc 2023; 86:330-337. [PMID: 36729417 DOI: 10.1097/jcma.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The dynamic Dynesys Stabilization System preserves lumbar mobility at instrumented levels. This study investigated the effect of screw length on screw loosening (SL) after dynamic Dynesys fixation and screw displacement during lumbar motion, using clinical investigation and finite-element (FE) analysis. METHODS Clinical data of 50 patients with degenerative spondylolisthesis treated with decompression and Dynesys fixation in 2011 were analyzed retrospectively. Horizontal sliding displacement and vertical displacement of screw tips at L4 were analyzed postoperatively using displacement-controlled FE analysis at the L4-L5 level with screw lengths 45 (long screw), 36 (median screw), and 27 (short screw), and 6.4 mm in diameter, under flexion, extension, lateral bending, and rotation. RESULTS In 13 patients (13/50, 26%), 40 screws (40/266, 15%) were loose at mean follow-up of 101.3 ± 4.4 months. Radiographic SL at 35, 40, 45, and 50 mm were 7.7%, 10.7%, 12.1%, and 37.5%, respectively, regardless of the fixation level ( p = 0.009). FE analysis revealed that the long screw model with corresponding longer lever arm had maximal horizontal sliding displacement under all directions and maximal vertical displacement, except for lateral bending. CONCLUSION Shorter screws in Dynesys fixation may help avoid dynamic SL. Clinically, 50 mm screws showed the greatest SL and median screw screws demonstrated the least displacement biomechanically.
Collapse
Affiliation(s)
- Fang-Chi Hsu
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chen-Sheng Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Cheng Yao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsi-Hsien Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Tien Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chau Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Lin Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Po-Hsin Chou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Knapik GG, Mendel E, Bourekas E, Marras WS. Computational lumbar spine models: A literature review. Clin Biomech (Bristol, Avon) 2022; 100:105816. [PMID: 36435080 DOI: 10.1016/j.clinbiomech.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Computational spine models of various types have been employed to understand spine function, assess the risk that different activities pose to the spine, and evaluate techniques to prevent injury. The areas in which these models are applied has expanded greatly, potentially beyond the appropriate scope of each, given their capabilities. A comprehensive understanding of the components of these models provides insight into their current capabilities and limitations. METHODS The objective of this review was to provide a critical assessment of the different characteristics of model elements employed across the spectrum of lumbar spine modeling and in newer combined methodologies to help better evaluate existing studies and delineate areas for future research and refinement. FINDINGS A total of 155 studies met selection criteria and were included in this review. Most current studies use either highly detailed Finite Element models or simpler Musculoskeletal models driven with in vivo data. Many models feature significant geometric or loading simplifications that limit their realism and validity. Frequently, studies only create a single model and thus can't account for the impact of subject variability. The lack of model representation for certain subject cohorts leaves significant gaps in spine knowledge. Combining features from both types of modeling could result in more accurate and predictive models. INTERPRETATION Development of integrated models combining elements from different model types in a framework that enables the evaluation of larger populations of subjects could address existing voids and enable more realistic representation of the biomechanics of the lumbar spine.
Collapse
Affiliation(s)
- Gregory G Knapik
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA.
| | - Ehud Mendel
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Eric Bourekas
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | - William S Marras
- Spine Research Institute, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Liu W, Zang L, Kang N, Yang L, An L, Zhu W, Hai Y. Influence of configuration and anchor in ligamentous augmentation to prevent proximal junctional kyphosis: A finite element study. Front Bioeng Biotechnol 2022; 10:1014487. [DOI: 10.3389/fbioe.2022.1014487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Ligament augmentation has been applied during spinal surgery to prevent proximal junctional kyphosis (PJK), but the configuration and distal anchor strategies are diverse and inconsistent. The biomechanics of different ligament augmentation strategies are, therefore, unclear. We aimed to create a finite element model of the spine for segments T6–S1. Model Intact was the native form, and Model IF was instrumented with a pedicle screw from segments T10 to S1. The remaining models were based on Model IF, with ligament augmentation configurations as common (CM), chained (CH), common and chained (CHM); and distal anchors to the spinous process (SP), crosslink (CL), and pedicle screw (PS), creating SP-CH, PS-CHM, PS-CH, PS-CM, CL-CHM, CL-CH, and CL-CM models. The range of motion (ROM) and maximum stress on the intervertebral disc (IVD), PS, and interspinous and supraspinous ligaments (ISL/SSL) was measured. In the PS-CH model, the ROM for segments T9–T10 was 73% (of Model Intact). In the CL-CHM, CL-CH, CL-CM, PS-CM, and PS-CHM models, the ROM was 8%, 17%, 7%, 13%, and 30%, respectively. The PS-CH method had the highest maximum stress on IVD and ISL/SSL, at 80% and 72%, respectively. The crosslink was more preferable as the distal anchor. In the uppermost instrumented vertebrae (UIV) + 1/UIV segment, the CM was the most effective configuration. The PS-CH model had the highest flexion load on the UIV + 1/UIV segment and the CL-CM model provided the greatest reduction. The CL-CM model should be verified in a clinical trial. The influence of configuration and anchor in ligament augmentation is important for the choice of surgical strategy and improvement of technique.
Collapse
|
11
|
Nicolini LF, Beckmann A, Laubach M, Hildebrand F, Kobbe P, Mello Roesler CRD, Fancello EA, Markert B, Stoffel M. An experimental-numerical method for the calibration of finite element models of the lumbar spine. Med Eng Phys 2022; 107:103854. [DOI: 10.1016/j.medengphy.2022.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
|
12
|
Hsieh JY, Chen CS, Chuang SM, Wang JH, Chen PQ, Huang YY. Finite element analysis after rod fracture of the spinal hybrid elastic rod system. BMC Musculoskelet Disord 2022; 23:816. [PMID: 36008782 PMCID: PMC9413940 DOI: 10.1186/s12891-022-05768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background The spinal hybrid elastic (SHE) rod dynamic stabilization system can provide sufficient spine support and less adjacent segment stress. This study aimed to investigate the biomechanical effects after the internal fracture of SHE rods using finite element analysis. Methods A three-dimensional nonlinear finite element model was developed. The SHE rod comprises an inner nitinol stick (NS) and an outer polycarbonate urethane (PCU) shell (PS). The fracture was set at the caudal third portion of the NS, where the maximum stress occurred. The resultant intervertebral range of motion (ROM), intervertebral disc stress, facet joint contact force, screw stress, NS stress, and PCU stress were analyzed. Results When compared with the intact spine model, the overall trend was that the ROM, intervertebral disc stress, and facet joint force decreased in the implanted level and increased in the adjacent level. When compared with the Ns-I, the trend in the Ns-F decreased and remained nearly half effect. Except for torsion, the PS stress of the Ns-F increased because of the sharing of NS stress after the NS fracture. Conclusions The study concluded the biomechanical effects still afford nearly sufficient spine support and gentle adjacent segment stress after rod fracture in a worst-case scenario of the thinnest PS of the SHE rod system. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05768-x.
Collapse
Affiliation(s)
- Jui-Yang Hsieh
- Department of Biomedical Engineering, National Taiwan University, No. 7, Yulu Rd., Wuhu Village, Jinshan Dist., New Taipei City, 20844, Taiwan (R.O.C.).,Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.).,Department of Orthopedic Surgery, National Taiwan University Hospital, Jinshan Branch, Taipei, Taiwan (R.O.C.)
| | - Chen-Sheng Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan (R.O.C.)
| | - Shao-Ming Chuang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan (R.O.C.)
