1
|
Wang F, Li J, Li J, Sun K, Zhang B, Wang D, Song E, Li F. Bone anchoring annular suture technique for repairing annular defects at vertebral body edge following lumbar discectomy. Sci Rep 2025; 15:5047. [PMID: 39934208 PMCID: PMC11814413 DOI: 10.1038/s41598-025-89179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
In the lumbar discectomy, an annular suture faces challenges when annular defects are located at the attachment area of the fibrous annulus at the edge of the vertebral body. In this study, a novel bone-anchoring annular suture technique was proposed to close this type of defect. Finally, the clinical efficacy of this suture technique was investigated. A total of 84 patients with lumbar intervertebral disc herniation who underwent arthroscopic-assisted uni-portal spinal surgery and novel bone-anchoring annular sutures were selected. Clinical and imaging outcomes were compared before and after surgery, including the visual analog scale (VAS) for back and leg, Japanese Orthopaedic Association (JOA) score, Oswestry disability index (ODI), disc height, and the Pfirrmann grade of the disc. The average follow-up time was 12.6 ± 0.9 months. Over time, the VAS (low back pain and leg pain) and ODI scores of patients decreased significantly (P < 0.05), while the JOA scores increased significantly (P < 0.05). At the last follow-up, the excellent and good rate was 91.7% according to the modified MacNab criteria. No significant difference between the preoperative and postoperative disc height and Pfirrmann grade was observed (P > 0.05). No reoperation cases were observed during the follow-up period. The novel bone-anchoring annular suture technique showed good safety and preliminary efficacy for annular defects that occur at the attachment area of the fibrous annulus at the edge of the vertebral body.
Collapse
Affiliation(s)
- Fang Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jie Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jizheng Li
- Department of Orthopedics, First Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, Yunnan, China
| | - Kening Sun
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bo Zhang
- Department of Orthopedics, 3201 Hospital Affiliated to Xi'an Jiaotong University, Hanzhong, 723000, Shaanxi, China
| | - Dong Wang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - En Song
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| | - Fengtao Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
2
|
Peng YX, Zhang Y, Yang Y, Wang F, Yu B. Clinical effect of full endoscopic lumbar annulus fibrosus suture. J Orthop Surg Res 2024; 19:261. [PMID: 38659063 PMCID: PMC11044534 DOI: 10.1186/s13018-024-04725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE The aim of this study was to investigate the clinical efficacy of full endoscopic lumbar annulus fibrosus suture in the treatment of single-segment lumbar disc herniation (LDH). METHODS The clinical data of patients with single-segment LDH who underwent full endoscopic lumbar discectomy from January 2017 to January 2019 in our hospital were retrospectively analysed. Patients with full endoscopic lumbar discectomy combined with annulus fibrosus suture were divided into group A, and those with simple full endoscopic lumbar discectomy were divided into group B. The general information, surgery-related data, visual analog scale (VAS), Oswestry disability index (ODI), modified MacNab score at the last follow-up, reoperation rate and recurrence were compared between the two groups. RESULTS All patients were followed up for 12 to 24 months, and the surgical time was 133.6 ± 9.6 min in group A and 129.0 ± 11.7 min in group B. The difference was not statistically significant (p > 0.05). The blood loss of group A was higher than that of group B, and the difference was statistically significant when comparing the groups (p < 0.05). The postoperative symptoms of patients in both groups were significantly relieved, and the VAS score of low back pain and ODI index were significantly lower than the preoperative ones at all postoperative time points (1 month after surgery, 3 months after surgery, and at the last follow-up) (p < 0.05), but there was no significant difference between the groups (p > 0.05). The excellent rate of MacNab at the last follow-up in the two groups were 93.55% and 87.80%, respectively, with no statistically significant difference (p > 0.05). At the last follow-up, the recurrence rate of group A was significantly lower than that of group B, and the difference was statistically significant (p < 0.05), while the difference between the reoperation rate of the two groups was not statistically significant (p > 0.05). CONCLUSIONS Full endoscopic lumbar discectomy combined with annulus fibrosus repair reduces the postoperative recurrence rate and achieves satisfactory clinical outcomes.
