1
|
Du R, Tang X, Guan L, Lai Y, Xiang H, Huang W. Central adiposity and α-klotho: inflammatory mechanisms underlying aging biomarkers related to body roundness index. Lipids Health Dis 2025; 24:136. [PMID: 40211310 PMCID: PMC11984050 DOI: 10.1186/s12944-025-02541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Obesity is a global health issue which has been widely accepted as an aging related pathogenesis. α-Klotho is a protein involved in aging process, mineral metabolism, insulin sensitivity, and the pathogenesis of various age-related diseases. Adiposity correlates with lower soluble α-Klotho, but the role of fat distribution and inflammation remains unclear. The body roundness index (BRI) refines central adiposity assessment beyond BMI. Herein, We aimed to investigate the relationship of BRI, inflammation and serum level of soluble α-Klotho. METHODS We conducted a cross-sectional analysis of 9,958 U.S. adults (40-79 years) from the 2007-2016 NHANES. We examined association between BRI and serum α-Klotho (SαKl) levels, controlling for demographic, socioeconomic, lifestyle, and clinical factors. We also assessed whether inflammatory markers mediated the BRI-SαKl relationship. RESULTS BRI was inversely associated with SαKl levels (P < 0.05). A significant sex interaction was found (P < 0.001), while BRI was positively correlated with multiple proinflammatory markers, which were all inversely related to SαKl levels. Mediation analyses showed inflammatory markers accounted for 20.5% (WBC), 18.0% (neutrophils), and 12.3% (platelets) of the BRI-SαKl association. CONCLUSION More severe central adiposity measured by BRI was related to lower SαKl, which may partly be attributed to inflammation. These findings underscore the importance of fat distribution and inflammation in obesity-related aging and may guide interventions to preserve SαKl levels. Longitudinal studies are needed to confirm causality and inform future strategies.
Collapse
Affiliation(s)
- Rui Du
- Department of Ultrasound, General Hospital of Central Theater Command, No. 627, Wuluo Road, Hubei, 430070, Wuhan, China
| | - Xiaoyan Tang
- Department of Cardiology, General Hospital of Central Theater Command, No. 627, Wuluo Road, Hubei, 430070, Wuhan, China
| | - Lei Guan
- Department of Cardiology, General Hospital of Central Theater Command, No. 627, Wuluo Road, Hubei, 430070, Wuhan, China
| | - Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, No. 2, Huangjiahu, West Road, Hubei, 430065, Wuhan, China
| | - Huijuan Xiang
- Department of Ultrasound, General Hospital of Central Theater Command, No. 627, Wuluo Road, Hubei, 430070, Wuhan, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No. 627, Wuluo Road, Hubei, 430070, Wuhan, China.
| |
Collapse
|
2
|
Rajendrasozhan S, Ahmad I, Obaidur Rab S, Alshahrani MY, Abdullah Almuqri E, Ahmad Siddiqui J, Mushtaque M. In-silico investigation of RPS6KB1 associated cancer inhibitor: a drug repurposing study. J Biomol Struct Dyn 2024:1-8. [DOI: 10.1080/07391102.2024.2304679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 01/05/2025]
Affiliation(s)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Md Mushtaque
- Department of Chemistry, Millat College (A constituent college of Lalit Narayan Mithila University), Darbhanga, Bihar, India
| |
Collapse
|
3
|
Ji X, Chen J, You C, Sun J, Xu X. Leflunomide alleviates obesity via activation of the TAK1-AMPK pathway and induction of lipophagy. FASEB J 2023; 37:e23227. [PMID: 37792678 DOI: 10.1096/fj.202301162r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Lipophagy is a subset of selective autophagy that specifically degrades lipid droplets and plays an important role in obesity. Leflunomide treatment in rheumatoid arthritis (RA) patients has been associated with weight loss and decreased blood glucose levels, which cannot be attributed to its known side effects. Our prior studies showed that A77 1726, the active metabolite of leflunomide, acts as an inhibitor of S6K1 to sensitize the insulin receptor and control hyperglycemia. Whether the anti-obesity effect of leflunomide is mediated by targeting S6K1 and its underlying mechanisms remain unclear. Here, we report that A77 1726 induced LC3 lipidation and increased the formation of autophagosomes and lipoautolysosomes in 3T3-L1 adipocytes by activating TGF-β-activated kinase 1 (TAK1), AMP-activated kinase (AMPK), and Unc-51 like autophagy-activated kinase 1 (ULK1). A77 1726 reduced the content of lipid droplets in 3T3-L1 adipocytes, which was blocked by bafilomycin or by beclin-1 knockdown. Similar observations were made in murine adipocytes differentiated from S6K1-/- embryonic fibroblasts (MEFs). Leflunomide treatment restricted bodyweight gains in ob/ob mice and reduced the visceral fat deposit and the size of adipocytes. Leflunomide treatment induced autophagy in adipose and liver tissues and reduced hepatic lipid contents. Consistently, S6K1 knockout increased the levels of LC3 lipidation in the liver, muscle, and fat of S6K-/- mice. Leflunomide treatment and S6K1 deficiency both induced TAK1, AMPK, and ULK1 phosphorylation in these tissues. These observations collectively suggest that leflunomide controls obesity in part by activating AMPK and inducing lipophagy. Our study provides insights into the mechanisms of leflunomide-mediated anti-obesity activity.