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| | - Po-Quang Chen
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| | - Yi-You Huang
- Department of Biomedical Engineering, National Taiwan University, No. 7, Yulu Rd., Wuhu Village, Jinshan Dist., New Taipei City, 20844, Taiwan (R.O.C.).
| |
Collapse
|
13
|
Biomechanical Comparison between Isobar and Dynamic-Transitional Optima (DTO) Hybrid Lumbar Fixators: A Lumbosacral Finite Element and Intersegmental Motion Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8273853. [PMID: 35845942 PMCID: PMC9286886 DOI: 10.1155/2022/8273853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
Biomechanical performance of longitudinal component in dynamic hybrid devices was evaluated to display the load-transfer effects of Dynesys cord spacer or Isobar damper-joint dynamic stabilizer on junctional problem based on various disc degenerations. The dynamic component was adapted at the mildly degenerative L3–L4 segment, and the static component was fixed at the moderately degenerative L4–L5 segment under a displacement-controlled mode for the finite element study. Furthermore, an intersegmental motion behavior was analyzed experimentally on the synthetic model under a load-controlled mode. Isobar or DTO hybrid fixator could reduce stress/motion at transition segment, but compensation was affected at the cephalic adjacent segment more than the caudal one. Within the trade-off region (as a motion-preserving balance between the transition and adjacent segments), the stiffness-related problem was reduced mostly in flexion by a flexible Dynesys cord. In contrast, Isobar damper afforded the effect of maximal allowable displacement (more than peak axial stiffness) to reduce stress within the pedicle and at facet joint. Pedicle-screw travel at transition level was related to the extent of disc degeneration in Isobar damper-joint (more than Dynesys cord spacer) attributing to the design effect of axial displacement and angular rotation under motion. In biomechanical characteristics relevant to clinical use, longitudinal cord/damper of dynamic hybrid lumbar fixators should be designed with less interface stress occurring at the screw-vertebral junction and facet joint to decrease pedicle screw loosening/breakage under various disc degenerations.
Collapse
|
14
|
Balasubramanian S, D'Andrea C, Viraraghavan G, Cahill PJ. Development of a Finite Element Model of the Pediatric Thoracic and Lumbar Spine, Ribcage, and Pelvis with Orthotropic Region-Specific Vertebral Growth. J Biomech Eng 2022; 144:1140398. [PMID: 35466381 DOI: 10.1115/1.4054410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/08/2022]
Abstract
Finite element (FE) modeling of the spine has increasingly been applied in orthopedic precision-medicine approaches. Previously published FE models of the pediatric spine growth have made simplifications in geometry of anatomical structures, material properties, and representation of vertebral growth. To address those limitations, a comprehensive FE model of a pediatric (10-year-old) osteo-ligamentous thoracic and lumbar spine (T1-L5 with intervertebral discs (IVDs) and ligaments), ribcage, and pelvis with age- and level-specific ligament properties and orthotropic region-specific vertebral growth was developed and validated. Range of motion (ROM) measures, namely lateral bending, flexion-extension, and axial rotation, of the current 10 YO FE model were generally within reported ranges of scaled in vitro adult ROM data. Changes in T1-L5 spine height, as well as kyphosis (T2-T12) and lordosis (L1-L5) angles in the current FE model for two years of growth (from ages 10 to 12 years) were within ranges reported from corresponding pediatric clinical data. The use of such comprehensive pediatric FE models can provide clinically relevant insights into normative and pathological biomechanical responses of the spine, and also contribute to the development and optimization of clinical interventions for spine deformities.
Collapse
Affiliation(s)
- Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Christian D'Andrea
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Girish Viraraghavan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Patrick J Cahill
- Division of Orthopaedics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Heo M, Yun J, Kim H, Lee SS, Park S. Optimization of a lumbar interspinous fixation device for the lumbar spine with degenerative disc disease. PLoS One 2022; 17:e0265926. [PMID: 35390024 PMCID: PMC8989208 DOI: 10.1371/journal.pone.0265926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
Interspinous spacer devices used in interspinous fixation surgery remove soft tissues in the lumbar spine, such as ligaments and muscles and may cause degenerative diseases in adjacent segments its stiffness is higher than that of the lumbar spine. Therefore, this study aimed to structurally and kinematically optimize a lumbar interspinous fixation device (LIFD) using a full lumbar finite element model that allows for minimally invasive surgery, after which the normal behavior of the lumbar spine is not affected. The proposed healthy and degenerative lumbar spine models reflect the physiological characteristics of the lumbar spine in the human body. The optimum number of spring turns and spring wire diameter in the LIFD were selected as 3 mm and 2 turns, respectively—from a dynamic range of motion (ROM) perspective rather than a structural maximum stress perspective—by applying a 7.5 N∙m extension moment and 500 N follower load to the LIFD-inserted lumbar spine model. As the spring wire diameter in the LIFD increased, the maximum stress generated in the LIFD increased, and the ROM decreased. Further, as the number of spring turns decreased, both the maximum stress and ROM of the LIFD increased. When the optimized LIFD was inserted into a degenerative lumbar spine model with a degenerative disc, the facet joint force of the L3-L4 lumbar segment was reduced by 56%–98% in extension, lateral bending, and axial rotation. These results suggest that the optimized device can strengthen the stability of the lumbar spine that has undergone interspinous fixation surgery and reduce the risk of degenerative diseases at the adjacent lumbar segments.
Collapse
Affiliation(s)
- Minhyeok Heo
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
| | - Jihwan Yun
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
| | - Hanjong Kim
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea (South Korea)
| | - Seonghun Park
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea (South Korea)
- * E-mail:
| |
Collapse
|
16
|
Sengul E, Ozmen R, Yaman ME, Demir T. Influence of posterior pedicle screw fixation at L4-L5 level on biomechanics of the lumbar spine with and without fusion: a finite element method. Biomed Eng Online 2021; 20:98. [PMID: 34620170 PMCID: PMC8499536 DOI: 10.1186/s12938-021-00940-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background Posterior pedicle screw (PS) fixation, a common treatment method for widespread low-back pain problems, has many uncertain aspects including stress concentration levels, effects on adjacent segments, and relationships with physiological motions. A better understanding of how posterior PS fixation affects the biomechanics of the lumbar spine is needed. For this purpose, a finite element (FE) model of a lumbar spine with posterior PS fixation at the L4–L5 segment level was developed by partially removing facet joints (FJs) to imitate an actual surgical procedure. This FE study aimed to investigate the influence of the posterior PS fixation system on the biomechanics of the lumbar spine before and after fusion by determining which physiological motions have the most increase in posterior instrumentation (PI) stresses and FJ loading. Results It was determined that posterior PS fixation increased FJ loading by approximately 35% and 23% at the L3–L4 adjacent level with extension and lateral bending motion, respectively. This increase in FJ loading at the adjacent level could point to the possibility that adjacent segment disease has developed or progressed after posterior lumbar interbody fusion. Furthermore, analyses of peak von Mises stresses on PI showed that the maximum PI stresses of 272.1 MPa and 263.7 MPa occurred in lateral bending and flexion motion before fusion, respectively. Conclusions The effects of a posterior PS fixation system on the biomechanics of the lumbar spine before and after fusion were investigated for all physiological motions. This model could be used as a fundamental tool for further studies, providing a better understanding of the effects of posterior PS fixation by clearing up uncertain aspects.
Collapse
Affiliation(s)
- Emre Sengul
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Çankaya, Ankara, Turkey. .,Mechanical Engineer, Roketsan Inc., Lalahan, 06852, Ankara, Turkey.
| | - Ramazan Ozmen
- Department of Mechanical Engineering, Karabük University, Merkez, Karabük, Turkey
| | - Mesut Emre Yaman
- Department of Neurosurgery, Gazi University School of Medicine, Ankara, Turkey
| | - Teyfik Demir
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Çankaya, Ankara, Turkey
| |
Collapse
|
17
|
Jung JM, Hyun SJ, Kim KJ, Jahng TA. Dynamic Stabilization Surgery in Patients with Spinal Stenosis: Long-term Outcomes and the Future. Spine (Phila Pa 1976) 2021; 46:E893-E900. [PMID: 33826593 DOI: 10.1097/brs.0000000000004049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES The purpose of this study was to analyze the long-term results for patients with lumbar spinal stenosis (LSS) treated with dynamic stabilization (DS) and to consider how we can improve the results. SUMMARY OF BACKGROUND DATA Few studies have reported long-term outcomes of DS surgery for LSS with or without spondylolisthesis. METHODS A single-center, single-surgeon consecutive series of LSS patients who underwent DS surgery with at least 5 years of follow-up were retrospectively reviewed. Twenty-seven patients were included in the LSS group and 38 patients in the spondylolisthesis group. Patient characteristics, operative data, radiographic parameters, clinical outcomes, and complications were analyzed at baseline and follow-up. RESULTS In the LSS group, all radiographic parameters (e.g., disc height, segmental lordosis, segmental range of motion [ROM] at the index level and proximal adjacent level, global lordosis, and global ROM) were maintained well until the last follow-up. In the spondylolisthesis group, global lordosis decreased from 36.5° ± 8.2° to 32.6° ± 6.0° at the last follow-up (P = 0.039), and global ROM decreased from 22.1° ± 6.9° to 18.8° ± 7.1° at the last follow-up (P = 0.012). In both groups, back pain, leg pain, and Oswestry Disability Index scores showed significant and sustained improvements. Screw loosening occurred in three patients (11.1%) in the LSS group and five patients (13.2%) in the spondylolisthesis group. Symptomatic adjacent segment degeneration (ASD) occurred in two patients (7.4%) in the LSS group and three patients (7.9%) in the spondylolisthesis group. CONCLUSION Decompression and DS surgery for LSS with or without spondylolisthesis showed favorable long-term surgical outcomes with an acceptable rate of complications and ASD. However, an improved physiological DS system should be developed.Level of Evidence: 4.
