1
|
Wiese ML, Frost F, Bahls M, von Rheinbaben S, Rühlemann M, Bang C, Franke A, Nauck M, Bülow R, Völker U, Völzke H, Ittermann T, Lerch MM, Aghdassi AA. Dietary Diversity, Rather Than Quality, Parallels a Reduction in Metabolic Syndrome and a Favorable Gut Microbiome: The Dietary Diversity Score. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:256-266. [PMID: 39556796 DOI: 10.1080/27697061.2024.2423775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE Diet plays a crucial role in the development of metabolic syndrome (MetS). While dietary recommendations primarily focus on quality of food intake, the relevance and mechanisms of dietary diversity for the prevention of obesity and metabolic diseases are unclear. Here, we investigate the respective associations of dietary diversity and quality with MetS and gut microbiota composition. METHODS Pooled data from 2 independent population-based cohorts of the Study of Health in Pomerania (n = 6753) were used. Based on a validated food frequency questionnaire a novel dietary diversity score (DDS) and an established dietary quality score (DQS) were calculated. Both were correlated with anthropometric data and clinical components of MetS as well as with intestinal microbial composition (16S rRNA gene sequencing). RESULTS DDS was associated with a healthier metabolic phenotype and lower MetS risk in both cross-sectional (odds ratio [OR], 0.90; 95% CI, 0.82-0.93; p < 0.001) and longitudinal analyses of 5-year follow-up data (OR, 0.89; 95% CI, 0.79-0.99; p = 0.029). In contrast, there were hardly any favorable associations between DQS and MetS, neither cross-sectionally nor longitudinally. DDS explained 42.6% more beta diversity variation in gut microbiota than DQS and was linked to a more favorable microbial composition (e.g., less Escherichia/Shigella [q = 0.00576] and greater Ruminococcaceae [q = 0.01263] abundance). CONCLUSIONS Dietary diversity, as determined by the novel DDS, reduces MetS risk, whereas dietary quality was less important in that regard. Greater dietary diversity was paralleled by greater microbiota diversity and a healthier gut microbiome. Future dietary recommendations should emphasize dietary diversity rather than absolute consumption of nutritional components.
Collapse
Affiliation(s)
- Mats L Wiese
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany
| | | | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK), Greifswald, Germany
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany
| | - Markus M Lerch
- University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Profir M, Enache RM, Roşu OA, Pavelescu LA, Creţoiu SM, Gaspar BS. Malnutrition and Its Influence on Gut sIgA-Microbiota Dynamics. Biomedicines 2025; 13:179. [PMID: 39857762 PMCID: PMC11762760 DOI: 10.3390/biomedicines13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the current era, malnutrition is seen as both undernutrition and overweight and obesity; both conditions are caused by nutrient deficiency or excess and improper use or imbalance in the intake of macro and micronutrients. Recent evidence suggests that malnutrition alters the intestinal microbiota, known as dysbiosis. Secretory immunoglobulin A (sIgA) plays an important role in maintaining and increasing beneficial intestinal microbiota populations and protecting against pathogenic species. Depletion of beneficial bacterial populations throughout life is also conditioned by malnutrition. This review aims to synthesize the evidence that establishes an interrelationship between diet, malnutrition, changes in the intestinal flora, and sIgA levels. Targeted nutritional therapies combined with prebiotic, probiotic, and postbiotic administration can restore the immune response in the intestine and the host's homeostasis.
Collapse
Affiliation(s)
- Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.); (L.A.P.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
3
|
Zhong Z, An R, Ma S, Zhang N, Zhang X, Chen L, Wu X, Lin H, Xiang T, Tan H, Chen M. Association between the Maternal Gut Microbiome and Macrosomia. BIOLOGY 2024; 13:570. [PMID: 39194508 DOI: 10.3390/biology13080570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Fetal macrosomia is defined as a birthweight ≥4000 g and causes harm to pregnant women and fetuses. Studies reported that the maternal intestinal microbiome plays a key role in the establishment, growth, and development of the fetal intestinal microbiome. However, whether there is a relationship between maternal gut microbiota and macrosomia remains unclear. Our study aimed to identify gut microbiota that may be related to the occurrence of macrosomia, explore the possible mechanisms by which it causes macrosomia, and establish a prediction model to determine the feasibility of predicting macrosomia by early maternal gut microbiota. We conducted a nested case-control study based on an early pregnancy cohort (ChiCTR1900020652) in the Maternity and Child Health Hospital of Hunan Province on fecal samples of 93 women (31 delivered macrosomia as the case group and 62 delivered normal birth weight newborns as the control group) collected and included in this study. We performed metagenomic analysis to compare the composition and function of the gut microbiome between cases and controls. Correlation analysis was used to explore the association of differential species and differential functional pathways. A random forest model was used to construct an early pregnancy prediction model for macrosomia. At the species level, there were more Bacteroides salyersiae, Bacteroides plebeius, Ruminococcus lactaris, and Bacteroides ovatus in the intestinal microbiome of macrosomias' mothers compared with mothers bearing fetuses that had normal birth weight. Functional pathways of the gut microbiome including gondoate biosynthesis, L-histidine degradation III, cis-vaccenate biosynthesis, L-arginine biosynthesis III, tRNA processing, and mannitol cycle, which were more abundant in the macrosomia group. Significant correlations were found between species and functional pathways. Bacteroides plebeius was significantly associated with the pathway of cis-vaccenate biosynthesis (r = 0.28, p = 0.005) and gondoate biosynthesis (r = 0.28, p < 0.001) and Bacteroides ovatus was positively associated with the pathway of cis-vaccenate biosynthesis (r = 0.29, p = 0.005) and gondoate biosynthesis (r = 0.32, p = 0.002). Bacteroides salyersiae was significantly associated with the pathway of cis-vaccenate biosynthesis (r = 0.24, p = 0.018), gondoate biosynthesis (r = 0.31, p = 0.003), and L-histidine degradation III (r = 0.22, p = 0.291). Finally, four differential species and four clinical indicators were included in the random forest model for predicting macrosomia. The areas under the working characteristic curves of the training and validation sets were 0.935 (95% CI: 0.851~0.979) and 0.909 (95% CI: 0.679~0.992), respectively. Maternal gut microbiota in early pregnancy may play an important role in the development of macrosomia and can be used as potential predictors to prevent macrosomia.