Collapse
Affiliation(s)
- Xiaoyue Ji
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Junhong Chen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Chaoying You
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Granata S, Mercuri S, Troise D, Gesualdo L, Stallone G, Zaza G. mTOR-inhibitors and post-transplant diabetes mellitus: a link still debated in kidney transplantation. Front Med (Lausanne) 2023; 10:1168967. [PMID: 37250653 PMCID: PMC10213242 DOI: 10.3389/fmed.2023.1168967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The mammalian target of rapamycin inhibitors (mTOR-Is, Sirolimus, and Everolimus) are immunosuppressive drugs widely employed in kidney transplantation. Their main mechanism of action includes the inhibition of a serine/threonine kinase with a pivotal role in cellular metabolism and in various eukaryotic biological functions (including proteins and lipids synthesis, autophagy, cell survival, cytoskeleton organization, lipogenesis, and gluconeogenesis). Moreover, as well described, the inhibition of the mTOR pathway may also contribute to the development of the post-transplant diabetes mellitus (PTDM), a major clinical complication that may dramatically impact allograft survival (by accelerating the development of the chronic allograft damage) and increase the risk of severe systemic comorbidities. Several factors may contribute to this condition, but the reduction of the beta-cell mass, the impairment of the insulin secretion and resistance, and the induction of glucose intolerance may play a pivotal role. However, although the results of several in vitro and in animal models, the real impact of mTOR-Is on PTDM is still debated and the entire biological machinery is poorly recognized. Therefore, to better elucidate the impact of the mTOR-Is on the risk of PTDM in kidney transplant recipients and to potentially uncover future research topics (particularly for the clinical translational research), we decided to review the available literature evidence regarding this important clinical association. In our opinion, based on the published reports, we cannot draw any conclusion and PTDM remains a challenge. However, also in this case, the administration of the lowest possible dose of mTOR-I should also be recommended.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
5
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Bodur C, Kazyken D, Huang K, Tooley AS, Cho KW, Barnes TM, Lumeng CN, Myers MG, Fingar DC. TBK1-mTOR Signaling Attenuates Obesity-Linked Hyperglycemia and Insulin Resistance. Diabetes 2022; 71:2297-2312. [PMID: 35983955 PMCID: PMC9630091 DOI: 10.2337/db22-0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.
Collapse
Affiliation(s)
- Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Kezhen Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Aaron Seth Tooley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Kae Won Cho
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI
| | - Tammy M. Barnes
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI
| | - Martin G. Myers
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
7
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
8
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
9
|
p70 S6 kinase as a therapeutic target in cancers: More than just an mTOR effector. Cancer Lett 2022; 535:215593. [PMID: 35176419 DOI: 10.1016/j.canlet.2022.215593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
p70 S6 kinase (p70S6K) is best-known for its regulatory roles in protein synthesis and cell growth by phosphorylating its primary substrate, ribosomal protein S6, upon mitogen stimulation. The enhanced expression/activation of p70S6K has been correlated with poor prognosis in some cancer types, suggesting that it may serve as a biomarker for disease monitoring. p70S6K is a critical downstream effector of the oncogenic PI3K/Akt/mTOR pathway and its activation is tightly regulated by an ordered cascade of Ser/Thr phosphorylation events. Nonetheless, it should be noted that other upstream mechanisms regulating p70S6K at both the post-translational and post-transcriptional levels also exist. Activated p70S6K could promote various aspects of cancer progression such as epithelial-mesenchymal transition, cancer stemness and drug resistance. Importantly, novel evidence showing that p70S6K may also regulate different cellular components in the tumor microenvironment will be discussed. Therapeutic targeting of p70S6K alone or in combination with traditional chemotherapies or other microenvironmental-based drugs such as immunotherapy may represent promising approaches against cancers with aberrant p70S6K signaling. Currently, the only clinically available p70S6K inhibitors are rapamycin analogs (rapalogs) which target mTOR. However, there are emerging p70S6K-selective drugs which are going through active preclinical or clinical trial phases. Moreover, various screening strategies have been used for the discovery of novel p70S6K inhibitors, hence bringing new insights for p70S6K-targeted therapy.
Collapse
|
10
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
11
|
Daoud A, Alqassieh A, Alkhader D, Posadas Salas MA, Rao V, Fülöp T, Soliman KM. Immunosuppression in kidney transplant recipients with COVID-19 infection - where do we stand and where are we heading? Ren Fail 2021; 43:273-280. [PMID: 33491531 PMCID: PMC7850379 DOI: 10.1080/0886022x.2021.1876730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
The appropriate immunosuppressive regimen in kidney transplant recipients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2/COVID-19) infection remains unclear. The impact of direct virus injury complicated by dysregulated hyperimmune response with overwhelming release of various cytokines in COVID-19 infected subjects contributes to the complexity of management. The largest concern of the practicing clinicians at current time is how to tailor maintenance immune-modulating therapy during active viral infection and the efficacy of the soon-to-be upcoming immunization for COVID-19. This targeted review aims to cover most of the current evidence on the effect of key maintenance immunosuppressive agents in COVID-19 infection and proposes a line of management to specific scenarios on this very rapidly evolving subject.