Collapse
Affiliation(s)
- Jong-Myung Jung
- Department of Neurosurgery, Spine Center, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Seung-Jae Hyun
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Ki-Jeong Kim
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Tae-Ahn Jahng
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Wang W, Zhou C, Guo R, Cha T, Li G. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering. J Mech Behav Biomed Mater 2021; 122:104661. [PMID: 34252706 DOI: 10.1016/j.jmbbm.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
This study investigated how variations of structural and material properties of human intervertebral discs (IVDs) affect the biomechanical responses of the IVDs under simulated physiological loading conditions using a stochastic finite element (SFE) model. An SFE method, which combined an anatomic FE model of human lumbar L3-4 segment and probabilistic analysis of its structural and material properties, was used to generate a dataset of 500 random disc samples with varying structural and material properties. The sensitivity of the biomechanical responses, including intervertebral displacements/rotations, intradiscal pressures (IDP), fiber stresses and matrix strains of annulus fibrosus (AF), were systematically quantified under various physiological loading conditions, including a 500N compression and 7.5Nm moments in the 3 primary rotations. Significant variations of the IDPs, IVD displacements/rotations, and stress/strain distributions were found using the dataset of 500 ramdom disc samples. Under all the loading conditions, the IDPs were positively correlated with the Poisson's ratio of the NP (r = 0.46 to 0.75, p = 0.004-0.001) and negatively with the Young's modulus of the annulus matrix (r = -0.48 to -0.65, p = 0.003-0.001). The primary intervertebral rotations were significantly affected by the Young's modulus of the annulus matrix (r = -0.44 to -0.71, p = 0.001-0.032) and the orientations of the annular fibers (r = -0.45 to -0.69, p = 0.001-0.029). The heterogeneity of structures and material properties of the IVD had distinct effects on the biomechanical performances of the IVD. These data could help improve our understanding of the intrinsic biomechanics of the IVD and provide references for optimal design of tissue engineered discs by controlling structural and material properties of the disc components.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
19
|
Wang W, Zhou C, Guo R, Cha T, Li G. Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis. Comput Methods Biomech Biomed Engin 2021; 24:1730-1741. [PMID: 34121532 DOI: 10.1080/10255842.2021.1914023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accurate biomechanical investigation of human intervertebral discs (IVDs) is difficult because of their complicated structural and material features. AIM To investigate probabilistic distributions of the biomechanical responses of the IVD by considering varying nonlinear structural and material properties using a stochastic finite element (FE) model. METHODS A FE model of a L3-4 disc was reconstructed, including the nucleus pulposus (NP), annular matrix and fibers. A Monte Carlo method was used to randomly generate 500 sets of the nonlinear material properties and fiber orientations of the disc that were implemented into the FE model. The FE model was analyzed under seven loading conditions: a 500 N compressive force, a 7.5Nm moment simulating flexion, extension, left-right lateral bending, and left-right axial rotation, respectively. The distributions of the ranges of motion (ROMs), intradiscal pressures (IDP), fiber stresses and matrix strains of the disc were analyzed. RESULTS Under the compressive load, the displacement varied between 0.29 mm and 0.76 mm. Under the 7.5Nm moment, the ROMs varied between 3.0° and 6.0° in primary rotations. The IDPs varied within 0.3 MPa under all the loading conditions. The maximal fiber stress (3.22 ± 0.64 MPa) and matrix strain (0.27 ± 0.12%) were observed under the flexion and extension moments, respectively. CONCLUSION The IVD biomechanics could be dramatically affected by the structural and material parameters used to construct the FE model. The stochastic FE model that includes the probabilistic distributions of the structural and material parameters provides a useful approach to analyze the statistical ranges of the biomechanical responses of the IVDs.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA
| |
Collapse
|
20
|
Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol 2020; 20:389-401. [PMID: 33221991 PMCID: PMC7979651 DOI: 10.1007/s10237-020-01403-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
There is an increased interest in studying the biomechanics of the facet joints. For in silico studies, it is therefore important to understand the level of reliability of models for outputs of interest related to the facet joints. In this work, a systematic review of finite element models of multi-level spinal section with facet joints output of interest was performed. The review focused on the methodology used to model the facet joints and its associated validation. From the 110 papers analysed, 18 presented some validation of the facet joints outputs. Validation was done by comparing outputs to literature data, either computational or experimental values; with the major drawback that, when comparing to computational values, the baseline data was rarely validated. Analysis of the modelling methodology showed that there seems to be a compromise made between accuracy of the geometry and nonlinearity of the cartilage behaviour in compression. Most models either used a soft contact representation of the cartilage layer at the joint or included a cartilage layer which was linear elastic. Most concerning, soft contact models usually did not contain much information on the pressure-overclosure law. This review shows that to increase the reliability of in silico model of the spine for facet joints outputs, more needs to be done regarding the description of the methods used to model the facet joints, and the validation for specific outputs of interest needs to be more thorough, with recommendation to systematically share input and output data of validation studies.
Collapse
|
21
|
Development of a multiscale model of the human lumbar spine for investigation of tissue loads in people with and without a transtibial amputation during sit-to-stand. Biomech Model Mechanobiol 2020; 20:339-358. [PMID: 33026565 DOI: 10.1007/s10237-020-01389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/19/2020] [Indexed: 01/14/2023]
Abstract
Quantification of lumbar spine load transfer is important for understanding low back pain, especially among persons with a lower limb amputation. Computational modeling provides a helpful solution for obtaining estimates of in vivo loads. A multiscale model was constructed by combining musculoskeletal and finite element (FE) models of the lumbar spine to determine tissue loading during daily activities. Three-dimensional kinematic and ground reaction force data were collected from participants with ([Formula: see text]) and without ([Formula: see text]) a unilateral transtibial amputation (TTA) during 5 sit-to-stand trials. We estimated tissue-level load transfer from the multiscale model by controlling the FE model with intervertebral kinematics and muscle forces predicted by the musculoskeletal model. Annulus fibrosis stress, intradiscal pressure (IDP), and facet contact forces were calculated using the FE model. Differences in whole-body kinematics, muscle forces, and tissue-level loads were found between participant groups. Notably, participants with TTA had greater axial rotation toward their intact limb ([Formula: see text]), greater abdominal muscle activity ([Formula: see text]), and greater overall tissue loading throughout sit-to-stand ([Formula: see text]) compared to able-bodied participants. Both normalized (to upright standing) and absolute estimates of L4-L5 IDP were close to in vivo values reported in the literature. The multiscale model can be used to estimate the distribution of loads within different lumbar spine tissue structures and can be adapted for use with different activities, populations, and spinal geometries.