Collapse
Affiliation(s)
- Zixin Zhong
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Rongjing An
- Chaoyang District Center for Diseases Prevention and Control of Beijing, Beijing 100020, China
| | - Shujuan Ma
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410008, China
| | - Na Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xian Zhang
- Department of Occupational and Environment Health, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Xinrui Wu
- School of Medicine, Jishou University, Jishou 416000, China
| | - Huijun Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Tianyu Xiang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410013, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410013, China
| |
Collapse
|
4
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
5
|
Chen L, Chen J, Huang Y, Wu Y, Li J, Ni W, Lu Y, Li Z, Zhao C, Kong S, Zhou H, Qu X. Changes of the gut microbiota composition and short chain fatty acid in patients with atrial fibrillation. PeerJ 2023; 11:e16228. [PMID: 38084144 PMCID: PMC10710774 DOI: 10.7717/peerj.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/12/2023] [Indexed: 12/18/2023] Open
Abstract
Background With the establishment of the cardiac-gut axis concept, increasing evidence has suggested the involvement and important regulatory role of the gut microbiota (GM) and short chain fatty acid (SCFA) in cardiovascular diseases. However, the relationship between GM and atrial fibrillation (AF) is still poorly understood. Objectives The aim of this study was to investigate whether there were differences in GM and SCFA between AF patients and healthy controls. Methods In this study, we enrolled 30 hospitalized patients with AF and 30 matched patients with sinus rhythm (SR). GM species in fecal samples were evaluated through amplicon sequencing targeting the 16Sribosomal RNA gene. The feces SCFAs were describe step by step the quantitative analysis using gas chromatography-mass spectrometry (GC-MS). GM species richness, diversity, differential abundance of individual taxa between AF and SR were analyzed. Results AF patients showed decreased species richness and α-diversity compared to SR patients, but there was no statistical difference. The phylogenetic diversity was significant decreased in AF group. The β-diversity indexes revealed significant differences in GM community structure between the AF group and the SR group. After investigated the individual taxa, AF group showed altered relative abundance in several taxa compared to the SR group. linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed, a significant decrease in Bifidobacterium and a greater abundance of Lactobacillus, Fusobacterium, Haemophilus in AF group compared with the SR group. The abundance of haemophilus was negative correlated with isovaleric acid and isobutyric acid. Conclusions In AF patients, the GM phylogenetic diversity and β-diversity decreased, the relative abundance altered in several taxa and the bacterial community structure changed as well as the SCFA level. GM and SCFA dysbiosis might play a crucial part in the occurrence and development of AF.
Collapse
Affiliation(s)
| | - Jinxin Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuheng Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanran Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junfeng Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weicheng Ni
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yucheng Lu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuhuan Zhao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuting Kong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Qu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Ravà L, Fintini D, Mariani M, Deodati A, Inzaghi E, Pedicelli S, Bizzarri C, Cappa M, Cianfarani S, Manco M. High 1-h glucose in youths with obesity as marker of prediabetes and cardiovascular risk. J Endocrinol Invest 2023; 46:2555-2562. [PMID: 37204691 DOI: 10.1007/s40618-023-02111-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE Testing 1-h glucose (1HG) concentration during oral glucose tolerance test is cost-effective to identify individuals at risk of incident type 2 diabetes. Aim of the study was to define 1HG cutoffs diagnostic of incident impaired glucose tolerance (IGT) in youths with obesity, and to evaluate prevalence and association of cutoffs identified in the cohort and from the literature (133 and 155 mg/dl) to cardiovascular disease (CVD) in a population of youths with obesity. METHODS This is a longitudinal study of 154 youths to identify 1HG cutoffs, and cross-sectional study of 2295 youths to estimate prevalence of high 1HG and association to CVD. Receiver-operating characteristic curves (ROC) were used to establish 1HG cutoffs, and univariate regression analyses to test association of 1HG to blood pressure, lipids and aminotransferases. RESULTS ROC analysis identified the 1HG cutoff of 159 mg/dl as having diagnostic accuracy of IGT with area under the ROC 0.82 (95% CI 0.66-0.98), sensitivity 0.86% and specificity 0.79%. In the cross-sectional population, prevalence of high 1HG was 36% and 15% for 133 and 155 mg/dl cutoffs, respectively, and 17% for the 159 mg/dl value. All the examined cutoffs were significantly associated with worse lipid profile, liver function test, reduced insulin sensitivity, secretion and disposition index. CONCLUSION High 1HG is marker of persistent IGT and increased risk of metabolic abnormalities in youths. The 155 mg/dl cutoff is a convenient estimate in young people but longitudinal studies with retinopathy and overt diabetes as end points are advised to verify the 1HG cutoff with the best diagnostic accuracy.
Collapse
Affiliation(s)
- L Ravà
- Clinical Epidemiology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - D Fintini
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Mariani
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Deodati
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - E Inzaghi
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Pedicelli
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C Bizzarri
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Cianfarani
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
- Diabetes and Growth Disorders Unit, Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - M Manco
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Via F. Baldelli 38, 00146, Rome, Italy.
| |
Collapse
|
7
|
Patra D, Banerjee D, Ramprasad P, Roy S, Pal D, Dasgupta S. Recent insights of obesity-induced gut and adipose tissue dysbiosis in type 2 diabetes. Front Mol Biosci 2023; 10:1224982. [PMID: 37842639 PMCID: PMC10575740 DOI: 10.3389/fmolb.2023.1224982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
An imbalance in microbial homeostasis, referred to as dysbiosis, is critically associated with the progression of obesity-induced metabolic disorders including type 2 diabetes (T2D). Alteration in gut microbial diversity and the abundance of pathogenic bacteria disrupt metabolic homeostasis and potentiate chronic inflammation, due to intestinal leakage or release of a diverse range of microbial metabolites. The obesity-associated shifts in gut microbial diversity worsen the triglyceride and cholesterol level that regulates adipogenesis, lipolysis, and fatty acid oxidation. Moreover, an intricate interaction of the gut-brain axis coupled with the altered microbiome profile and microbiome-derived metabolites disrupt bidirectional communication for instigating insulin resistance. Furthermore, a distinct microbial community within visceral adipose tissue is associated with its dysfunction in obese T2D individuals. The specific bacterial signature was found in the mesenteric adipose tissue of T2D patients. Recently, it has been shown that in Crohn's disease, the gut-derived bacterium Clostridium innocuum translocated to the mesenteric adipose tissue and modulates its function by inducing M2 macrophage polarization, increasing adipogenesis, and promoting microbial surveillance. Considering these facts, modulation of microbiota in the gut and adipose tissue could serve as one of the contemporary approaches to manage T2D by using prebiotics, probiotics, or faecal microbial transplantation. Altogether, this review consolidates the current knowledge on gut and adipose tissue dysbiosis and its role in the development and progression of obesity-induced T2D. It emphasizes the significance of the gut microbiota and its metabolites as well as the alteration of adipose tissue microbiome profile for promoting adipose tissue dysfunction, and identifying novel therapeutic strategies, providing valuable insights and directions for future research and potential clinical interventions.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, Punjab, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| |
Collapse
|
8
|
Sánchez-Conde M, Alba C, Castro I, Dronda F, Ramírez M, Arroyo R, Moreno S, Rodríguez JM, Brañas F. Comparison of the Fecal Bacteriome of HIV-Positive and HIV-Negative Older Adults. Biomedicines 2023; 11:2305. [PMID: 37626801 PMCID: PMC10452058 DOI: 10.3390/biomedicines11082305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
HIV infection is considered a scenario of accelerated aging. Previous studies have suggested a link between aging, frailty, and gut dysbiosis, but there is a knowledge gap regarding the HIV population. Our objective was to compare the fecal bacteriome of older people with HIV (PWH) and non-HIV controls, and to assess potential links between gut dysbiosis and frailty. A total of 36 fecal samples (24 from PWH and 12 from non-HIV controls) were submitted to a metataxonomic analysis targeting the V3-V4 hypervariable region of the 16S rRNA gene. High-quality reads were assembled and classified into operational taxonomic units. Alpha diversity, assessed using the Shannon index, was higher in the control group than in the HIV group (p < 0.05). The relative abundance of the genus Blautia was higher in the HIV group (p < 0.001). The presence of Blautia was also higher in PWH with depression (p = 0.004), whereas the opposite was observed for the genus Bifidobacterium (p = 0.004). Our study shows shifts in the composition of the PWH bacteriome when compared to that of healthy controls. To our knowledge, this is the first study suggesting a potential link between depression and gut dysbiosis in the HIV population.