Collapse
Affiliation(s)
- Ahmed Daoud
- Nephrology Unit, Internal Medicine Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Alqassieh
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Duaa Alkhader
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Aurora Posadas Salas
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Vinaya Rao
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Tibor Fülöp
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Karim M. Soliman
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Ma L, Zhang D, Huang Z, Zheng R, Du M, Lv Q, Qin C, Chu H, Yuan L, Zhang Z. Functional variants of RPS6KB1 and PIK3R1 in the autophagy pathway genes and risk of bladder cancer. Arch Toxicol 2021; 96:367-375. [PMID: 34668023 DOI: 10.1007/s00204-021-03173-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Autophagy plays a critical role in cancer, since it can either suppress tumorigenesis by inhibiting cancer cell survival, or facilitate tumorigenesis by promoting cancer cell proliferation and tumor growth. However, the role of genetic variants of autophagy-regulated key genes for bladder cancer risk remained unclear. Here, we aimed to explore the association of bladder cancer with genetic variants on genes involved in autophagy pathway. Gene-based analysis was performed with multi-marker analysis of genomic annotation (MAGMA) in 580 bladder cancer cases and 1101 controls. The logistic regression model was used to calculate the SNP effects on bladder cancer susceptibility. Expression quantitative trait loci (eQTL) analysis was conducted by the genotype-tissue expression (GTEx) project. Gene expression was evaluated based on the Cancer Genome Atlas (TCGA) database. Three potentially functional SNPs RPS6KB1 rs1292038, PIK3R1 rs34303, and rs56352616 were demonstrated to be associated with risk of bladder cancer (OR = 0.71, 95% CI = 0.61-0.82, P = 7.88 × 10-6 for rs1292038; OR = 1.25, 95% CI = 1.09-1.45, P = 2.11 × 10-3 for rs34303; OR = 0.74, 95% CI = 0.62-0.90, P = 2.47 × 10-3 for rs56352616). An increasing number of risk genotypes of these three SNPs were associated with a higher risk of developing bladder cancer. Besides, rs1292038 exhibited an eQTL effect for RPS6KB1 in whole blood (P = 3.90 × 10-7). Furthermore, the higher expression of RPS6KB1 and lower expression of PIK3R1 were both significantly associated with bladder cancer risk. Our findings indicated that genetic variants in autophagy pathway genes RPS6KB1 and PIK3R1 confer bladder cancer susceptibility.
Collapse
Affiliation(s)
- Lan Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongjian Zhang
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Zhengkai Huang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
14
|
Stafeev I, Sklyanik I, Mamontova E, Michurina S, Shestakova E, Yah’yaev K, Yurasov A, Masnikov D, Sineokaya M, Ratner E, Vorotnikov A, Menshikov M, Parfyonova Y, Shestakova M. NDRG1 Activity in Fat Depots Is Associated With Type 2 Diabetes and Impaired Incretin Profile in Patients With Morbid Obesity. Front Endocrinol (Lausanne) 2021; 12:777589. [PMID: 34956089 PMCID: PMC8695674 DOI: 10.3389/fendo.2021.777589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We aimed to investigate insulin-, mTOR- and SGK1-dependent signaling basal states in morbidly obese patients' fat. We analyzed the correlation between the signaling activity, carbohydrate metabolism, and incretin profiles of patients. METHODS The omental and subcutaneous fat was obtained in patients with obesity. The omental study included 16 patients with normal glucose tolerance (NGT) and 17 patients with type 2 diabetes mellitus (T2DM); the subcutaneous study included 9 NGT patients and 12 T2DM patients. Insulin resistance was evaluated using the hyperinsulinemic euglycemic clamp test and HOMA-IR index. The oral glucose tolerance test (OGTT) for NGT patients and mixed meal tolerance test (MMTT) for T2DM patients were performed. The levels of incretins (GLP-1, GIP, oxyntomodulin) and glucagon were measured during the tests. Signaling was analyzed by Western blotting in adipose tissue biopsies. RESULTS We have shown equal levels of basal phosphorylation of insulin- and mTOR-dependent signaling in omental fat depot in NGT and T2DM obese patients. Nevertheless, pNDRG1-T346 was decreased in omental fat of T2DM patients. Correlation analysis has shown an inverse correlation of pNDRG1-T346 in omental fat and diabetic phenotype (HbA1c, impaired incretin profile (AUC GLP-1, glucagon)). Moreover, pNDRG1-T346 in subcutaneous fat correlated with impaired incretin levels among obese patients (inverse correlation with AUC glucagon and AUC GIP). CONCLUSIONS According to results of the present study, we hypothesize that phosphorylation of pNDRG1-T346 can be related to impairment in incretin hormone processing. pNDRG1-T346 in adipose tissue may serve as a marker of diabetes-associated impairments of the systemic incretin profile and insulin sensitivity.