Collapse
|
22
|
Yahyaiee Bavil A, Rouhi G. The biomechanical performance of the night-time Providence brace: experimental and finite element investigations. Heliyon 2020; 6:e05210. [PMID: 33102843 PMCID: PMC7575799 DOI: 10.1016/j.heliyon.2020.e05210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
The main goal of this study was to investigate the performance of a night-time Providence brace, which alters stress distribution in the growth plates and ultimately result in a reduced Cobb angle, from a biomechanical standpoint, using experimental and in-silico tools. A patient with a mild scoliosis (Cobb angle = 17) was chosen for this study. Applied forces from the Providence brace on the patient's rib cage and pelvis were measured using flexible force pads, and the measured forces were then imported to the generated FE model, and their effects on both curvature and stress distribution were observed. The measured mean forces applied by the brace were 29.4 N, 24.7 N, 22.4 N, and 37.6 N in the posterior pelvis, anterior pelvis, superior thorax, and inferior thorax, respectively, in the supine position. Results of the FE model showed that there is curvature overcorrection, and also Cobb angle was reduced from 17°, in the initial configuration, to 3.4° right after using the brace. The stress distribution, resulted from the FE model, in the patient's growth plate with the brace in the supine position, deviates from that of a scoliotic individual without the brace, and was in favor of reducing the Cobb angle. It was observed that by wearing the night time brace, unbalanced stress distribution on the lumbar vertebrae caused by the scoliotic spine's curvatures, can be somehow compensated. The method developed in this study can be employed to optimize existing scoliosis braces from the biomechanical standpoint.
Collapse
|
23
|
Combined Effects of Graded Foraminotomy and Annular Defect on Biomechanics after Percutaneous Endoscopic Lumbar Decompression: A Finite Element Study. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:8820228. [PMID: 32908657 PMCID: PMC7474753 DOI: 10.1155/2020/8820228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022]
Abstract
Percutaneous endoscopic technology has been widely used in the treatment of lumbar disc stenosis and herniation. However, the quantitative influence of percutaneous endoscopic lumbar decompression on spinal biomechanics of the L5–S1 lumbosacral segment remains poorly understood. Hence, the objective of this study is to investigate the combined effects on the biomechanics of different grades of foraminotomy and annular defect for the L5–S1 segment. A 3D, nonlinear, detailed finite element model of L4–S1 was established and validated. Changes in biomechanical responses upon stimulation to the intact spine during different degrees of resection were analyzed. Measurements included intervertebral rotation, intradiscal pressure, and the strain of disc structure under flexion, extension, left/right lateral bending, and left/right axial rotation under pure bending moments and physiological loads. Compared with the intact model, under prefollower load, annular defect slightly decreased intervertebral rotation by −5.0% in extension and 2.2% in right axial rotation and significantly increased the mean strain of the exposed disc by 237.7% in all loading cases. For right axial rotation, unilateral total foraminotomy with an annular detect increased intervertebral rotation by 29.5% and intradiscal pressure by 57.6% under pure bending moment while the maximum corresponding values were 9.8% and 6.6% when the degree of foraminotomy was below 75%, respectively. These results indicate that percutaneous endoscopic lumbar foraminotomy highly maintains spinal stability, even if the effect of annular detect is taken into account, when the unilateral facet is not totally removed. Patients should avoid excessive extension and axial rotation after surgery on L5–S1. The postoperative open annular defect may substantially increase the risk of recurrent disc herniation.
Collapse
|
24
|
Demir E, Eltes P, Castro AP, Lacroix D, Toktaş İ. Finite element modelling of hybrid stabilization systems for the human lumbar spine. Proc Inst Mech Eng H 2020; 234:1409-1420. [PMID: 32811288 DOI: 10.1177/0954411920946636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intersomatic fusion is a very popular treatment for spinal diseases associated with intervertebral disc degeneration. The effects of three different hybrid stabilization systems on both range of motion and intradiscal pressure were investigated, as there is no consensus in the literature about the efficiency of these systems. Finite element simulations were designed to predict the variations of range of motion and intradiscal pressure from intact to implanted situations. After hybrid stabilization system implantation, L4-L5 level did not lose its motion completely, while L5-S1 had no mobility as a consequence of disc removal and fusion process. BalanC hybrid stabilization system represented higher mobility at the index level, reduced intradiscal pressure of adjacent level, but caused to increment in range of motion by 20% under axial rotation. Higher tendency by 93% to the failure was also detected under axial rotation. Dynesys hybrid stabilization system represented more restricted motion than BalanC, and negligible effects to the adjacent level. B-DYN hybrid stabilization system was the most rigid one among all three systems. It reduced intradiscal pressure and range of motion at the adjacent level except from motion under axial rotation being increased by 13%. Fracture risk of B-DYN and Dynesys Transition Optima components was low when compared with BalanC. Mobility of the adjacent level around axial direction should be taken into account in case of implantation with BalanC and B-DYN systems, as well as on the development of new designs. Having these findings in mind, it is clear that hybrid systems need to be further tested, both clinically and numerically, before being considered for common use.
Collapse
Affiliation(s)
- Eylül Demir
- Mechanical Engineering Department, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Peter Eltes
- National Center for Spinal Disorders, Budapest, Hungary
| | - Andre Pg Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Damien Lacroix
- INSIGNEO Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - İhsan Toktaş
- Mechanical Engineering Department, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
25
|
Design and development of a novel expanding flexible rod device (FRD) for stability in the lumbar spine: A finite-element study. Int J Artif Organs 2020; 43:803-810. [DOI: 10.1177/0391398820917390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.
Collapse
|
26
|
Guo LX, Li WJ. Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment. Comput Methods Biomech Biomed Engin 2019; 23:69-80. [DOI: 10.1080/10255842.2019.1699543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Wu-Jie Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
27
|
Simplifying the human lumbar spine (L3/L4) material in order to create an elemental structure for the future modeling. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:689-700. [PMID: 31183739 DOI: 10.1007/s13246-019-00768-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
The human lumbar spine incorporates the best joints in nature due to its optimal static and dynamic behavior against the internal and external loads. Developing an elemental structure based on this joint requires simplification in terms of the materials employed by keeping the mechanical and anatomical behaviors of the human lumbar spine. In the present study, the finite element (FE) of two motion segments of the human lumbar spine (L3/L4) was developed based on the CT scan data as the base for vertebrae geometry, verified geometry properties for another part of two motion segments, and combination of materials and loads obtained from the validated resources. Then, simplification occurred in four continuous steps such as omitting the annual fibers of annual matrix, representing the material of the annual matrix to the nucleus, demonstrating the material of annual matrix to the endplates too, and omitting the trabecular part of vertebrae. The present study aimed to propose the method for developing the basic structure of the human lumbar spine by simplifying its materials in the above-mentioned steps, analyzing the biomechanical effects of these four steps in terms of their internal and external responses, and validating the data obtained from the FE method. The validated simplified way introduced in this study can be used for future research by making implants, prosthesis, and modeling based on the human lumbar spine in other fields such as industrial design, building structures, or joints, which results in making the model easier, cheaper, and more effective.
Collapse
|
28
|
Zhang H, Zhu W. The Path to Deliver the Most Realistic Follower Load for a Lumbar Spine in Standing Posture: A Finite Element Study. J Biomech Eng 2019; 141:2720655. [DOI: 10.1115/1.4042438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 11/08/2022]
Abstract
A spine is proven to be subjected to a follower load which is a compressive load of physiologic magnitude acting on the whole spine. The path of the follower load approximates the tangent to the curve of the spine in in vivo neutral standing posture. However, the specific path location of the follower load is still unclear. The aim of this study is to find out the most realistic location of the follower load path (FLP) for a lumbar spine in standing. A three-dimensional (3D) nonlinear finite element model (FEM) of lumbosacral vertebrae (L1-S1) with consideration of the calibrated material properties was established and validated by comparing with the experimental data. We show that the shape of the lumbosacral spine is strongly affected by the location of FLP. An evident nonlinear relationship between the FLP location and the kinematic response of the L1-S1 lumbosacral spine exists. The FLP at about 4 and 3 mm posterior to the curve connecting the center of the vertebral bodies delivers the most realistic location in standing for healthy people and patients having low back pains (LPBs), respectively. Moreover, the “sweeping” method introduced in this study can be applicable to all individualized FEM to determine the location of FLP.