Collapse
Affiliation(s)
- Matilde Sánchez-Conde
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Fernando Dronda
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
| | - Margarita Ramírez
- Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Santiago Moreno
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Fátima Brañas
- Geriatric Department, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| |
Collapse
|
9
|
Venugopal G, Khan ZH, Dash R, Tulsian V, Agrawal S, Rout S, Mahajan P, Ramadass B. Predictive association of gut microbiome and NLR in anemic low middle-income population of Odisha- a cross-sectional study. Front Nutr 2023; 10:1200688. [PMID: 37528994 PMCID: PMC10390256 DOI: 10.3389/fnut.2023.1200688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Background Iron is abundant on earth but not readily available for colonizing bacteria due to its low solubility in the human body. Hosts and microbiota compete fiercely for iron. <15% Supplemented Iron is absorbed in the small bowel, and the remaining iron is a source of dysbiosis. The gut microbiome signatures to the level of predicting anemia among low-middle-income populations are unknown. The present study was conducted to identify gut microbiome signatures that have predictive potential in association with Neutrophil to lymphocytes ratio (NLR) and Mean corpuscular volume (MCV) in anemia. Methods One hundred and four participants between 10 and 70 years were recruited from Odisha's Low Middle-Income (LMI) rural population. Hematological parameters such as Hemoglobin (HGB), NLR, and MCV were measured, and NLR was categorized using percentiles. The microbiome signatures were analyzed from 61 anemic and 43 non-anemic participants using 16 s rRNA sequencing, followed by the Bioinformatics analysis performed to identify the diversity, correlations, and indicator species. The Multi-Layered Perceptron Neural Network (MLPNN) model were applied to predict anemia. Results Significant microbiome diversity among anemic participants was observed between the lower, middle, and upper Quartile NLR groups. For anemic participants with NLR in the lower quartile, alpha indices indicated bacterial overgrowth, and consistently, we identified R. faecis and B. uniformis were predominating. Using ROC analysis, R. faecis had better distinction (AUC = 0.803) to predict anemia with lower NLR. In contrast, E. biforme and H. parainfluenzae were indicators of the NLR in the middle and upper quartile, respectively. While in Non-anemic participants with low MCV, the bacterial alteration was inversely related to gender. Furthermore, our Multi-Layered Perceptron Neural Network (MLPNN) models also provided 89% accuracy in predicting Anemic or Non-Anemic from the top 20 OTUs, HGB level, NLR, MCV, and indicator species. Conclusion These findings strongly associate anemic hematological parameters and microbiome. Such predictive association between the gut microbiome and NLR could be further evaluated and utilized to design precision nutrition models and to predict Iron supplementation and dietary intervention responses in both community and clinical settings.
Collapse
Affiliation(s)
- Giriprasad Venugopal
- Center of Excellence for Clinical Microbiome Research (CCMR), All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Zaiba Hasan Khan
- Center of Excellence for Clinical Microbiome Research (CCMR), All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Rishikesh Dash
- Center of Excellence for Clinical Microbiome Research (CCMR), All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Vinay Tulsian
- Center of Excellence for Clinical Microbiome Research (CCMR), All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Siwani Agrawal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sudeshna Rout
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Preetam Mahajan
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Balamurugan Ramadass
- Center of Excellence for Clinical Microbiome Research (CCMR), All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
- Adelaide Medical School Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
11
|
Sun J, Ma X, Yang L, Jin X, Zhao M, Xi B, Song S. The number of metabolic syndrome risk factors predicts alterations in gut microbiota in Chinese children from the Huantai study. BMC Pediatr 2023; 23:191. [PMID: 37085796 PMCID: PMC10120097 DOI: 10.1186/s12887-023-04017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Evidence on the effect of gut microbiota on the number of metabolic syndrome (MetS) risk factors among children is scarce. We aimed to examine the alterations of gut microbiota with different numbers of MetS risk factors among children. METHODS Data were collected from a nested case-control study at the baseline of the Huantai Childhood Cardiovascular Health Cohort Study in Zibo, China. We compared the differences in gut microbiota based on 16S rRNA gene sequencing among 72 children with different numbers of MetS risk factors matched by age and sex (i.e., none, one, and two-or-more MetS risk factors; 24 children for each group). RESULTS The community richness (i.e., the total number of species in the community) and diversity (i.e., the richness and evenness of species in the community) of gut microbiota decreased with an increased number of MetS risk factors in children (P for trend < 0.05). Among genera with a relative abundance greater than 0.01%, the relative abundance of Lachnoclostridium (PFDR = 0.009) increased in the MetS risk groups, whereas Alistipes (PFDR < 0.001) and Lachnospiraceae_NK4A136_group (PFDR = 0.043) decreased in the MetS risk groups compared to the non-risk group. The genus Christensenellaceae_R-7_group excelled at distinguishing one and two-or-more risk groups from the non-risk group (area under the ROC curve [AUC]: 0.84 - 0.92), while the genera Family_XIII_AD3011_group (AUC: 0.73 - 0.91) and Lachnoclostridium (AUC: 0.77 - 0.80) performed moderate abilities in identifying none, one, and two-or-more MetS risk factors in children. CONCLUSIONS Based on the nested case-control study and the 16S rRNA gene sequencing technology, we found that dysbiosis of gut microbiota, particularly for the genera Christensenellaceae_R-7_group, Family_XIII_AD3011_group, and Lachnoclostridium may contribute to the early detection and the accumulation of MetS risk factors in childhood.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, China
| | - Xiaoyun Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, China
| | - Liu Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, China
| | - Xuli Jin
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, China
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, China.