Collapse
Affiliation(s)
- Iurii Stafeev
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- *Correspondence: Iurii Stafeev,
| | - Igor Sklyanik
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Mamontova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana Michurina
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Kamil Yah’yaev
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Anatoliy Yurasov
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Surgery Department, Central Clinical Hospital #1 of Open Join Stock Company (OJSC) Russian Railways, Moscow, Russia
| | - Denis Masnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Center of Master’s Programs, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Maria Sineokaya
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Elizaveta Ratner
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Diabetes Institute, Endocrinology Research Centre, Moscow, Russia
| | - Alexander Vorotnikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Mikhail Menshikov
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
| | - Yelena Parfyonova
- The Institute of Experimental Cardiology, National Medical Research Center for Cardiology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
15
|
Bolourian A, Mojtahedi Z. Obesity and COVID-19: The mTOR pathway as a possible culprit. Obes Rev 2020; 21:e13084. [PMID: 32578354 PMCID: PMC7362054 DOI: 10.1111/obr.13084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Bolourian
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Zahra Mojtahedi
- Department of Health Care Administration and Policy, School of Public Health, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
16
|
Velasco M, Ortiz-Huidobro RI, Larqué C, Sánchez-Zamora YI, Romo-Yáñez J, Hiriart M. Sexual dimorphism in insulin resistance in a metabolic syndrome rat model. Endocr Connect 2020; 9:890-902. [PMID: 33069157 PMCID: PMC7583132 DOI: 10.1530/ec-20-0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We assessed the sex-specific differences in the molecular mechanisms of insulin resistance in muscle and adipose tissue, in a MS rat model induced by a high sucrose diet. METHODS Male, female, and ovariectomized female Wistar rats were randomly distributed in control and high-sucrose diet (HSD) groups, supplemented for 24 weeks with 20% sucrose in the drinking water. At the end, we assessed parameters related to MS, analyzing the effects of the HSD on critical nodes of the insulin signaling pathway in muscle and adipose tissue. RESULTS At the end of the treatment, HSD groups of both sexes developed obesity, with a 15, 33 and 23% of body weight gain in male, female, and OVX groups respectively, compared with controls; mainly related to hypertrophy of peripancreatic and gonadal adipose tissue. They also developed hypertriglyceridemia, and liver steatosis, with the last being worse in the HSD females. Compared to the control groups, HSD rats had higher IL1B and TNFA levels and insulin resistance. HSD females were more intolerant to glucose than HSD males. Our observations suggest that insulin resistance mechanisms include an increase in phosphorylated AKT(S473) form in HSD male and female groups and a decrease in phosphorylated P70S6K1(T389) in the HSD male groups from peripancreatic adipose tissue. While in gonadal adipose tissue the phosphorylated form of AKT decreased in HSD females, but not in HSD males. Finally, HSD groups showed a reduction in p-AKT levels in gastrocnemius muscle. CONCLUSION A high-sucrose diet induces MS and insulin resistance with sex-associated differences and in a tissue-specific manner.
Collapse
Affiliation(s)
- Myrian Velasco
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuriko Itzel Sánchez-Zamora
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Romo-Yáñez
- Department of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología ‘Isidro Espinosa de los Reyes’, Mexico City, Mexico
| | - Marcia Hiriart
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The major components of ERAS attenuate the inflammatory response and modulate metabolism in direction of sparing body protein and preserving function. However, these perioperative interventions might have limited effectiveness on postoperative outcomes if preoperative risk factors are not addressed and optimized. RECENT FINDINGS The preoperative metabolic perturbations characterized by insulin resistance and sarcopenia might predispose patients to a higher degree of postoperative catabolism. High-risk populations for such metabolic disturbances include elderly and frail patients, and patients with metabolic syndrome. Research on the effect of prehabilitation on perioperative metabolism is limited, but recent findings suggest that interventions designed to improve insulin sensitivity prior to surgery might represent a promising therapeutic target to minimize surgical complications. SUMMARY The present paper will discuss the metabolic implications of modulating preoperative risk factors with elements of multimodal prehabilitation, such as exercise training and nutrition.
Collapse
Affiliation(s)
| | - Chelsia Gillis
- Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, AB, Canada
| | - Franco Carli
- Department of Anesthesia, McGill University, Montreal, QC
| |
Collapse
|
18
|
Iwata W, Unoki-Kubota H, Kato H, Shimizu A, Matsumoto M, Imasawa T, Igarashi A, Matsumoto K, Noda T, Terauchi Y, Nangaku M, Kasuga M, Kaburagi Y. Podocyte-specific deletion of tubular sclerosis complex 2 promotes focal segmental glomerulosclerosis and progressive renal failure. PLoS One 2020; 15:e0229397. [PMID: 32191726 PMCID: PMC7082048 DOI: 10.1371/journal.pone.0229397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity can initiate and accelerate the progression of kidney diseases. However, it remains unclear how obesity affects renal dysfunction. Here, we show that a newly generated podocyte-specific tubular sclerosis complex 2 (Tsc2) knockout mouse model (Tsc2Δpodocyte) develops proteinuria and dies due to end-stage renal dysfunction by 10 weeks of age. Tsc2Δpodocyte mice exhibit an increased glomerular size and focal segmental glomerulosclerosis, including podocyte foot process effacement, mesangial sclerosis and proteinaceous casts. Podocytes isolated from Tsc2Δpodocyte mice show nuclear factor, erythroid derived 2, like 2-mediated increased oxidative stress response on microarray analysis and their autophagic activity is lowered through the mammalian target of rapamycin (mTOR)-unc-51-like kinase 1 pathway. Rapamycin attenuated podocyte dysfunction and extends survival in Tsc2Δpodocyte mice. Additionally, mTOR complex 1 (mTORC1) activity is increased in podocytes of renal biopsy specimens obtained from obese patients with chronic kidney disease. Our work shows that mTORC1 hyperactivation in podocytes leads to severe renal dysfunction and that inhibition of mTORC1 activity in podocytes could be a key therapeutic target for obesity-related kidney diseases.