Collapse
Affiliation(s)
- Yin-Xiao Peng
- Department of Orthopaedics, The Third People's Hospital of Chengdu, Sichuan, PR China
| | - Yue Zhang
- Department of Neurosurgery, Pujiang People's Hospital, Sichuan, PR China
| | - Yun Yang
- Department of Orthopaedics, The Third People's Hospital of Chengdu, Sichuan, PR China
| | - Fei Wang
- Department of Orthopaedics, The Third People's Hospital of Chengdu, Sichuan, PR China
| | - Bin Yu
- Department of Orthopaedics, The Third People's Hospital of Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Xi J, Wang X, Li X, Wu C, Zhang T, Lu Q. Analysis of the clinical efficacy of visualization of percutaneous endoscopic lumbar discectomy combined with annulus fibrosus suture in lumbar disc herniation. Neurosurg Rev 2024; 47:54. [PMID: 38240919 PMCID: PMC10799126 DOI: 10.1007/s10143-023-02276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/22/2024]
Abstract
The objective of this study is to compare the clinical effectiveness of visualization of percutaneous endoscopic lumbar discectomy (VPELD) combined with annulus fibrosus suture technique and simple percutaneous endoscopic lumbar discectomy (PELD) technique in the treatment of lumbar disc herniation. A retrospective analysis was conducted on 106 cases of lumbar disc herniation treated with foraminoscopic technique at our hospital from January 2020 to February 2022. Among them, 33 cases were treated with VPELD combined with annulus fibrosus suture in group A, and 73 cases were treated with PELD in group B. The preoperative and postoperative visual analogue scale (VAS), functional index (Oswestry Disability Index, ODI), healing of the annulus fibrosus, intervertebral space height, and postoperative recurrence were recorded and compared between the two groups. All patients underwent preoperative and postoperative MRI examinations, and the average follow-up period was 12 ± 2 months. Both groups showed significant improvements in postoperative VAS and ODI scores compared to the preoperative scores (P < 0.05), with no statistically significant difference between the groups during the same period (P > 0.05). There was no significant decrease in intervertebral space between the two groups after surgery (P > 0.05). Group A showed significantly lower postoperative recurrence rate and better annulus fibrosus healing compared to group B (P < 0.05). The VPELD combined with annulus fibrosus suture technique is a safe, feasible, and effective procedure for the treatment of lumbar disc herniation. When the indications are strictly adhered to, this technique can effectively reduce the postoperative recurrence rate and reoperation rate. It offers satisfactory clinical efficacy and can be considered as an alternative treatment option for eligible patients.
Collapse
Affiliation(s)
- Jintao Xi
- Department of Orthopedics, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Xiaozhen Wang
- Department of Orthopedics, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Xugui Li
- Department of Orthopedics, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Congjun Wu
- Department of Orthopedics, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Tonghui Zhang
- Department of Orthopedics, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Qilin Lu
- Department of Orthopedics, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
4
|
Hu MH, Yang KC, Chen CW, Chu PH, Chang YL, Sun YH, Lin FH, Yang SH. Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation. Biomedicines 2022; 10:biomedicines10092107. [PMID: 36140208 PMCID: PMC9495938 DOI: 10.3390/biomedicines10092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Annulus fibrosus (AF) damage is proven to prompt intervertebral disc (IVD) degeneration, and unrepaired AF lesions after surgical discectomy may boost herniation of the nucleus pulposus (NP) which may lead to further compression of neural structures. Moreover, vascular and neural ingrowth may occur within the defect which is known as a possible reason for discogenic pain. Due to a limited healing capacity, an effective strategy to repair and close the AF defect is necessary. In this study, using electrospinning technology, two nature polymers, silk fibroin and gelatin, were linked to imitate the unique lamellae structure of native AF. Our findings revealed that a multilayer electrospun-aligned fibroin/gelatin scaffold with mechanical and morphological properties mimicking those of native AF lamellae have been developed. The average diameter of the nanofiber is 162.9 ± 38.8 nm. The young’s modulus is around 6.70 MPa with an ultimate tensile strength of around 1.81 MP along preferred orientation. The in vitro test confirmed its biocompatibility and ability to maintain cell viability and colonization. Using a porcine model, we demonstrated that the multilayer-aligned scaffold offered a crucial microenvironment to induce collagen fibrous tissue production within native AF defect. In the implant-repaired AF, H&E staining showed homogeneous fibroblast-like cell infiltration at the repaired defect with very little vascular ingrowth, which was confirmed by magnetic resonance imaging findings. Picrosirius red staining and immunohistochemical staining against type I collagen revealed positively stained fibrous tissue in an aligned pattern within the implant-integrated site. Relative to the intact control group, the disc height index of the serial X-ray decreased significantly in both the injury control and implant group at 4 weeks and 8 weeks (p < 0.05) which indicated this scaffold may not reverse the degenerative process. However, the results of the discography showed that the effectiveness of annulus repair of the implant group is much superior to that of the untreated group. The scaffold, composed with nature fibroin/gelatin polymers, could potentially enhance AF healing that could prevent IVD recurrent herniation, as well as neural and neovascular ingrowth after discectomy surgeries.