| | - Suhang Song
- Taub Institute for Research in Alzheimer 's disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective. Parasite Immunol 2023; 45:e12949. [PMID: 36063358 DOI: 10.1111/pim.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Yuan X, Zhang Y, Lin X, Yang X, Chen R. Association of gut microbiota and glucose metabolism in children with disparate degrees of adiposity. Pediatr Obes 2023; 18:e13009. [PMID: 36704910 DOI: 10.1111/ijpo.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the characteristics of gut microbiota in children with disparate degrees of adiposity, and analyze the association between gut microbiota, glucose metabolism indicators, and inflammatory factors. METHODS Clinical data were examined in 89 Chinese children. Children with a body fat percentage ≥ 30% were diagnosed as obese, and ≥ 35% in males and ≥ 40% in females were further defined as severe obesity. The composition of gut microbiota was determined by 16S rDNA-based metagenomics. RESULTS The study population (9.75 ± 1.92-year-old) was characterized as normal weight (n = 29), mild obesity (n = 27) and severe obesity (n = 33) groups. Linear discriminant analysis Effect Size (LEfSe) analysis found that compared to the severe obesity group, subjects with mild obesity had more prevalent members of the phylum Fusobacteria, the genus Alistipes, and fewer members of genus Granulicatella and Clostridium (p < 0.05). For subjects with mild obesity, Spearman's correlation analysis revealed that fasting plasma glucose positively correlated with species A. indistinctus, A. putredinis, and negatively correlated with species Ruminococcus gnavus; LBP negatively correlated with species Clostridium hathewayi, and Blautia producta. For subjects with severe obesity, oral glucose tolerance test 2 h plasma glucose (OGTT2HPG) negatively correlated with the phylum Synergistetes, genus Pyramidobacter, species Veillonella parvula, P. piscolens, and positively correlated with species B. producta, INS and HOMA-IR negatively correlated with the genus Haemophilus, species H. parainfluenzae, lipopolysaccharide-binding protein (LBP) negatively correlated with the phylum Actinobacteria, genus Bifidobacterium, Lactobacillus, and species B. longum (all p < 0.05). Phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) analysis discerned that the glucose metabolism pathway, gluconeogenesis I was curtailed in the severe obesity group. CONCLUSION The gut microbiota could favourably compensate for glucose metabolism in children with obesity. Genus Haemophilus and Bifidobacterium longum may influence glucose tolerance and insulin resistance in children with severe obesity.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Zhang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaohong Yang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Lao BN, Luo JH, Xu XY, Fu LZ, Tang F, Ouyang WW, Xu XZ, Wei MT, Xiao BJ, Chen LY, Wu YF, Liu XS. Time-restricted feeding's effect on overweight and obese patients with chronic kidney disease stages 3-4: A prospective non-randomized control pilot study. Front Endocrinol (Lausanne) 2023; 14:1096093. [PMID: 37082115 PMCID: PMC10111616 DOI: 10.3389/fendo.2023.1096093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 04/22/2023] Open
Abstract
Background Time-restricted feeding (TRF) has become a popular weight loss method in recent years. It is widely used in the nutritional treatment of normal obese people and obese people with chronic diseases such as diabetes mellitus and hypertension, and has shown many benefits. However, most TRF studies have excluded chronic kidney disease (CKD) patients, resulting in a lack of sufficient evidence-based practice for the efficacy and safety of TRF therapy for CKD. Therefore, we explore the efficacy and safety of TRF in overweight and obese patients with moderate-to-severe stage CKD through this pilot study, and observe patient compliance to assess the feasibility of the therapy. Methods This is a prospective, non-randomized controlled short-term clinical trial. We recruited overweight and obese patients with CKD stages 3-4 from an outpatient clinic and assigned them to either a TRF group or a control diet (CD) group according to their preferences. Changes in renal function, other biochemical data, anthropometric parameters, gut microbiota, and adverse events were measured before the intervention and after 12 weeks. Results The change in estimated glomerular filtration rate (eGFR) before and after intervention in the TRF group (Δ = 3.1 ± 5.3 ml/min/1.73m2) showed significant improvement compared with the CD group (Δ = -0.8 ± 4.4 ml/min/1.73m2). Furthermore, the TRF group had a significant decrease in uric acid (Δ = -70.8 ± 124.2 μmol/L), but an increase in total protein (Δ = 1.7 ± 2.5 g/L), while the changes were inconsistent for inflammatory factors. In addition, the TRF group showed a significant decrease in body weight (Δ = -2.8 ± 2.9 kg) compared to the CD group, and body composition indicated the same decrease in body fat mass, fat free mass and body water. Additionally, TRF shifted the gut microbiota in a positive direction. Conclusion Preliminary studies suggest that overweight and obese patients with moderate-to-severe CKD with weight loss needs, and who were under strict medical supervision by healthcare professionals, performed TRF with good compliance. They did so without apparent adverse events, and showed efficacy in protecting renal function. These results may be due to changes in body composition and alterations in gut microbiota.