Collapse
Affiliation(s)
- Wakiko Iwata
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hiroyuki Unoki-Kubota
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideki Kato
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshiyuki Imasawa
- Kidney Center, National Hospital Organization Chiba-Higashi National Hospital, Chiba, Japan
| | - Arisa Igarashi
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Kasuga
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Robinson S, Kwan Z, Tang MM. Metformin as an adjunct therapy for the treatment of moderate to severe acne vulgaris: A randomized open‐labeled study. Dermatol Ther 2019; 32:e12953. [DOI: 10.1111/dth.12953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Suganthy Robinson
- Department of DermatologyHospital Kuala Lumpur Kuala Lumpur Malaysia
| | - Zhenli Kwan
- Department of DermatologyUniversity of Malaya Medical Centre Kuala Lumpur Malaysia
| | - Min Moon Tang
- Department of DermatologyHospital Kuala Lumpur Kuala Lumpur Malaysia
| |
Collapse
|
20
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Ezquerro S, Rodríguez A, Portincasa P, Frühbeck G. Effects of Diets on Adipose Tissue. Curr Med Chem 2019; 26:3593-3612. [PMID: 28521681 DOI: 10.2174/0929867324666170518102340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Obesity is a major health problem that has become a global epidemic. Overweight and obesity are commonly associated with the development of several pathologies, such as insulin resistance, cardiovascular diseases, sleep apnea and several types of cancer, which can lead to further morbidity and mortality. An increased abdominal adiposity renders overweight and obese individuals more prone to metabolic and cardiovascular problems. OBJECTIVE This Review aims to describe the dietary strategies to deal with excess adiposity given the medical, social and economic consequences of obesity. METHODS One hundred and eighty-five papers were included in the present Review. RESULTS Excess adiposity leads to several changes in the biology, morphology and function of the adipose tissue, such as adipocyte hypertrophy and hyperplasia, adipose tissue inflammation and fibrosis and an impaired secretion of adipokines, contributing to the onset of obesity- related comorbidities. The first approach for obesity management and prevention is the implementation of a diet combined with physical activity. The present review summarizes the compelling evidence showing body composition changes, impact on cardiometabolism and potential adverse effects of very-low calorie, low- and high-carbohydrate, high-protein or low-fat diets. The use of macronutrients during the preprandial and postprandial state has been also reviewed to better understand the metabolic changes induced by different dietary interventions. CONCLUSION Dietary changes should be individualised, tailored to food preferences and allow for flexible approaches to reducing calorie intake in order to increase the motivation and compliance of overweight and obese patients.
Collapse
Affiliation(s)
- Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology University of Bari Medical School, Policlinico Hospital, Bari, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
22
|
Salvestrini V, Sell C, Lorenzini A. Obesity May Accelerate the Aging Process. Front Endocrinol (Lausanne) 2019; 10:266. [PMID: 31130916 PMCID: PMC6509231 DOI: 10.3389/fendo.2019.00266] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Lines of evidence from several studies have shown that increases in life expectancy are now accompanied by increased disability rate. The expanded lifespan of the aging population imposes a challenge on the continuous increase of chronic disease. The prevalence of overweight and obesity is increasing at an alarming rate in many parts of the world. Further to increasing the onset of metabolic imbalances, obesity leads to reduced life span and affects cellular and molecular processes in a fashion resembling aging. Nine key hallmarks of the aging process have been proposed. In this review, we will review these hallmarks and discuss pathophysiological changes that occur with obesity, that are similar to or contribute to those that occur during aging. We present and discuss the idea that obesity, in addition to having disease-specific effects, may accelerate the rate of aging affecting all aspects of physiology and thus shortening life span and health span.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, Biochemistry Unit, University of Bologna, Bologna, Italy
- *Correspondence: Antonello Lorenzini
| |
Collapse
|
23
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
24
|
Spradley FT, Smith JA, Alexander BT, Anderson CD. Developmental origins of nonalcoholic fatty liver disease as a risk factor for exaggerated metabolic and cardiovascular-renal disease. Am J Physiol Endocrinol Metab 2018; 315:E795-E814. [PMID: 29509436 PMCID: PMC6293166 DOI: 10.1152/ajpendo.00394.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrauterine growth restriction (IUGR) is linked to increased risk for chronic disease. Placental ischemia and insufficiency in the mother are implicated in predisposing IUGR offspring to metabolic dysfunction, including hypertension, insulin resistance, abnormalities in glucose homeostasis, and nonalcoholic fatty liver disease (NAFLD). It is unclear whether these metabolic disturbances contribute to the developmental origins of exaggerated cardiovascular-renal disease (CVRD) risk accompanying IUGR. IUGR impacts the pancreas, adipose tissue, and liver, which are hypothesized to program for hepatic insulin resistance and subsequent NAFLD. NAFLD is projected to become the major cause of chronic liver disease and contributor to uncontrolled type 2 diabetes mellitus, which is a leading cause of chronic kidney disease. While NAFLD is increased in experimental models of IUGR, lacking is a full comprehension of the mechanisms responsible for programming of NAFLD and whether this potentiates susceptibility to liver injury. The use of well-established and clinically relevant rodent models, which mimic the clinical characteristics of IUGR, metabolic disturbances, and increased blood pressure in the offspring, will permit investigation into mechanisms linking adverse influences during early life and later chronic health. The purpose of this review is to propose mechanisms, including those proinflammatory in nature, whereby IUGR exacerbates the pathogenesis of NAFLD and how these adverse programmed outcomes contribute to exaggerated CVRD risk. Understanding the etiology of the developmental origins of chronic disease will allow investigators to uncover treatment strategies to intervene in the mother and her offspring to halt the increasing prevalence of metabolic dysfunction and CVRD.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jillian A Smith
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Barbara T Alexander
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