Collapse
Affiliation(s)
- Han Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China
| | - Weiping Zhu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China e-mail:
| |
Collapse
|
29
|
Mills MJ, Sarigul-Klijn N. Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model. J Biomech Eng 2019; 141:2718208. [DOI: 10.1115/1.4042183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 11/08/2022]
Abstract
Mathematical models of the human spine can be used to investigate spinal biomechanics without the difficulties, limitations, and ethical concerns associated with physical experimentation. Validation of such models is necessary to ensure that the modeled system behavior accurately represents the physics of the actual system. The goal of this work was to validate a medical image-based nonlinear lumbosacral spine finite element model of a healthy 20-yr-old female subject under physiological moments. Range of motion (ROM), facet joint forces (FJF), and intradiscal pressure (IDP) were compared with experimental values and validated finite element models from the literature. The finite element model presented in this work was in good agreement with published experimental studies and finite element models under pure moments. For applied moments of 7.5 N·m, the ROM in flexion–extension, axial rotation, and lateral bending were 39 deg, 16 deg, and 28 deg, respectively. Excellent agreement was observed between the finite element model and experimental data for IDP under pure compressive loading. The predicted FJFs were lower than those of the experimental results and validated finite element models for extension and torsion, likely due to the nondegenerate properties chosen for the intervertebral disks and morphology of the young female spine. This work is the first to validate a computational lumbar spine model of a young female subject. This model will serve as a valuable tool for predicting orthopedic spinal injuries, studying the effect of intervertebral disk replacements using advanced biomaterials, and investigating soft tissue degeneration.
Collapse
Affiliation(s)
- Matthew J. Mills
- Mechanical and Aerospace Engineering Department, University of California, Davis, 2132 Bainer Drive, Davis, CA 95616 e-mail:
| | - Nesrin Sarigul-Klijn
- Professor Fellow ASME Mechanical and Aerospace Engineering Department, University of California, Davis, 2132 Bainer Drive, Davis, CA 95616
- Biomedical Engineering Department, University of California, Davis, 451 E. Health Sciences Drive, Davis, CA 95616 e-mail:
| |
Collapse
|
30
|
Más Y, Gracia L, Ibarz E, Gabarre S, Peña D, Herrera A. Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations. PLoS One 2017; 12:e0188328. [PMID: 29186157 PMCID: PMC5706716 DOI: 10.1371/journal.pone.0188328] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Arthrodesis is a recommended treatment in advanced stages of degenerative disc disease. Despite dynamic fixations were designed to prevent abnormal motions with better physiological load transmission, improving lumbar pain and reducing stress on adjacent segments, contradictory results have been obtained. This study was designed to compare differences in the biomechanical behaviour between the healthy lumbar spine and the spine with DYNESYS and DIAM fixation, respectively, at L4-L5 level. Behaviour under flexion, extension, lateral bending and axial rotation are compared using healthy lumbar spine as reference. Three 3D finite element models of lumbar spine (healthy, DYNESYS and DIAM implemented, respectively) were developed, together a clinical follow-up of 58 patients operated on for degenerative disc disease. DYNESYS produced higher variations of motion with a maximum value for lateral bending, decreasing intradiscal pressure and facet joint forces at instrumented level, whereas screw insertion zones concentrated stress. DIAM increased movement during flexion, decreased it in another three movements, and produced stress concentration at the apophyses at instrumented level. Dynamic systems, used as single systems without vertebral fusion, could be a good alternative to degenerative disc disease for grade II and grade III of Pfirrmann.
Collapse
Affiliation(s)
- Yolanda Más
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Luis Gracia
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research, Zaragoza, Spain
| | - Elena Ibarz
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
- Aragón Institute of Engineering Research, Zaragoza, Spain
| | - Sergio Gabarre
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Diego Peña
- Spine Unit, Department of Orthopaedic Surgery and Traumatology, Miguel Servet University Hospital, Zaragoza, Spain
- Aragón Health Research Institute, Zaragoza, Spain
| | - Antonio Herrera
- Aragón Institute of Engineering Research, Zaragoza, Spain
- Aragón Health Research Institute, Zaragoza, Spain
- Department of Surgery, School of Medicine, University of Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
31
|
Chang CM, Lai YS, Cheng CK. Effect of different inner core diameters on structural strength of cannulated pedicle screws under various lumbar spine movements. Biomed Eng Online 2017; 16:105. [PMID: 28810871 PMCID: PMC5556981 DOI: 10.1186/s12938-017-0392-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, cannulated pedicle screws have been widely used in minimal invasive or navigation techniques. However, the stress distribution and the strength of different core diameters of cannulated screw are not clear. This study aimed to investigate the mechanical strength of cannulated screws with different inner core diameter under various lumbar spine movements using finite element analysis. RESULTS The results showed that the von-Mises stress of a cannulated screw was larger than that of a solid screw in all loading conditions, especially above 2 mm in cannulated core diameter. In lateral bending, extension, and flexion, the maximum von-Mises stress was found approximate to the proximal thread for all types of screws. In rotation condition, the maximum von-Mises stress was located at the middle of the screw. Additionally, the difference in stiffness of instrumented levels was not significant among four screws under the same loading condition. CONCLUSION Cannulated screws could provide enough stability for the vertebral body fusion comparing to solid screws. The diameter of cannulated core is suggested not to exceed 2.0 mm.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Department of Biomedical Engineering, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Yu-Shu Lai
- Orthopaedic Device Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Cheng-Kung Cheng
- Department of Biomedical Engineering, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan. .,Orthopaedic Device Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
32
|
Lee CH, Jahng TA, Hyun SJ, Kim CH, Park SB, Kim KJ, Chung CK, Kim HJ, Lee SE. Dynamic stabilization using the Dynesys system versus posterior lumbar interbody fusion for the treatment of degenerative lumbar spinal disease: a clinical and radiological outcomes-based meta-analysis. Neurosurg Focus 2016; 40:E7. [PMID: 26721581 DOI: 10.3171/2015.10.focus15426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The Dynesys, a pedicle-based dynamic stabilization (PDS) system, was introduced to overcome the drawbacks of fusion procedures. Nevertheless, the theoretical advantages of PDS over fusion have not been clearly confirmed. The aim of this study was to compare clinical and radiological outcomes of patients who underwent PDS using the Dynesys system with those who underwent posterior lumbar interbody fusion (PLIF). METHODS The authors searched PubMed, Embase, Web of Science, and the Cochrane Database. Studies that reported outcomes of patients who underwent PDS or PLIF for the treatment of degenerative lumbar spinal disease were included. The primary efficacy end points were perioperative outcomes. The secondary efficacy end points were changes in the Oswestry Disability Index (ODI) and back and leg pain visual analog scale (VAS) scores and in range of motion (ROM) at the treated and adjacent segments. A meta-analysis was performed to calculate weighted mean differences (WMDs), 95% confidence intervals, Q statistics, and I(2) values. Forest plots were constructed for each analysis group. RESULTS Of the 274 retrieved articles, 7 (which involved 506 participants [Dynesys, 250; PLIF, 256]) met the inclusion criteria. The Dynesys group showed a competitive advantage in mean surgery duration (20.73 minutes, 95% CI 8.76-32.70 minutes), blood loss (81.87 ml, 95% CI 45.11-118.63 ml), and length of hospital stay (1.32 days, 95% CI 0.23-2.41 days). Both the Dynesys and PLIF groups experienced improved ODI and VAS scores after 2 years of follow-up. Regarding the ODI and VAS scores, no statistically significant difference was noted according to surgical procedure (ODI: WMD 0.12, 95% CI -3.48 to 3.72; back pain VAS score: WMD -0.15; 95% CI -0.56 to 0.26; leg pain VAS score: WMD -0.07; 95% CI -0.47 to 0.32). The mean ROM at the adjacent segment increased in both groups, and there was no substantial difference between them (WMD 1.13; 95% CI -0.33 to 2.59). Although the United States is the biggest market for Dynesys, no eligible study from the United States was found, and 4 of 8 enrolled studies were performed in China. The results must be interpreted with caution because of publication bias. During Dynesys implantation, surgeons have to decide the length of the spacer and cord pretension. These values are debatable and can vary according to the surgeon's experience and the patient's condition. Differences between the surgical procedures were not considered in this study. CONCLUSIONS Fusion still remains the method of choice for advanced degeneration and gross instability. However, spinal degenerative disease with or without Grade I spondylolisthesis, particularly in patients who require a quicker recovery, will likely constitute the main indication for PDS using the Dynesys system.