Collapse
Affiliation(s)
- Ming-Hsiao Hu
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Kai-Chiang Yang
- Department of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Wei Chen
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Po-Han Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Yun-Liang Chang
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yuan-Hui Sun
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan
| | - Shu-Hua Yang
- Department of Orthopedics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 63981)
| |
Collapse
|
5
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
6
|
Dewle A, Rakshasmare P, Srivastava A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:1238-1251. [DOI: 10.1021/acsabm.0c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce
Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Prakash Rakshasmare
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce
Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Opp. Airforce
Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
7
|
Virk S, Chen T, Meyers KN, Lafage V, Schwab F, Maher SA. Comparison of biomechanical studies of disc repair devices based on a systematic review. Spine J 2020; 20:1344-1355. [PMID: 32092506 PMCID: PMC9063717 DOI: 10.1016/j.spinee.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT A variety of solutions have been suggested as candidates for the repair of the annulus fibrosis (AF), with the ability to withstand physiological loads of paramount importance. PURPOSE The objective of our study was to capture the scope of biomechanical test models of AF repairs. We hypothesized that common test parameters would emerge. STUDY DESIGN Systematic Review METHODS: PubMed and EMBASE databases were searched for studies in English including the keywords "disc repair AND animal models," "disc repair AND cadaver spines," "intervertebral disc AND biomechanics," and "disc repair AND biomechanics." This list was further limited to those studies which included biomechanical results from annular repair in animal or human spinal segments from the cervical, thoracic, lumbar and/or coccygeal (tail) segments. For each study, the method used to measure the biomechanical property and biomechanical test results were documented. RESULTS A total of 2,607 articles were included within our initial analysis. Twenty-two articles met our inclusion criteria. Significant variability in terms of species tested, measurements used to quantify annular repair strength, and the method/direction/magnitude that forces were applied to a repaired annulus were found. Bovine intervertebral disc was most commonly used model (6 of 22 studies) and the most common mechanical property reported was the force required for failure of the disc repair device (15 tests). CONCLUSIONS Our hypothesis was rejected; no common features were identified across AF biomechanical models and as a result it was not possible to compare results of preclinical testing of annular repair devices. Our analysis suggests that a standardized biomechanical model that can be repeatably executed across multiple laboratories is required for the mechanical screening of candidates for AF repair. CLINICAL SIGNIFICANCE This literature review provides a summary of preclinical testing of annular repair devices for clinicians to properly evaluate the safety/efficacy of developing technology designed to repair annular defects after disc herniations.
Collapse
Affiliation(s)
- Sohrab Virk
- Hospital for Special Surgery, Department of Orthopedic Surgery, New York, New York,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Tony Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY,Department of Biomechanics, Hospital for Special Surgery, New York, USA
| | | | - Virginie Lafage
- Hospital for Special Surgery, Department of Orthopedic Surgery, New York, New York
| | - Frank Schwab
- Hospital for Special Surgery, Department of Orthopedic Surgery, New York, New York
| | - Suzanne A. Maher
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY,Department of Biomechanics, Hospital for Special Surgery, New York, USA
| |
Collapse
|
8
|
Luo K, Cai K, Jiang G, Lu B, Yue B, Lu J, Zhang K. Needle-Guided Suture Technique for Lumbar Annular Fiber Closure in Microendoscopic Discectomy: A Technical Note and Case Series. Med Sci Monit 2020; 26:e918619. [PMID: 31982889 PMCID: PMC7001514 DOI: 10.12659/msm.918619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Annular fiber closure techniques have been proven effective in reducing short-term recurrence after discectomy. However, annular fiber closure devices are expensive and still fail at a low rate. We present a novel suture method, needle-guided annular closure suture (NGACS) that does not require a special device and can be performed for annular fiber closure following microendoscopic discectomy. MATERIAL AND METHODS Twenty-five patients who underwent treatment with NGACS were reviewed by analysis of the medical records. The clinical outcomes were assessed and compared preoperatively and immediately, 1, 6, and 12 months postoperatively. The parameters included the Visual Analog Scale (VAS)-back and VAS-leg scores and the Oswestry Disability Index (ODI). Midsagittal T2WI images were obtained to evaluate lumbar disc degeneration using the Pfirrmann grade. Additional adverse events were also recorded and tracked. RESULTS The VAS-back and VAS-leg scores and the ODI were significantly different at each follow-up time point (P<0.001), and improvements in pain and disability were maintained well during the follow-up period. Lumbar disc reherniation or other serious adverse events were not observed in this series. There was no significant difference between the initial and final Pfirrmann grades (Z=-1.414, P=0.157). The preoperative average disc height was 9.94±1.97 mm, and the disc height at 12 months after surgery was 9.14±1.88 mm. The average decrease in disc height was 8.11±3.36%. CONCLUSIONS This study demonstrates the feasibility and superior clinical outcomes of the NGACS technique. This method can be a good substitution when annular fiber closure devices are not available. Moreover, this technique can be easily popularized due to its low cost and few restrictions.