- Department of Physiology and Biophysics, The University of Mississippi Medical Center , Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery, Division of Transplant and Hepatobiliary Surgery, School of Medicine, The University of Mississippi Medical Center , Jackson, Mississippi
- Cardiovascular-Renal Research Center, The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
25
|
Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S, Qiu Z, Li S, Chen Q, Zhou H, Song Y, Huang W, Tan W, Wang Z. Bioinformatic Analysis of Potential Biomarkers for Spinal Cord-injured Patients with Intractable Neuropathic Pain. Clin J Pain 2018; 34:825-830. [PMID: 29547407 PMCID: PMC6078488 DOI: 10.1097/ajp.0000000000000608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Neuropathic pain is one of the common complications after spinal cord injury (SCI), affecting individuals' quality of life. The molecular mechanism for neuropathic pain after SCI is still unclear. We aimed to discover potential genes and microRNAs (miRNAs) related to neuropathic pain by the bioinformatics method. METHODS Microarray data of GSE69901 were obtained from Gene Expression Omnibus (GEO) database. Peripheral blood samples from individuals with or without neuropathic pain after SCI were collected. Twelve samples from individuals with neuropathic pain and 13 samples from individuals without pain as controls were included in the downloaded microarray. Differentially expressed genes (DEGs) between the neuropathic pain group and the control group were detected using the GEO2R online tool. Functional enrichment analysis of DEGs was performed using the DAVID database. Protein-protein interaction network was constructed from the STRING database. MiRNAs targeting these DEGs were obtained from the miRNet database. A merged miRNA-DEG network was constructed and analyzed with Cytoscape software. RESULTS In total, 1134 DEGs were identified between individuals with or without neuropathic pain (case and control), and 454 biological processes were enriched. We identified 4 targeted miRNAs, including mir-204-5p, mir-519d-3p, mir-20b-5p, mir-6838-5p, which may be potential biomarkers for SCI patients. CONCLUSION Protein modification and regulation of the biological process of the central nervous system may be a risk factor in SCI. Certain genes and miRNAs may be potential biomarkers for the prediction of and potential targets for the prevention and treatment of neuropathic pain after SCI.
Collapse
Affiliation(s)
- Yimin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Chanyan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Zeting Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Si Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Qinchang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Huaqiang Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Yiyan Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
26
|
Melnik BC, John SM, Chen W, Plewig G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. Br J Dermatol 2018; 179:260-272. [PMID: 29573406 DOI: 10.1111/bjd.16561] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Disintegration of the infundibula of terminal hair follicles (HFs) in intertriginous skin areas exhibits the histological hallmark of hidradenitis suppurativa (HS)/acne inversa, featuring a dissecting terminal hair folliculitis. Elevated serum levels of interleukin (IL)-17 and local increase in the ratio of proinflammatory T helper (Th)17 cells and anti-inflammatory regulatory T cells (Tregs) have been reported. Perifollicular Tregs play a key role in HF stem cell homeostasis and infundibular integrity. OBJECTIVES In this review, we evaluate the Th17/Treg ratio in HS, its aggravating conditions and associated comorbidities. Furthermore, we intended to clarify whether drugs with reported beneficial effects in the treatment of HS readjust the deviated Th17/Treg axis. METHODS PubMed-listed, peer-reviewed original research articles characterizing Th17/Treg regulation in HS/acne inversa and associated comorbidities were selected for this review. RESULTS This review presents HS as a disease that exhibits an increased Th17/Treg ratio. Perifollicular deficiencies in Treg numbers or function may disturb HF stem cell homeostasis, initiating infundibular dissection of terminal HFs and perifollicular inflammation. The Th17/Treg imbalance is aggravated by obesity, smoking and decreased Notch signalling. In addition, HS-associated autoimmune diseases exhibit a disturbed Th17/Treg axis resulting in a Th17-dominant state. All drugs that have beneficial effects in the treatment of HS normalize the Th17/Treg ratio. CONCLUSIONS HS immunopathogenesis is closely related to deviations of the Th17/Treg balance, which may negatively affect Treg-controlled HF stem cell homeostasis and infundibular integrity. Pharmacological intervention should not only attenuate Th17/IL-17 signalling, but should also improve Treg function in order to stabilize HF stem cell homeostasis and infundibular integrity.
Collapse
Affiliation(s)
- B C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - S M John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - W Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
27
|
Excessive Endoplasmic Reticulum Stress Correlates with Impaired Mitochondrial Dynamics, Mitophagy and Apoptosis, in Liver and Adipose Tissue, but Not in Muscles in EMS Horses. Int J Mol Sci 2018; 19:ijms19010165. [PMID: 29316632 PMCID: PMC5796114 DOI: 10.3390/ijms19010165] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, endocrine disorders have become more frequent in both human and veterinary medicine. In horses, reduced physical activity combined with carbohydrate and sugar overload may result in the development of the so-called equine metabolic syndrome (EMS). EMS is characterized by insulin resistance, hyperinsulinemia, elevated blood triglyceride concentrations and usually obesity. Although the phenotypic features of EMS individuals are well known, the molecular mechanism underlying disease development remains elusive. Therefore, in the present study, we analyzed insulin-sensitive tissues, i.e., muscles, liver and adipose tissue in order to evaluate insulin resistance and apoptosis. Furthermore, we assessed mitochondrial dynamics and mitophagy in those tissues, because mitochondrial dysfunction is linked to the development of metabolic syndrome. We established the expression of genes related to insulin resistance, endoplasmic reticulum (ER) stress and mitochondria clearance by mitophagy using RT-PCR and Western blot. Cell ultrastructure was visualized using electron transmission microscopy. The results indicated that adipose tissue and liver of EMS horses were characterized by increased mitochondrial damage and mitophagy followed by triggering of apoptosis as mitophagy fails to restore cellular homeostasis. However, in muscles, apoptosis was reduced, suggesting the existence of a protective mechanism allowing that tissue to maintain homeostasis.