Collapse
Affiliation(s)
- Bei-ni Lao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiang-hong Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xue-yi Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-zhe Fu
- Chronic Disease Management Outpatient, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fang Tang
- Chronic Disease Management Outpatient, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wen-wei Ouyang
- Key Unit of Methodology in Clinical Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - Xin-zhu Xu
- Nutritional Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Meng-ting Wei
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Bing-jie Xiao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lin-yi Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yi-fan Wu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xu-sheng Liu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Key Stratification of Microbiota Taxa and Metabolites in the Host Metabolic Health-Disease Balance. Int J Mol Sci 2023; 24:ijms24054519. [PMID: 36901949 PMCID: PMC10003303 DOI: 10.3390/ijms24054519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Human gut microbiota seems to drive the interaction with host metabolism through microbial metabolites, enzymes, and bioactive compounds. These components determine the host health-disease balance. Recent metabolomics and combined metabolome-microbiome studies have helped to elucidate how these substances could differentially affect the individual host pathophysiology according to several factors and cumulative exposures, such as obesogenic xenobiotics. The present work aims to investigate and interpret newly compiled data from metabolomics and microbiota composition studies, comparing controls with patients suffering from metabolic-related diseases (diabetes, obesity, metabolic syndrome, liver and cardiovascular diseases, etc.). The results showed, first, a differential composition of the most represented genera in healthy individuals compared to patients with metabolic diseases. Second, the analysis of the metabolite counts exhibited a differential composition of bacterial genera in disease compared to health status. Third, qualitative metabolite analysis revealed relevant information about the chemical nature of metabolites related to disease and/or health status. Key microbial genera were commonly considered overrepresented in healthy individuals together with specific metabolites, e.g., Faecalibacterium and phosphatidylethanolamine; and the opposite, Escherichia and Phosphatidic Acid, which is converted into the intermediate Cytidine Diphosphate Diacylglycerol-diacylglycerol (CDP-DAG), were overrepresented in metabolic-related disease patients. However, it was not possible to associate most specific microbiota taxa and metabolites according to their increased and decreased profiles analyzed with health or disease. Interestingly, positive association of essential amino acids with the genera Bacteroides were observed in a cluster related to health, and conversely, benzene derivatives and lipidic metabolites were related to the genera Clostridium, Roseburia, Blautia, and Oscillibacter in a disease cluster. More studies are needed to elucidate the microbiota species and their corresponding metabolites that are key in promoting health or disease status. Moreover, we propose that greater attention should be paid to biliary acids and to microbiota-liver cometabolites and its detoxification enzymes and pathways.
Collapse
|
16
|
Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr Gastroenterol Rep 2023; 25:31-44. [PMID: 36469257 DOI: 10.1007/s11894-022-00859-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The prevalence of overweight and obesity has been increasing worldwide at an alarming rate. Gut microbiota intimately influence host energy metabolism, and immune response. Studies indicate a prominent role of gut dysbiosis in propagating inflammation that is associated with the development of obesity and obesity-related disorders such as type 2 diabetes mellitus, metabolic syndrome, and non-alcoholic fatty liver disease. This article will review the current literature on gut microbiome and its impact on obesity and obesity-related disorders. RECENT FINDINGS An altered gut microbial composition in obesity and obesity-related disorders is associated with enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability, increased production of proinflammatory metabolites, such as lipopolysaccharides, resulting in systemic inflammation and insulin resistance. Gut microbiota modulation can be achieved either by dietary manipulation or by administration of probiotics, prebiotics, synbiotics, and/or fecal microbiota transplantation aiming at the improvement of the gut dysbiosis in obesity and metabolic disorders. Further clinical trials are required to better elucidate the dose, and frequency of these interventions and also their long-term impact on host metabolism.
Collapse
|
17
|
Peruzzi B, Urciuoli E, Mariani M, Chioma L, Tomao L, Montano I, Algeri M, Luciano R, Fintini D, Manco M. Circulating Extracellular Vesicles Impair Mesenchymal Stromal Cell Differentiation Favoring Adipogenic Rather than Osteogenic Differentiation in Adolescents with Obesity. Int J Mol Sci 2022; 24:447. [PMID: 36613885 PMCID: PMC9820591 DOI: 10.3390/ijms24010447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Excess body weight has been considered beneficial to bone health because of its anabolic effect on bone formation; however, this results in a poor quality bone structure. In this context, we evaluated the involvement of circulating extracellular vesicles in the impairment of the bone phenotype associated with obesity. Circulating extracellular vesicles were collected from the plasma of participants with normal weight, as well as overweight and obese participants, quantified by flow cytometry analysis and used to treat mesenchymal stromal cells and osteoblasts to assess their effect on cell differentiation and activity. Children with obesity had the highest amount of circulating extracellular vesicles compared to controls. The treatment of mesenchymal stromal cells with extracellular vesicles from obese participants led to an adipogenic differentiation in comparison to vesicles from controls. Mature osteoblasts treated with extracellular vesicles from obese participants showed a reduction in differentiation markers in comparison to controls. Children with obesity who regularly performed physical exercise had a lower circulating extracellular vesicle amount in comparison to those with a sedentary lifestyle. This pilot study demonstrates how the high amount of circulating extracellular vesicles in children with obesity affects the bone phenotype and that physical activity can partially rescue this phenotype.
Collapse
Affiliation(s)
- Barbara Peruzzi
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrica Urciuoli
- Research Area for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Michela Mariani
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Laura Chioma
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Luigi Tomao
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Ilaria Montano
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Rosa Luciano
- Department of Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Danilo Fintini
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Melania Manco
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
18
|
Zhao H, Zong Y, Li W, Wang Y, Zhao W, Meng X, Yang F, Kong J, Zhao X, Wang J. Damp-heat constitution influences gut microbiota and urine metabolism of Chinese infants. Heliyon 2022; 9:e12424. [PMID: 36755610 PMCID: PMC9900481 DOI: 10.1016/j.heliyon.2022.e12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Background As an increasingly popular complementary and alternative approach for early detection and treatment of disease, traditional Chinese medicine constitution (TCMC) divides human beings into those with balanced constitution (BC) and unbalanced constitution, where damp-heat constitution (DHC) is one of the most unbalanced constitutions. Many studies have been carried out on the microscopic mechanism of constitution classification; however, most of these studies were conducted in adults and rarely in infants. Many diseases are closely related to intestinal microbiota, and metabolites produced by the interaction between microbiota and the body may impact constitution classification. Herein, we investigated the overall constitution distribution in Chinese infants, and analyzed the profiles of gut microbiota and urine metabolites of DHC to further promote the understanding of infants constitution classification. Methods General information was collected and TCMC was evaluated by Constitutional Medicine Questionnaires. 1315 questionnaires were received in a cross-sectional study to investigate the constitution composition in Chinese infants. A total of 56 infants, including 30 DHC and 26 BC, were randomly selected to analyze gut microbiota by 16S rRNA sequencing and urine metabolites by UPLC-Q-TOF/MS method. Results BC was the most common constitution in Chinese infants, DHC was the second common constitution. The gut microbiota and urine metabolites in the DHC group showed different composition compared to the BC group. Four differential genera and twenty differential metabolites were identified. In addition, the combined marker composed of four metabolites may have the high potential to discriminate DHC from BC with an AUC of 0.765. Conclusions The study revealed the systematic differences in the gut microbiota and urine metabolites between infants with DHC and BC. Moreover, the differential microbiota and metabolites may offer objective evidences for constitution classification.