Collapse
Affiliation(s)
- Chang-Hyun Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang
| | - Tae-Ahn Jahng
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seongnam;,Seoul National University College of Medicine, Seoul
| | - Seung-Jae Hyun
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seongnam
| | - Chi Heon Kim
- Seoul National University College of Medicine, Seoul;,Department of Neurosurgery and.,Clinical Research Institute, Seoul National University Hospital, Seoul;,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul; and
| | - Sung-Bae Park
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Ki-Jeong Kim
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seongnam
| | - Chun Kee Chung
- Seoul National University College of Medicine, Seoul;,Department of Neurosurgery and.,Clinical Research Institute, Seoul National University Hospital, Seoul;,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul; and
| | - Hyun-Jib Kim
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seongnam
| | - Soo-Eon Lee
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seongnam
| |
Collapse
|
33
|
Park WM, Kim CH, Kim YH, Chung CK, Jahng TA. The Change of Sagittal Alignment of the Lumbar Spine after Dynesys Stabilization and Proposal of a Refinement. J Korean Neurosurg Soc 2015; 58:43-9. [PMID: 26279812 PMCID: PMC4534738 DOI: 10.3340/jkns.2015.58.1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/22/2015] [Accepted: 02/27/2015] [Indexed: 11/27/2022] Open
Abstract
Objective Dynesys® is one of the pedicle-based dynamic lumbar stabilization systems and good clinical outcome has been reported. However, the cylindrical spacer between the heads of the screws undergoes deformation during assembly of the system. The pre-strain probably change the angle of instrumented spine with time and oblique-shaped spacer may reduce the pre-strain. We analyzed patients with single-level stabilization with Dynesys® and simulated oblique-shaped spacer with finite element (FE) model analysis. Methods Consecutive 14 patients, who underwent surgery for single-level lumbar spinal stenosis and were followed-up more than 24 months (M : F=6 : 8; age, 58.7±8.0 years), were analyzed. Lumbar lordosis and segmental angle at the index level were compared between preoperation and postoperative month 24. The von Mises stresses on the obliquely-cut spacer (5°, 10°, 15°, 20°, 25°, and 30°) were calculated under the compressive force of 400 N and 10 Nm of moment with validated FE model of the L4-5 spinal motion segment with segmental angle of 16°. Results Lumbar lordosis was not changed, while segmental angle was changed significantly from -8.1±7.2° to -5.9±6.7° (p<0.01) at postoperative month 24. The maximum von Mises stresses were markedly decreased with increased angle of the spacer up to 20°. The stress on the spacer was uneven with cylindrical spacer but it became even with the 15° oblique spacer. Conclusion The decreased segmental lordosis may be partially related to the pre-strain of Dynesys. Further clinical and biomechanical studies are required for relevant use of the system.
Collapse
Affiliation(s)
- Won Man Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea. ; Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea. ; Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea. ; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea. ; Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea. ; Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea. ; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea. ; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Tae-Ahn Jahng
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea. ; Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
34
|
Kulduk A, Altun NS, Senkoylu A. Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study. Int J Med Robot 2015; 11:400-5. [DOI: 10.1002/rcs.1636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/01/2014] [Accepted: 12/06/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmet Kulduk
- Department of Orthopedics and Traumatology; Gazi Mustafa Kemal State Hospital; Ankara Turkey
| | - Necdet S. Altun
- Department of Orthopedics and Traumatology; Gazi University Faculty of Medicine; Ankara Turkey
| | - Alpaslan Senkoylu
- Department of Orthopedics and Traumatology; Gazi University Faculty of Medicine; Ankara Turkey
| |
Collapse
|
35
|
Abstract
STUDY DESIGN The biomechanical effects of Dynesys and Cosmic fixators on transition and adjacent segments were evaluated using the finite-element method. OBJECTIVE This study investigated the load-transferring mechanisms of 2 dynamic fixators and the fixator-induced effects on the junctional problem of the adjacent segments. SUMMARY OF BACKGROUND DATA The mobility and flexibility of Dynesys screw-spacer and Cosmic screw-hinge joints preserve motion and share loads for the transition segment. However, the differences in tissue responses and fixator mechanisms among these 2 fixators have not been investigated extensively. METHODS A lumbosacral model from L1 to S1 levels was developed and subjected to muscular contraction, ligamentous interconnection, compressive force, and trunk moment. A static fixator was instrumented at the moderately degenerative L4-L5 segment to serve as a comparison baseline. Subsequently, the 2 fixators were instrumented at the mildly degenerative L3-L4 segment. The tissue responses of the adjacent segments and the load transmission at the screw-spacer and bone-screw interfaces were compared. RESULTS Both systems show the ability to protect the transition segment but deteriorate the adjacent segments. The screw-hinge joint and the stiffer rod of the Cosmic system significantly constrained the motion pattern of the transition segment. Comparatively, the Dynesys screw-spacer interfaces make contact with and depart from each other during motion; thus providing higher mobility to the transition segment. However, the highly stressed distribution at the Cosmic bone-screw causes the screw and hinge prone to pullout and fatigue failures. CONCLUSION Cosmic fixation can better protect the disc and facet joint of the transition segment than can the Dynesys. However, the screw-hinge joint strictly constrains intersegmental motion and deteriorates the junctional problem. The Cosmic system can be chosen to treat more severely degenerative transition segments. With higher flexibility, the Dynesys system is recommended for the transition segment that is healthy or mildly degenerative. LEVEL OF EVIDENCE N/A.
Collapse
|
36
|
Lin HM, Liu CL, Pan YN, Huang CH, Shih SL, Wei SH, Chen CS. Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis. Med Biol Eng Comput 2014; 52:499-508. [PMID: 24737048 DOI: 10.1007/s11517-014-1154-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 03/31/2014] [Indexed: 01/31/2023]
Abstract
Surgeons often use spinal fixators to manage spinal instability. Dynesys (DY) is a type of dynamic fixator that is designed to restore spinal stability and to provide flexibility. The aim of this study was to design a new spinal fixator using topology optimization [the topology design (TD) system]. Here, we constructed finite element (FE) models of degenerative disc disease, DY, and the TD system. A hybrid-controlled analysis was applied to each of the three FE models. The rod structure of the topology optimization was modelled at a 39 % reduced volume compared with the rigid rod. The TD system was similar to the DY system in terms of stiffness. In contrast, the TD system reduced the cranial adjacent disc stress and facet contact force at the adjacent level. The TD system also reduced pedicle screw stresses in flexion, extension, and lateral bending.
Collapse
Affiliation(s)
- Hung-Ming Lin
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, Little JP, Park WM, Wang YH, Wilke HJ, Rohlmann A, Schmidt H. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 2014; 47:1757-66. [PMID: 24767702 DOI: 10.1016/j.jbiomech.2014.04.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centers around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.