Collapse
|
28
|
Hyperphosphorylation of RPS6KB1, rather than overexpression, predicts worse prognosis in non-small cell lung cancer patients. PLoS One 2017; 12:e0182891. [PMID: 28792981 PMCID: PMC5549961 DOI: 10.1371/journal.pone.0182891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/26/2017] [Indexed: 02/05/2023] Open
Abstract
RPS6KB1 is the kinase of ribosomal protein S6 which is 70 kDa and is required for protein translation. Although the abnormal activation of RPS6KB1 has been found in types of diseases, its role and clinical significance in non-small cell lung cancer (NSCLC) has not been fully investigated. In this study, we identified that RPS6KB1 was over-phosphorylated (p-RPS6KB1) in NSCLC and it was an independent unfavorable prognostic marker for NSCLC patients. In spite of the frequent expression of total RPS6KB1 and p-RPS6KB1 in NSCLC specimens by immunohistochemical staining (IHC), only p-RPS6KB1 was associated with the clinicopathologic characteristics of NSCLC subjects. Kaplan-Meier survival analysis revealed that the increased expression of p-RPS6KB1 indicated a poorer 5-year overall survival (OS) for NSCLC patients, while the difference between the positive or negative RPS6KB1 group was not significant. Univariate and multivariate Cox regression analysis was then used to confirm the independent prognostic value of p-RPS6KB1. To illustrate the underlying mechanism of RPS6KB1 phosphorylation in NSCLC, LY2584702 was employed to inhibit the RPS6KB1 phosphorylation specifically both in lung adenocarcinoma cell line A549 and squamous cell carcinoma cell line SK-MES-1. As expected, RPS6KB1 dephosphorylation remarkably suppressed cells proliferation in CCK-8 test, and promoted more cells arresting in G0-G1 phase by cell cycle analysis. Moreover, apoptotic A549 cells with RPS6KB1 dephosphorylation increased dramatically, with an elevating trend in SK-MES-1, indicating a potential involvement of RPS6KB1 phosphorylation in inducing apoptosis. In conclusion, our data suggest that RPS6KB1 is over-activated as p-RPS6KB1 in NSCLC, rather than just the total protein overexpressing. The phosphorylation level of RPS6KB1 might be used as a novel prognostic marker for NSCLC patients.
Collapse
|
29
|
Jia G, Jia Y, Sowers JR. Contribution of Maladaptive Adipose Tissue Expansion to Development of Cardiovascular Disease. Compr Physiol 2016; 7:253-262. [PMID: 28135006 DOI: 10.1002/cphy.c160014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The overweight and obesity epidemic has led to an increase in the metabolic syndrome and associated cardiovascular disease (CVD). These abnormalities include insulin resistance, type 2 diabetes mellitus, vascular stiffness, hypertension, stroke, and coronary heart disease. Visceral white adipocyte tissue (WAT) expansion and associated fibrosis/stiffness of WAT promote insulin resistance and CVD through increases in proinflammatory adipokines, oxidative stress, activation of renin-angiotensin-aldosterone system, dysregulation of adipocyte apoptosis and autophagy, dysfunctional immune modulation, and adverse changes in the gut microbiome. The expansion of WAT is partly determined by activation of peroxisome proliferator-activated receptor gamma and mammalian target of rapamycin/ribosomal S6 kinase signaling pathways. Further, the chronic activation of these signaling pathways may not only induce adipocyte hypertrophy and fibrosis, but also contribute to systemic inflammation, and impairment of insulin metabolic signaling in fat, liver, and skeletal muscle tissue. Therefore, the interplay of adipocyte dysfunction, maladaptive immune and inflammatory responses, and associated metabolic disorders often coexist leading to systemic low-grade inflammation and insulin resistance that are associated with increased CVD in obese individuals. © 2017 American Physiological Society. Compr Physiol 7:253-262, 2017.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Yan Jia
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA.,Dalton Cardiovascular Center, University of Missouri School of Medicine, Columbia, Missouri, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| |
Collapse
|
30
|
Cheng TYD, Shankar J, Zirpoli G, Roberts MR, Hong CC, Bandera EV, Ambrosone CB, Yao S. Genetic variants in the mTOR pathway and interaction with body size and weight gain on breast cancer risk in African-American and European American women. Cancer Causes Control 2016; 27:965-76. [PMID: 27314662 DOI: 10.1007/s10552-016-0774-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE Positive energy imbalance and growth factors linked to obesity promote the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway. As the obesity-breast cancer associations differ between European American (EA) and African-American (AA) women, we investigated genetic variants in the mTOR pathway and breast cancer risk in these two racial groups. METHODS We examined 400 single-nucleotide polymorphisms (SNPs) in 31 mTOR pathway genes in the Women's Circle of Health Study with 1263 incident breast cancers (645 EA, 618 AA) and 1382 controls (641 EA, 741 AA). Multivariable logistic regression was performed separately within racial groups. Effect modification was assessed for measured body size and weight gain since age 20. RESULTS In EA women, variants in FRAP1 rs12125777 (intron), PRR5L rs3740958 (synonymous coding), and CDKAL1 rs9368197 (intron) were associated with increased breast cancer risk, while variants in RPTOR rs9900506 (intron) were associated with decreased risk (nominal p-trend for functional and FRAP1 SNPs or p adjusted for correlated test [p ACT] < 0.05). For AA women, variants in RPTOR rs3817293 (intron), PIK3R1 rs7713645 (intron), and CDKAL1 rs9368197 were associated with decreased breast cancer risk. The significance for FRAP1 rs12125777 and RPTOR rs9900506 in EA women did not hold after correction for multiple comparisons. The risk associated with FRAP1 rs12125777 was higher among EAs who had body mass index ≥30 kg/m(2) (odds ratio = 7.69, 95 % CI 2.11-28.0; p-interaction = 0.007) and gained weight ≥35 lb since age 20 (odds ratio = 3.34, 95 % CI 1.42-7.85; p-interaction = 0.021), compared to their counterparts. CONCLUSIONS The mTOR pathway may be involved in breast cancer carcinogenesis differently for EA and AA women.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA.