Collapse
Affiliation(s)
- Haihong Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenle Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yaqi Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Weibo Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xianghe Meng
- Neurology Department, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Fan Yang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, China
| | - Xiaoshan Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Disease, Beijing University of Chinese Medicine, Beijing, 100029, China,Corresponding author.
| |
Collapse
|
19
|
Wortelboer K, Koopen AM, Herrema H, de Vos WM, Nieuwdorp M, Kemper EM. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front Med (Lausanne) 2022; 9:1077275. [PMID: 36544495 PMCID: PMC9760881 DOI: 10.3389/fmed.2022.1077275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
| | - Willem M. de Vos
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marleen Kemper
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Park CH, Lee EJ, Kim HL, Lee YT, Yoon KJ, Kim HN. Sex-specific associations between gut microbiota and skeletal muscle mass in a population-based study. J Cachexia Sarcopenia Muscle 2022; 13:2908-2919. [PMID: 36218092 PMCID: PMC9745450 DOI: 10.1002/jcsm.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A gut-muscle axis through which the microbiome influences skeletal muscle has been hypothesized. However, sex-specific association between the characteristics of gut microbiota and skeletal muscle mass has not yet been reported. Herein, we performed sex-specific analyses of faecal microbiota composition for the skeletal muscle mass in a population-based cohort. METHODS We collected faecal samples of 1052 middle-aged participants (621 men and 431 women) who attended health screenings, and we analysed the intestinal microbiota using 16S rRNA gene sequencing. Relative muscle mass was calculated using a bioelectrical impedance analysis and presented as the skeletal muscle mass index [SMI (%) = total appendicular muscle mass (kg)/weight (kg) × 100]. We categorized the subjects into four groups by the quartile of the SMI. Association tests between gut microbiota and SMI were conducted according to the microbial diversity, taxonomic profiling and functional inference in a sex-stratified manner. RESULTS The mean age and SMI of the total participants were 44.8 years (standard deviation [SD], 8.2) and 41.4% (SD, 3.9), respectively. After adjustments for possible covariates such as age, body mass index and regular physical activity, the highest quartile (Q4) group of SMI had higher alpha diversity than the lowest quartile (Q1) group in male participants (coefficient = 10.79, P < 0.05, linear regression model), whereas there was no difference in diversity among SMI groups in females. At the species level, Haemophilus parainfluenzae (coefficient = 1.910) and Roseburia faecis (coefficient = 1.536) were more abundant in the highest SMI (Q4) group than in the lowest SMI (Q1) group in males. However, no significant taxon was observed along the SMI groups in females. The gut microbiota of the lowest SMI group (Q1) was enriched with genes involved in biosynthesis of amino acids and energy generation compared with that of the highest SMI group (Q4) in both sexes, although the significance of the inferred pathways was weak (P < 0.05 but the false discovery rate q > 0.05). CONCLUSIONS In this large sample of middle-aged individuals, this study highlights fundamental sex-specific differences in the microbial diversity, composition and metabolic pathways inferred from gut microbiota according to SMI. The gut microbiota may provide novel insights into the potential mechanisms underlying the sex dependence of skeletal muscle mass.
Collapse
Affiliation(s)
- Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Ju Lee
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yong-Taek Lee
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Jae Yoon
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Sarmiento-Andrade Y, Suárez R, Quintero B, Garrochamba K, Chapela SP. Gut microbiota and obesity: New insights. Front Nutr 2022; 9:1018212. [PMID: 36313072 PMCID: PMC9614660 DOI: 10.3389/fnut.2022.1018212] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a pathology whose incidence is increasing throughout the world. There are many pathologies associated with obesity. In recent years, the influence of the microbiota on both health and pathological states has been known. There is growing information related to changes in the microbiome and obesity, as well as its associated pathologies. Changes associated with age, exercise, and weight changes have been described. In addition, metabolic changes associated with the microbiota, bariatric surgery, and fecal matter transplantation are described. In this review, we summarize the biology and physiology of microbiota in obese patients, its role in the pathophysiology of several disorders associated, and the emerging therapeutic applications of prebiotics, probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
| | - Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Beatriz Quintero
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Kleber Garrochamba
- Department of Health Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Sebastián Pablo Chapela
- Departamento de Bioquímica Humana, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Nutritional Support Team, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Profile of gut microbiota and serum metabolites associated with metabolic syndrome in a remote island most afflicted by obesity in Japan. Sci Rep 2022; 12:17292. [PMID: 36241691 PMCID: PMC9568508 DOI: 10.1038/s41598-022-21708-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous studies have revealed distinct differences in the profiles of gut microbiota between non-obese and obese individuals. To date, however, little is known if any disparities in the community of gut microbiota exist between metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) subjects. We therefore aimed to comprehensively characterize the gut microbiota and circulating metabolites in serum from both MHO and MUO residing in the remote island, Kumejima, where the prevalence of obesity is one of the highest in Japan, and explored possible correlations between the gut microbiota profile and markers of metabolic syndrome. Results revealed that MUO showed significantly higher levels of genera such as g_Succinivibrio, g_Granulicatella, g_Brachyspira, g_Oribacterium and g_Atopobium in comparison to MHO. Moreover, abundance of g_Succinivibrio, g_Brachyspira and g_Atopobium were positively correlated with value of fasting insulin, HOMA-R, circulating triglycerides, diastolic blood pressure, BMI, body weight, waist circumference and HbA1c. In addition, MUO compared to MHO showed an imbalance of serum metabolites, with a significant elevation in 2-oxoisovaleric acid, pyruvic acid, 2-hydroxybutyric acid, and creatine. Our data highlight unmet needs in precision approaches for the treatment of obesity, targeting the gut microbiota profile and serum metabolites in a distinct population affected by obesity.
Collapse
|
23
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
24
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 296] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Pedicelli S, Fintini D, Ravà L, Inzaghi E, Deodati A, Spreghini MR, Bizzarri C, Mariani M, Cianfarani S, Cappa M, Manco M. Prevalence of prediabetes in children and adolescents by class of obesity. Pediatr Obes 2022; 17:e12900. [PMID: 35144324 PMCID: PMC9286831 DOI: 10.1111/ijpo.12900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND To evaluate prevalence of prediabetes (impaired fasting glucose, IFG; impaired glucose tolerance, IGT; and high glycated haemoglobin, h-HbA1c) in children and adolescents in relation to class of age and obesity; to appraise association with estimates of insulin metabolism, cardiovascular risk factors and alanine aminotransferase (ALT) levels. METHODS Study of marginal prevalence (i.e., as function of sex, age and obesity class) of isolated and combined IFG, IGT and h-HbA1c in children (age 4-9.9 years) and adolescents (age 10-17.9 years) and association to blood pressure (BP), total, HDL and non-HDL cholesterol, triglycerides, ALT and insulin sensitivity/secretion indexes. RESULTS Data of 3110 participants (51% males, 33% children; 33% overweight, 39% obesity class I, 20.5% class II, 7.5% class III) were available. Unadjusted prevalence of prediabetes was 13.9% in children (2.1% IFG, 6.7% IGT, 3.9% h-HbA1c, IFG-IGT 0.06%) and 24.6% in adolescents (3.4% IFG, 9.4% IGT, 5.5% h-HbA1c, IFG-IGT 0.09%). Combined h-HBA1c was found in very few adolescents. Prevalence of prediabetes increased significantly by class of obesity up to 20.5% in children and 31.6% in adolescents. Phenotypes of prediabetes were differently but significantly associated with increased systolic and diastolic BP (by 2-7.3 and ~8 mmHg, respectively), triglycerides (by 23-66 mg/dl), and ALT levels (by 10-22 UI/L) depending on the prediabetes phenotype. CONCLUSION AND RELEVANCE It is worth screening prediabetes in children aged <10 years old with obesity classes II and III and in adolescents. In those with prediabetes, monitoring of blood pressure, triglycerides and ALT levels must be encouraged.