Collapse
|
9
|
Sheyn D, Ben-David S, Tawackoli W, Zhou Z, Salehi K, Bez M, De Mel S, Chan V, Roth J, Avalos P, Giaconi JC, Yameen H, Hazanov L, Seliktar D, Li D, Gazit D, Gazit Z. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics 2019; 9:7506-7524. [PMID: 31695783 PMCID: PMC6831475 DOI: 10.7150/thno.34898] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Wafa Tawackoli
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Zhengwei Zhou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Khosrawdad Salehi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Maxim Bez
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Sandra De Mel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Virginia Chan
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph Roth
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph C Giaconi
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Haneen Yameen
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Lena Hazanov
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Debiao Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Dan Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| |
Collapse
|
10
|
Luo TD, Marquez-Lara A, Zabarsky ZK, Vines JB, Mowry KC, Jinnah AH, Ma X, Berwick BW, Willey JS, Li Z, Smith TL, O'Gara TJ. A percutaneous, minimally invasive annulus fibrosus needle puncture model of intervertebral disc degeneration in rabbits. J Orthop Surg (Hong Kong) 2019; 26:2309499018792715. [PMID: 30114959 DOI: 10.1177/2309499018792715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Various animal models have been proposed to mimic the pathophysiologic process of intervertebral disc degeneration, a leading cause of back pain. The purpose of this study is to describe a minimally invasive technique via percutaneous needle puncture of the annulus fibrosus in New Zealand white rabbits. METHODS Under fluoroscopic guidance, an 18-gauge spinal needle was inserted 2 cm lateral to the midline spinous process. The needle was slowly advanced at approximately 45° angle until it was adjacent to the L5/L6 disc space. Lateral and anteroposterior views were used to verify correct needle position before advancing into the nucleus pulposus. The rabbits underwent weekly X-rays for 4 weeks to assess disc height index. MRI T2 relaxation was evaluated at week four to assess morphological changes. Discs were histologically graded on a 12-point scale to assess degeneration and compared to discs obtained from uninjured rabbits. RESULTS There were no complications associated with the percutaneous needle puncture procedure. All animals survived the duration of the experiment. Four weeks after injury, the disc height had progressively narrowed to approximately 50% of baseline. MRI assessment at the 4-week time point demonstrated a mean T2 relaxation time at the L5/L6 level that was 20.9% of the T2 relaxation time at the uninjured L4/L5 disc level ( p < 0.001). Histological analysis demonstrated lamellar disorganization of the annulus and decreased cellularity and proteoglycan content within the injured nucleus compared to uninjured control discs. CONCLUSION The present study demonstrated a reliable technique of inducing an annular tear via a percutaneous needle puncture. Compared to open surgical approaches, the percutaneous model produces similar progressive disc degeneration while minimizing harm to the animal subjects. CLINICAL RELEVANCE The present study establishes a technique for the introduction of novel therapeutic agents to treat disc degeneration that may translate to future clinical trials.
Collapse
Affiliation(s)
- T David Luo
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alejandro Marquez-Lara
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zachary K Zabarsky
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeremy B Vines
- 2 Organogenesis Surgical and Sports Medicine, Birmingham, AL, USA
| | - Katie C Mowry
- 2 Organogenesis Surgical and Sports Medicine, Birmingham, AL, USA
| | - Alexander H Jinnah
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Xue Ma
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Benjamin W Berwick
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey S Willey
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,3 Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Zhongyu Li
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas L Smith
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tadhg J O'Gara
- 1 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
11
|
Hom WW, Tschopp M, Lin HA, Nasser P, Laudier DM, Hecht AC, Nicoll SB, Iatridis JC. Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity. PLoS One 2019; 14:e0217357. [PMID: 31136604 PMCID: PMC6538241 DOI: 10.1371/journal.pone.0217357] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipin-crosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers.
