1
|
Kulecki M, Uruska A, Naskret D, Zozulinska-Ziolkiewicz D. Arterial Stiffness and Type 1 Diabetes: The Current State of Knowledge. Curr Diabetes Rev 2022; 18:e140621194054. [PMID: 35546329 DOI: 10.2174/1573399817666210614113827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
The most common cause of mortality among people with type 1 diabetes is cardiovascular diseases. Arterial stiffness allows predicting cardiovascular complications, cardiovascular mortality, and all-cause mortality. There are different ways to measure arterial stiffness; the gold standard is pulse wave velocity. Arterial stiffness is increased in people with type 1 diabetes compared to healthy controls. It increases with age and duration of type 1 diabetes. Arterial stiffness among people with type 1 diabetes positively correlates with systolic blood pressure, obesity, glycated hemoglobin, waist circumference, and waist to hip ratio. It has a negative correlation with the estimated glomerular filtration rate, high-density lipoprotein, and the absence of carotid plaques. The increased arterial stiffness could result from insulin resistance, collagen increase due to inadequate enzymatic glycation, and endothelial and autonomic dysfunction. The insulin-induced decrease in arterial stiffness is impaired in type 1 diabetes. There are not enough proofs to use pharmacotherapy in the prevention of arterial stiffness, but some of the medicaments got promising results in single studies, for example, renin-angiotensin-aldosterone system inhibitors, statins, and SGLT2 inhibitors. The main strategy of prevention of arterial stiffness progression remains glycemic control and a healthy lifestyle.
Collapse
Affiliation(s)
- Michal Kulecki
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Uruska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poznań, Poland
| | - Dariusz Naskret
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
2
|
Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1-R27. [PMID: 29488785 DOI: 10.1152/ajpregu.00165.2017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular oxygen (O2) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O2 delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress. Nevertheless, with various degrees of effectiveness, and not without consequences, supplemental oxygen is used clinically in an attempt to correct tissue hypoxia (e.g., brain ischemia, traumatic brain injury, carbon monoxide poisoning, etc.) and chronic hypoxemia (e.g., severe COPD, etc.) and to help with wound healing, necrosis, or reperfusion injuries (e.g., compromised grafts). Hyperoxia has also been used liberally by athletes in a belief that it offers performance-enhancing benefits; such benefits also extend to hypoxemic patients both at rest and during rehabilitation. This review aims to provide a comprehensive overview of the effects of hyperoxia in humans from the "bench to bedside." The first section will focus on the basic physiological principles of partial pressure of arterial O2, [Formula: see text], and barometric pressure and how these changes lead to variation in regional O2 delivery. This review provides an overview of the evidence for and against the use of hyperoxia as an aid to enhance physical performance. The final section addresses pathophysiological concepts, clinical studies, and implications for therapy. The potential of O2 toxicity and future research directions are also considered.
Collapse
Affiliation(s)
| | - Geoff B Coombs
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Otto F Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split , Split , Croatia
| | - Mypinder S Sekhon
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada.,Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia , Vancouver, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
3
|
Oxygen-induced impairment in arterial function is corrected by slow breathing in patients with type 1 diabetes. Sci Rep 2017; 7:6001. [PMID: 28729675 PMCID: PMC5519543 DOI: 10.1038/s41598-017-04947-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
Hyperoxia and slow breathing acutely improve autonomic function in type-1 diabetes. However, their effects on arterial function may reveal different mechanisms, perhaps potentially useful. To test the effects of oxygen and slow breathing we measured arterial function (augmentation index, pulse wave velocity), baroreflex sensitivity (BRS) and oxygen saturation (SAT), during spontaneous and slow breathing (6 breaths/min), in normoxia and hyperoxia (5 L/min oxygen) in 91 type-1 diabetic and 40 age-matched control participants. During normoxic spontaneous breathing diabetic subjects had lower BRS and SAT, and worse arterial function. Hyperoxia and slow breathing increased BRS and SAT. Hyperoxia increased blood pressure and worsened arterial function. Slow breathing improved arterial function and diastolic blood pressure. Combined administration prevented the hyperoxia-induced arterial pressure and function worsening. Control subjects showed a similar pattern, but with lesser or no statistical significance. Oxygen-driven autonomic improvement could depend on transient arterial stiffening and hypertension (well-known irritative effect of free-radicals on endothelium), inducing reflex increase in BRS. Slow breathing-induced improvement in BRS may result from improved SAT, reduced sympathetic activity and improved vascular function, and/or parasympathetic-driven antioxidant effect. Lower oxidative stress could explain blunted effects in controls. Slow breathing could be a simple beneficial intervention in diabetes.
Collapse
|