Collapse
Affiliation(s)
- Stefania Pedicelli
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Danilo Fintini
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Lucilla Ravà
- Clinical EpidemiologyBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Elena Inzaghi
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Annalisa Deodati
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Maria Rita Spreghini
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Carla Bizzarri
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Michela Mariani
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Stefano Cianfarani
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly,Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Marco Cappa
- Unit of Endocrinology, Dipartimento Pediatrico UniversitarioUniversità di Tor VergataRomeItaly
| | - Melania Manco
- Research Area for Multifactorial Diseases and Complex PhenotypesBambino Gesù Children's HospitalRomeItaly
| |
Collapse
|
26
|
Zeng Y, Li J, Wei C, Zhao H, Wang T. mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis. Genome Biol 2022; 23:94. [PMID: 35422001 PMCID: PMC9011970 DOI: 10.1186/s13059-022-02657-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The analysis of microbiome data has several technical challenges. In particular, count matrices contain a large proportion of zeros, some of which are biological, whereas others are technical. Furthermore, the measurements suffer from unequal sequencing depth, overdispersion, and data redundancy. These nuisance factors introduce substantial noise. We propose an accurate and robust method, mbDenoise, for denoising microbiome data. Assuming a zero-inflated probabilistic PCA (ZIPPCA) model, mbDenoise uses variational approximation to learn the latent structure and recovers the true abundance levels using the posterior, borrowing information across samples and taxa. mbDenoise outperforms state-of-the-art methods to extract the signal for downstream analyses.
Collapse
Affiliation(s)
- Yanyan Zeng
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA.
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.
- Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Rold LS, Bundgaard-Nielsen C, Niemann Holm-Jacobsen J, Glud Ovesen P, Leutscher P, Hagstrøm S, Sørensen S. Characteristics of the gut microbiome in women with gestational diabetes mellitus: A systematic review. PLoS One 2022; 17:e0262618. [PMID: 35025980 PMCID: PMC8757951 DOI: 10.1371/journal.pone.0262618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background The incidence of women developing gestational diabetes mellitus (GDM) is increasing, which is associated with an increased risk of type 2 diabetes mellitus (T2DM) for both mother and child. Gut microbiota dysbiosis may contribute to the pathogenesis of both GDM and the accompanying risk of T2DM. Thus, a better understanding of the microbial communities associated with GDM could offer a potential target for intervention and treatment in the future. Therefore, we performed a systematic review to investigate if the GDM women have a distinct gut microbiota composition compared to non-GDM women. Methods We identified 21 studies in a systematic literature search of Embase and PubMed up to February 24, 2021. Data on demographics, methodology and identified microbial metrics were extracted. The quality of each study was assessed according to the Newcastle-Ottawa Scale. Results Sixteen of the studies did find a GDM-associated gut microbiota, although no consistency could be seen. Only Collinsella and Blautia showed a tendency to be increased in GDM women, whereas the remaining genera were significantly different in opposing directions. Conclusion Although most of the studies found an association between GDM and gut microbiota dysbiosis, no overall GDM-specific gut microbiota could be identified. All studies in the second trimester found a difference between GDM and non-GDM women, indicating that dysbiosis is present at the time of diagnosis. Nevertheless, it is still unclear when the dysbiosis develops, as no consensus could be seen between the studies investigating the gut microbiota in the first trimester of pregnancy. However, studies varied widely concerning methodology and study design, which might explain the highly heterogeneous gut microbiota compositions between studies. Therefore, future studies need to include multiple time points and consider possible confounding factors such as ethnicity, pre-pregnancy body mass index, and GDM treatment.
Collapse
Affiliation(s)
- Louise Søndergaard Rold
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Steno Diabetes Centre North Denmark, Aalborg, Denmark
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Per Glud Ovesen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Steno Diabetes Centre North Denmark, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Hagstrøm
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Steno Diabetes Centre North Denmark, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Pediatrics, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Steno Diabetes Centre North Denmark, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
28
|
Huang H, Chen J, Hu X, Chen Y, Xie J, Ao T, Wang H, Xie J, Yu Q. Elucidation of the interaction effect between dietary fiber and bound polyphenol components on the anti-hyperglycemic activity of tea residue dietary fiber. Food Funct 2022; 13:2710-2728. [PMID: 35170607 DOI: 10.1039/d1fo03682c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary fiber intake is beneficial for the prevention of some chronic metabolic diseases. Considering the characteristic that dietary fiber from tea residues (TRDF) is rich in bound polyphenols, the study aimed to elucidate the interaction effect between dietary fiber components (TRDF-DF) and bound polyphenol components (TRDF-BP) on the anti-hyperglycemic activity of TRDF. A type 2 diabetes (T2D) rat model induced by high-fat diet and streptozotocin injection was applied in this study. The results showed that bound polyphenol components rather than dietary fiber components were essential for the anti-hyperglycemic activity of TRDF, as evidenced by remarkable differences in fasting blood glucose (FBG), the insulin resistance index (HOMA-IR) and the levels of serum oxidative stress between the TRDF and TRDF-DF groups, as well as the up-regulation of the expression of insulin signaling pathway-related proteins in the liver after TRDF and TRDF-BP administration. In addition, the synergistic effect between TRDF-BP and TRDF-DF components modulated gut microbiota dysbiosis and increased the content of short chain fatty acids (SCFAs) via enriching beneficial bacteria and inhibiting harmful bacteria. The role of TRDF-BP and TRDF-DF as well as their interaction effect on the anti-hyperglycemic activity of TRDF are elucidated, which can provide theoretical basis for TRDF as a dietary supplement to manage T2D.