Collapse
Affiliation(s)
- M Dreischarf
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - T Zander
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, Montréal, Quebec, Canada
| | - C M Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, USA
| | - C J Adam
- Paediatric Spine Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - C S Chen
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - V K Goel
- Departments of Bioengineering and Orthopaedic Surgery, Colleges of Engineering and Medicine, University of Toledo, USA
| | - A Kiapour
- Departments of Bioengineering and Orthopaedic Surgery, Colleges of Engineering and Medicine, University of Toledo, USA
| | - Y H Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - K M Labus
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, USA
| | - J P Little
- Paediatric Spine Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - W M Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Y H Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - H J Wilke
- Institute of Orthopaedic Research and Biomechanics, Ulm, Germany
| | - A Rohlmann
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - H Schmidt
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Institute of Orthopaedic Research and Biomechanics, Ulm, Germany
| |
Collapse
|
38
|
Shih SL, Liu CL, Huang LY, Huang CH, Chen CS. Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression- a finite element study. BMC Musculoskelet Disord 2013; 14:191. [PMID: 23777265 PMCID: PMC3706348 DOI: 10.1186/1471-2474-14-191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/14/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The Dynesys system provides stability for destabilized spines while preserving segmental motion. However, clinical studies have demonstrated that the Dynesys system does not prevent adjacent segment disease. Moreover, biomechanical studies have revealed that the stiffness of the Dynesys system is comparable to rigid fixation. Our previous studies showed that adjusting the cord pretension of the Dynesys system alleviates stress on the adjacent level during flexion. We also demonstrated that altering the stiffness of Dynesys system spacers can alleviate stress on the adjacent level during extension of the intact spine. In the present study, we hypothesized that omitting the cord preload and changing the stiffness of the Dynesys system spacers would abate stress shielding on adjacent spinal segments. METHODS Finite element models were developed for - intact spine (INT), facetectomy and laminectomy at L3-4 (DEC), intact spine with Dynesys system (IntDyWL), decompressed spine with Dynesys system (DecDyWL), decompressed spine with Dynesys system without cord preload (DecDyNL), and decompressed spine with Dynesys system assembled using spacers that were 0.8 times the standard diameter without cord pretension (DecDyNL0.8). These models were subjected to hybrid control for flexion, extension, axial rotation; and lateral bending. RESULTS The greatest decreases in range of motion (ROM) at the L3-4 level occurred for axial rotation and lateral bending in the IntDyWL model and for flexion and extension in the DecDyWL model. The greatest decreases in disc stress occurred for extension and lateral bending in the IntDyWL model and for flexion in the DecDyWL model. The greatest decreases in facet contact force occurred for extension and lateral bending in the DecDyNL model and for axial rotation in the DecDyWL model. The greatest increases in ROMs at L2-3 level occurred for flexion, axial rotation and lateral bending in IntDyWL model and for extension in the DecDyNL model. The greatest increases in disc stress occurred for flexion, axial rotation and lateral bending in the IntDyWL model and for extension in the DecDyNL model. The greatest increases in facet contact force occurred for extension and lateral bending in the DecDyNL model and for axial rotation in the IntDyWL model. CONCLUSIONS The results reveals that removing the Dynesys system cord pretension attenuates the ROMs, disc stress, and facet joint contact forces at adjacent levels during flexion and axial rotation. Removing cord pretension together with softening spacers abates stress shielding for adjacent segment during four different moments, and it provides enough security while not jeopardizes the stability of spine during axial rotation.
Collapse
Affiliation(s)
- Shih-Liang Shih
- Department of Orthopaedic Surgery, Zhong-Xing Branch of Taipei-City Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Pretension effects of the Dynesys cord on the tissue responses and screw-spacer behaviors of the lumbosacral construct with hybrid fixation. Spine (Phila Pa 1976) 2013; 38:E775-82. [PMID: 23486410 DOI: 10.1097/brs.0b013e318290fb2e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The pretension of the Dynesys cord was varied to evaluate its effects on both tissue responses and screw-spacer behaviors by the finite-element method. OBJECTIVE This study aimed to provide detailed information about the motion-preserving and load-shielding mechanisms of the Dynesys screw-spacer joint. SUMMARY OF BACKGROUND DATA Intuitively, higher cord pretension aims to ensure the occurrence of screw-spacer contact, thus making the spacer the transmitter of the vertebral loads. However, detailed investigations of the cord-pretension effects have not yet been carried out. METHODS.: Using a validated lumbosacral model, the moderately degenerative L4-L5 segment was instrumented by a static fixator and the Dynesys fixator was further used to bridge a mildly degenerative L3-L4 segment. The pre-tended cord was modeled as an elastic spring with 0- and 300-N pretensions. The disc range-of-motion, disc stress, facet force, bone-screw stress, and screw-spacer force were chosen as comparison indices. RESULTS.: At the transition and adjacent segments, the range-of-motion differences between the 2 pretensions were 7.7% and 2.0% on average, respectively. The mechanical differences at the transition and adjacent segments were 9.0% and 5.2% (disc stress) and 9.4% and 9.1% (facet force), respectively. The results indicated that the cord pretension has a minor effect on the adjacent segments in comparison with the transition segment. However, the stress at the screw hub and force of the screw-spacer contact of the 300-N pretension were increased by 33.7% and 316.5% on average than without pretension, respectively. CONCLUSION The moment arm from the screw-cord center to the fulcrum is significantly less than that of vertebral loads. This leads to the minor effect of increasing the cord pretension on the responses of the adjacent segments. However, the cord pretension can significantly affect both screw-spacer force and bone-screw stress. LEVEL OF EVIDENCE 4.
Collapse
|
40
|
Comparison among load-, ROM-, and displacement-controlled methods used in the lumbosacral nonlinear finite-element analysis. Spine (Phila Pa 1976) 2013; 38:E276-85. [PMID: 23250233 DOI: 10.1097/brs.0b013e31828251f9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN For lumbosacral nonlinear analysis, the characteristics and differences between the load- and range-of-motion (ROM)-controlled methods (LCM and RCM) were compared using the numerical approach. OBJECTIVE This study aimed to discuss the LCM and RCM problems inherent in the method assumption and calculation procedure. A displacement-controlled method (DCM) based on the nodal movement at the lumbosacral top was proposed to offer a more efficient and equivalent comparison between the evaluated models. SUMMARY OF BACKGROUND DATA Both LCM and RCM have been extensively used to evaluate the biomechanical performance of lumbosacral implants. The LCM models were subject to the same loads as the intact model. The ROMs of the RCM models were controlled in the same way by iteratively adjusting some of the applied loads. However, the different strategies for adjusting lumbar loads might affect the predicted results and the execution might be inefficient. To the best of the authors' knowledge, the kinematic, mechanical, and computational comparisons between the 2 methods have still not been extensively investigated. METHODS An intact lumbosacral model was developed and validated with the cadaveric and numerical data from the literature studies. The intact model was then modified as a degenerative model, in which the moderately dehydrated L4-L5 segment was instrumented with transpedicular fixation. Lumbosacral flexion was simulated by ligament interconnection, muscular contraction, and weight compression. One LCM, 3 RCM, and 1 DCM models were developed to evaluate their effects on biomechanical results and the computational efficiency of the lumbosacral nonlinear analysis. RESULTS Both solution feasibility and calculation time were closely related to the loading sequence that was defined as the time curves of the load-incremental control. The calculation of the RCM models was the most time-consuming. The calculation time of the DCM model was about 17 times faster than that of the RCM counterparts. Apart from the LCM model, the total ROM of the other models could be consistently controlled with the same value as that of the intact model. The intersegmental ROMs of all models were quite comparable. However, the LCM model predicted the least value of the screw stress and averaged 15.6% and 19.9% less than the RCM and DCM models. In general, the computational efficiency between the models was the most different, followed by the mechanical stress; the kinematic results were the most comparable. CONCLUSION The superiority of the computational efficiency of the DCM compared with its counterparts makes it the improved strategy for executing lumbosacral nonlinear analysis.
Collapse
|
41
|
Jahng TA, Kim YE, Moon KY. Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis. Spine J 2013; 13:85-94. [PMID: 23266148 DOI: 10.1016/j.spinee.2012.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 03/23/2012] [Accepted: 11/08/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recently, nonfusion pedicle-based dynamic stabilization systems (PBDSs) have been developed and used in the management of degenerative lumbar spinal diseases. Still effects on spinal kinematics and clinical effects are controversial. Little biomechanical information exists for providing biomechanical characteristics of pedicle-based dynamic stabilization according to the PBDS design before clinical implementation. PURPOSE To investigate the effects of implanting PBDSs into the spinal functional unit and elucidate the differences in biomechanical characteristics according to different materials and design. STUDY DESIGN The biomechanical effects of implantation of PBDS were investigated using the nonlinear three-dimensional finite element model of L4-L5. METHODS An already validated three-dimensional, intact osteoligamentous L4-L5 finite element model was modified to incorporate the insertion of pedicle screws. The implanted models were constructed after modifying the intact model to simulate postoperative changes using four different fixation systems. Four models instrumented with PBDS (Dynesys, NFlex, and polyetheretherketone [PEEK]) and rigid fixation systems (conventional titanium rod) were developed for comparison. The instrumented models were compared with those of the intact and rigid fixation model. Range of motion (ROM) in three motion planes, center of rotation (COR), force on the facet joint, and von Mises stress distribution on the vertebral body and implants with flexion-extension were compared among the models. RESULTS Simulated results demonstrated that implanted segments with PBDSs have limited ROM when compared with the intact spine. Flexion motion was the most limited, and axial rotation was the least limited, after device implantation. Among the PBDS selected in this analysis, the NFlex system had the closest instantaneous COR compared with the intact model and a higher ROM compared with other PBDS. Contact force on the facet joint in extension increased with an increase of moment in Dynesys and NFlex; however, the rigid or PEEK rod fixation revealed no facet contact force. CONCLUSIONS Implanted segments with PBDSs have limited ROM when compared with the intact spine. Center of rotation and stress distribution differed according to the design and materials used. These biomechanical effects produced a nonphysiological stress on the functional spinal unit when they were implanted. The biomechanical effects of current PBDSs should be carefully considered before clinical implementation.