Collapse
Affiliation(s)
- Warren W. Hom
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melanie Tschopp
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Huizi A. Lin
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - Philip Nasser
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Damien M. Laudier
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew C. Hecht
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven B. Nicoll
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Gluais M, Clouet J, Fusellier M, Decante C, Moraru C, Dutilleul M, Veziers J, Lesoeur J, Dumas D, Abadie J, Hamel A, Bord E, Chew SY, Guicheux J, Le Visage C. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials 2019; 205:81-93. [PMID: 30909111 DOI: 10.1016/j.biomaterials.2019.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/29/2022]
Abstract
Annulus fibrosus (AF) impairment is associated with reherniation, discogenic pain, and disc degeneration after surgical partial discectomy. Due to a limited intrinsic healing capacity, defects in the AF persist over time and it is hence necessary to adopt an appropriate strategy to close and repair the damaged AF. In this study, a cell-free biodegradable scaffold made of polycaprolactone (PCL), electrospun, aligned microfibers exhibited high levels of cell colonization, alignment, and AF-like extracellular matrix deposition when evaluated in an explant culture model. The biomimetic multilayer fibrous scaffold was then assessed in an ovine model of AF impairment. After 4 weeks, no dislocation of the implants was detected, and only one sample out of six showed a partial delamination. Histological and immunohistochemical analyses revealed integration of the implant with the surrounding tissue as well as homogeneously aligned collagen fiber organization within each lamella compared to the disorganized and scarcer fibrous tissue in a randomly organized control fibrous scaffold. In conclusion, this biomimetic electrospun implant exhibited promising properties in terms of AF defect closure, with AF-like neotissue formation that fully integrated with the surrounding ovine tissue.
Collapse
Affiliation(s)
- Maude Gluais
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes, F-44307, France
| | - Cyrille Decante
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Chirurgie Infantile, PHU5, Nantes, F-44093, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Maeva Dutilleul
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France
| | - Joëlle Veziers
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; INSERM, UMS 016, CNRS 3556, Structure Fédérative de Recherche François Bonamy, SC3M Facility, CHU Nantes, Université de Nantes, Nantes, F-44042, France
| | - Dominique Dumas
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS - Université de Lorraine, Vandœuvre-lès-Nancy, F54505, France; UMS2008 IBSLor - CNRS-UL-INSERM Plateforme d'Imagerie et de Biophysique Cellulaire PTIBC-IBISA, Vandœuvre-lès-Nancy, F54505, France
| | - Jérôme Abadie
- Animal Cancers as Models for Research in Comparative Oncology (AMaROC), ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes, F-44307, France
| | - Antoine Hamel
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Chirurgie Infantile, PHU5, Nantes, F-44093, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
13
|
Does an Annular Puncture Influence the Herniation Path?: An In Vitro Mechanical and Structural Investigation. Spine (Phila Pa 1976) 2018; 43:467-476. [PMID: 28719550 DOI: 10.1097/brs.0000000000002336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study of mechanically induced herniation in punctured ovine discs followed by structural analysis. OBJECTIVE To investigate whether an annular puncture influences the path that herniation takes by providing direct passage for nucleus through the annulus and therefore whether it increases the risk of acute herniation from overload at the site of damage independent of any longer-term degeneration. SUMMARY OF BACKGROUND DATA Ten years after treatment with discography both degenerative changes and frequency of herniation have been shown to increase compared to untreated discs. Although the effect of an annular puncture over time has been widely investigated the question of whether it increases the risk of acute herniation has not been resolved. METHODS The posterolateral annuli of healthy ovine lumbar discs were punctured with either a 25-gauge (n = 8) or a larger 18-gauge (n = 8) needle and then compressed in a flexed posture of 10° until initial indications of failure. The entire volume of the disc was visually assessed for structural damage by obtaining progressive, full transverse cross-sections of its entire height thus exposing all regions of the disc. RESULTS There was no association between the 25-gauge puncture and disc disruption and herniation. In contrast, nuclear material was observed to migrate through the 18-gauge needle puncture. Disruption of the lateral inner annulus was observed in 12 out of the 16 discs tested. CONCLUSION The risk of acute herniation through the puncture site is dependent on the needle diameter used. Under the conditions employed the lateral inner annulus remains the site most vulnerable to disruption independent of the presence of a posterolateral puncture. LEVEL OF EVIDENCE N /A.
Collapse
|