| | | | - Gary Zirpoli
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA
| | - Michelle R Roberts
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA
| | - Elisa V Bandera
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA
| |
Collapse
|
31
|
Reis FCG, Branquinho JLO, Brandão BB, Guerra BA, Silva ID, Frontini A, Thomou T, Sartini L, Cinti S, Kahn CR, Festuccia WT, Kowaltowski AJ, Mori MA. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging (Albany NY) 2016; 8:1201-1222. [PMID: 27241713 PMCID: PMC4931827 DOI: 10.18632/aging.100970] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/15/2016] [Indexed: 01/08/2023]
Abstract
Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.
Collapse
Affiliation(s)
- Felipe C. G. Reis
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jéssica L. O. Branquinho
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna B. Brandão
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A. Guerra
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ismael D. Silva
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea Frontini
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Thomas Thomou
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Loris Sartini
- Department of Clinical and Experimental Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Saverio Cinti
- Department of Clinical and Experimental Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - William T. Festuccia
- Departament of Physiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia J. Kowaltowski
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo A. Mori
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
32
|
Cai H, Dong LQ, Liu F. Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends Pharmacol Sci 2015; 37:303-317. [PMID: 26700098 DOI: 10.1016/j.tips.2015.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
The increasing epidemic of obesity and its comorbidities has spurred research interest in adipose biology and its regulatory functions. Recent studies have revealed that the mechanistic target of rapamycin (mTOR) signaling pathway has a critical role in the regulation of adipose tissue function, including adipogenesis, lipid metabolism, thermogenesis, and adipokine synthesis and/or secretion. Given the importance of mTOR signaling in controlling energy homeostasis, it is not unexpected that deregulated mTOR signaling is associated with obesity and related metabolic disorders. In this review, we highlight current advances in understanding the roles of the mTOR signaling pathway in adipose tissue. We also provide a more nuanced view of how the mTOR signaling pathway regulates adipose tissue biology and function. Finally, we describe approaches to modulate the activity and tissue-specific function of mTOR that may pave the way towards counteracting obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Huan Cai
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, UTHSCSA, San Antonio, TX, USA
| | - Lily Q Dong
- Departments of Cellular Structural Biology, UTHSCSA, San Antonio, TX, USA
| | - Feng Liu
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|
33
|
Dasuri K, Zhang L, Kim SOKF, Bruce-Keller AJ, Keller JN. Dietary and donepezil modulation of mTOR signaling and neuroinflammation in the brain. Biochim Biophys Acta Mol Basis Dis 2015; 1862:274-83. [PMID: 26554604 DOI: 10.1016/j.bbadis.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022]
Abstract
Recent clinical and laboratory evidences suggest that high fat diet (HFD) induced obesity and its associated metabolic syndrome conditions promotes neuropathology in aging and age-related neurological disorders. However, the effects of high fat diet on brain pathology are poorly understood, and the effective strategies to overcome these effects remain elusive. In the current study, we examined the effects of HFD on brain pathology and further evaluated whether donepezil, an AChE inhibitor with neuroprotective functions, could suppress the ongoing HFD induced pathological changes in the brain. Our data demonstrates that HFD induced obesity results in increased neuroinflammation and increased AChE activity in the brain when compared with the mice fed on low fat diet (LFD). HFD administration to mice activated mTOR pathway resulting in increased phosphorylation of mTOR(ser2448), AKT(thr308) and S6K proteins involved in the signaling. Interestingly, donepezil administration with HFD suppressed HFD induced increases in AChE activity, and partially reversed HFD effects on microglial reactivity and the levels of mTOR signaling proteins in the brain when compared to the mice on LFD alone. However, gross levels of synaptic proteins were not altered in the brain tissues of mice fed either diet with or without donepezil. In conclusion, these results present a new insight into the detrimental effects of HFD on brain via microglial activation and involvement of mTOR pathway, and further demonstrates the possible therapeutic role for donepezil in ameliorating the early effects of HFD that could help preserve the brain function in metabolic syndrome conditions.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA 70810, USA.
| | - Le Zhang
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA 70810, USA
| | | | | | - Jeffrey N Keller
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA 70810, USA
| |
Collapse
|