Collapse
Affiliation(s)
- Tae-Ahn Jahng
- Department of Neurosurgery, Seoul National University, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 464-707, Korea
| | | | | |
Collapse
|
42
|
Biomechanical effects of disc degeneration and hybrid fixation on the transition and adjacent lumbar segments: trade-off between junctional problem, motion preservation, and load protection. Spine (Phila Pa 1976) 2012; 37:E1488-97. [PMID: 22872225 DOI: 10.1097/brs.0b013e31826cdd93] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The biomechanical effects of disc degeneration and hybrid fixation on the transition and adjacent segments were evaluated using a numerical approach. OBJECTIVE This study aimed to evaluate the rigidity-rising effects of the dehydrated disc and bridged fixator on the kinematic and mechanical redistribution of the transition and adjacent segments. SUMMARY OF BACKGROUND DATA After static fixation, a dynamic fixator can be used to preserve motion and share loads for the transition segments. However, the hybrid use of both static and dynamic fixators and its effects on the biomechanical behavior of the transition and adjacent segments were not investigated extensively. METHODS A nonlinear and osseoligamentous lumbar model from L1 vertebra to S1 vertebrae was developed. Ligament interconnection, muscular contraction, and weight compression were all used to simulate lumbar flexion. The static fixator was instrumented at the degenerative L4-L5 segment and the dynamic fixators (Dynesys system) with different stiffness were subsequently applied to the degenerative or healthy L3-L4 segment. A healthy lumbar model was used as a reference point for further comparison and evaluation. The predicted results were validated with the cadaveric and numerical values of the literature studies. Among the 21 models, the junctional problem at the adjacent (L2/L3 and L5/S1) discs as well as the motion preservation and stress distribution at the transition (L3/L4) disc were compared. RESULTS Static fixation and the degenerative disc deteriorated the junctional problem at adjacent segments. On average, the hybrid fixation of the original Dynesys cord constrained the range of motion (ROM) by 65%. Furthermore, it shared 43% of the stress on the transition disc. However, this resulted in the adjacent discs increasing about 50% ROM and 40% stress. The term "trade-off stiffness" was used to express the concept that the decreased stiffness of the original cord could balance the junctional problem, motion preservation, and load protection of the transition and adjacent segments. The trade-off stiffness of the degenerative transition disc was higher than that of the healthy disc. Compared with the original design, the increased ROM and stress of the adjacent segments can be reduced by about 43% using the trade-off stiffness. CONCLUSION The use of the hybrid fixator should involve a certain trade-off between the protection of the transition segment and the deterioration of the adjacent segments. This trade-off stiffness, which largely depends on both fixator design and disc degeneration, provides the improved rigidity and flexibility of the transition and adjacent segments.
Collapse
|
43
|
Chen SH, Lin SC, Tsai WC, Wang CW, Chao SH. Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery--a finite element analysis. BMC Musculoskelet Disord 2012; 13:72. [PMID: 22591664 PMCID: PMC3503692 DOI: 10.1186/1471-2474-13-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 04/20/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Little is known about the biomechanical effectiveness of transforaminal lumbar interbody fusion (TLIF) cages in different positioning and various posterior implants used after decompressive surgery. The use of the various implants will induce the kinematic and mechanical changes in range of motion (ROM) and stresses at the surgical and adjacent segments. Unilateral pedicle screw with or without supplementary facet screw fixation in the minimally invasive TLIF procedure has not been ascertained to provide adequate stability without the need to expose on the contralateral side. This study used finite element (FE) models to investigate biomechanical differences in ROM and stress on the neighboring structures after TLIF cages insertion in conjunction with posterior fixation. METHODS A validated finite-element (FE) model of L1-S1 was established to implant three types of cages (TLIF with a single moon-shaped cage in the anterior or middle portion of vertebral bodies, and TLIF with a left diagonally placed ogival-shaped cage) from the left L4-5 level after unilateral decompressive surgery. Further, the effects of unilateral versus bilateral pedicle screw fixation (UPSF vs. BPSF) in each TLIF cage model was compared to analyze parameters, including stresses and ROM on the neighboring annulus, cage-vertebral interface and pedicle screws. RESULTS All the TLIF cages positioned with BPSF showed similar ROM (<5%) at surgical and adjacent levels, except TLIF with an anterior cage in flexion (61% lower) and TLIF with a left diagonal cage in left lateral bending (33% lower) at surgical level. On the other hand, the TLIF cage models with left UPSF showed varying changes of ROM and annulus stress in extension, right lateral bending and right axial rotation at surgical level. In particular, the TLIF model with a diagonal cage, UPSF, and contralateral facet screw fixation stabilize segmental motion of the surgical level mostly in extension and contralaterally axial rotation. Prominent stress shielded to the contralateral annulus, cage-vertebral interface, and pedicle screw at surgical level. A supplementary facet screw fixation shared stresses around the neighboring tissues and revealed similar ROM and stress patterns to those models with BPSF. CONCLUSIONS TLIF surgery is not favored for asymmetrical positioning of a diagonal cage and UPSF used in contralateral axial rotation or lateral bending. Supplementation of a contralateral facet screw is recommended for the TLIF construct.
Collapse
Affiliation(s)
- Shih-Hao Chen
- Department of Orthopaedics, Tzu-Chi General Hospital at Taichung and Tzu Chi University, Hualien, Taiwan
| | - Shang-Chih Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wen-Chi Tsai
- BoneCare Orthopedic Centers, Han-Chiung Clinics, Taipei, Taiwan
| | - Chih-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shih-Heng Chao
- Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu, Taiwan
| |
Collapse
|
44
|
Zhong ZC, Hung C, Lin HM, Wang YH, Huang CH, Chen CS. The influence of different magnitudes and methods of applying preload on fusion and disc replacement constructs in the lumbar spine: a finite element analysis. Comput Methods Biomech Biomed Engin 2012; 16:943-53. [PMID: 22224913 DOI: 10.1080/10255842.2011.645226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In a finite element (FE) analysis of the lumbar spine, different preload application methods that are used in biomechanical studies may yield diverging results. To investigate how the biomechanical behaviour of a spinal implant is affected by the method of applying the preload, hybrid-controlled FE analysis was used to evaluate the biomechanical behaviour of the lumbar spine under different preload application methods. The FE models of anterior lumbar interbody fusion (ALIF) and artificial disc replacement (ADR) were tested under three different loading conditions: a 150 N pressure preload (PP) and 150 and 400 N follower loads (FLs). This study analysed the resulting range of motion (ROM), facet contact force (FCF), inlay contact pressure (ICP) and stress distribution of adjacent discs. The FE results indicated that the ROM of both surgical constructs was related to the preload application method and magnitude; differences in the ROM were within 7% for the ALIF model and 32% for the ADR model. Following the application of the FL and after increasing the FL magnitude, the FCF of the ADR model gradually increased, reaching 45% at the implanted level in torsion. The maximum ICP gradually decreased by 34.1% in torsion and 28.4% in lateral bending. This study concluded that the preload magnitude and application method affect the biomechanical behaviour of the lumbar spine. For the ADR, remarkable alteration was observed while increasing the FL magnitude, particularly in the ROM, FCF and ICP. However, for the ALIF, PP and FL methods had no remarkable alteration in terms of ROM and adjacent disc stress.
Collapse
Affiliation(s)
- Zheng-Cheng Zhong
- a Department of Physical Therapy and Assistive Technology , National Yang-Ming University , 155, Section 2, Li-Nung Street, Taipei , Taiwan
| | | | | | | | | | | |
Collapse
|