Collapse
Affiliation(s)
- Hairong Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Tianxiang Ao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
29
|
Zhao X, Fu Z, Yao M, Cao Y, Zhu T, Mao R, Huang M, Pang Y, Meng X, Li L, Zhang B, Li Y, Zhang H. Mulberry ( Morus alba L.) leaf polysaccharide ameliorates insulin resistance- and adipose deposition-associated gut microbiota and lipid metabolites in high-fat diet-induced obese mice. Food Sci Nutr 2022; 10:617-630. [PMID: 35154697 PMCID: PMC8825736 DOI: 10.1002/fsn3.2689] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
Dietary supplements are currently being used to ameliorate metabolic alterations via maintaining gut microflora balance. Mulberry leaf is known as medicine homologous food for its glucose- and lipid-modulating properties. However, the effects of mulberry leaf polysaccharide (MP) on metabolic dysbiosis and gut microbiota are still poorly understood. After extraction and characterization, the beneficial effects of water-soluble MP were evaluated in high-fat diet-induced obese mice. MP treatment could reduce adipose tissue, improve insulin resistance, and alleviate the pathological lesions in colon. Investigation of the underlying mechanism showed that MP modulated gut microbial community by 16S rRNA analysis and reversed the elevation of lipid indexes by plasma lipidomics analysis. Correlation analysis indicated that the abundance of seven key bacterial species and six lipids were closely associated with the metabolic traits, respectively. Overall, MP could ameliorate metabolic disorders, and modify the gut microbiota and lipids. This would greatly facilitate the utilization of MP as a functional food.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifei Fu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Minghe Yao
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yu Cao
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tongtong Zhu
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Rui Mao
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ming Huang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yafen Pang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xianghui Meng
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lin Li
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Boli Zhang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuhong Li
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Han Zhang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaMinistry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
30
|
Aranaz P, Ramos-Lopez O, Cuevas-Sierra A, Martinez JA, Milagro FI, Riezu-Boj JI. A predictive regression model of the obesity-related inflammatory status based on gut microbiota composition. Int J Obes (Lond) 2021; 45:2261-2268. [PMID: 34267323 DOI: 10.1038/s41366-021-00904-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Fecal microbiome disturbances are linked to different human diseases. In the case of obesity, gut microbiota seems to play a role in the development of low-grade inflammation. The purpose of the present study was to identify specific bacterial families and genera associated with an increased obesity-related inflammatory status, which would allow to build a regression model for the prediction of the inflammatory status of obese and overweight subjects based on fecal microorganisms. METHODS A total of 361 volunteers from the Obekit trial (65 normal-weight, 110 overweight, and 186 obese) were classified according to four variables: waist/hip ratio (≥0.86 for women and ≥1.00 for men), leptin/adiponectin ratio (LAR, ≥3.0 for women and ≥1.4 for men), and plasma C-reactive protein (≥2 mg/L) and TNF levels (≥0.85 pg/mL). An inflammation score was designed to classify individuals in low (those subjects who did exceed the threshold value in 0 or 1 variable) or high inflammatory index (those subjects who did exceed the threshold value in 2 or more variables). Fecal 16 S rRNA sequencing was performed for all participants, and differential abundance analyses for family and genera were performed using the MicrobiomeAnalyst web-based platform. RESULTS Methanobacteriaceae, Christensenellaceae, Coriobacteriaceae, Bifidobacteriaceae, Catabacteriaceae, and Dehalobacteriaceae families, and Methanobrevibacter, Eggerthella, Gemmiger, Anaerostipes, and Collinsella genera were significantly overrepresented in subjects with low inflammatory index. Conversely, Carnobacteriaceae, Veillonellaceae, Pasteurellaceae, Prevotellaceae and Enterobacteriaceae families, and Granulicatella, Veillonella, Haemophilus, Dialister Parabacteroides, Prevotella, Shigella, and Allisonella genera were more abundant in subjects with a high inflammatory index. A regression model adjusted by BMI, sex, and age and including the families Coriobacteriaceae and Prevotellaceae and the genus Veillonella was developed. CONCLUSION A microbiota-based regression model was able to predict the obesity-related inflammatory status (area under the ROC curve = 0.8570 ± 0.0092 Harrell's optimism-correction) and could be useful in the precision management of inflammobesity.
Collapse
Affiliation(s)
- Paula Aranaz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Amanda Cuevas-Sierra
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | - J Alfredo Martinez
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermin I Milagro
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jose I Riezu-Boj
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
31
|
Orsso CE, Peng Y, Deehan EC, Tan Q, Field CJ, Madsen KL, Walter J, Prado CM, Tun HM, Haqq AM. Composition and Functions of the Gut Microbiome in Pediatric Obesity: Relationships with Markers of Insulin Resistance. Microorganisms 2021; 9:1490. [PMID: 34361925 PMCID: PMC8304481 DOI: 10.3390/microorganisms9071490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome is hypothesized to play a crucial role in the development of obesity and insulin resistance (IR); the pathways linking the microbiome to IR in pediatrics have yet to be precisely characterized. We aimed to determine the relationship between the gut microbiome composition and metabolic functions and IR in children with obesity. In a cross-sectional study, fecal samples from children with obesity (10-16 years old) were collected for taxonomical and functional analysis of the fecal microbiome using shotgun metagenomics. The homeostatic model assessment for insulin resistance (HOMA-IR) was determined using fasting glucose and insulin. Associations between HOMA-IR and α-diversity measures as well as metabolic pathways were evaluated using Spearman correlations; relationships between HOMA-IR and β-diversity were assessed by permutational multivariate analysis of variance. Twenty-one children (nine males; median: age = 12.0 years; BMI z-score = 2.9; HOMA-IR = 3.6) completed the study. HOMA-IR was significantly associated with measures of α-diversity but not with β-diversity. Children with higher HOMA-IR exhibited lower overall species richness, Firmicutes species richness, and overall Proteobacteria species Shannon diversity. Furthermore, HOMA-IR was inversely correlated with the abundance of pathways related to the biosynthesis of lipopolysaccharides, amino acids, and short-chain fatty acids, whereas positive correlations between HOMA-IR and the peptidoglycan biosynthesis pathways were observed. In conclusion, insulin resistance was associated with decreased microbial α-diversity measures and abundance of genes related to the metabolic pathways. Our study provides a framework for understanding the microbial alterations in pediatric obesity.
Collapse
Affiliation(s)
- Camila E. Orsso
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Health Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.M.P.)
| | - Ye Peng
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China;
| | - Edward C. Deehan
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2C2, Canada; (E.C.D.); (K.L.M.)
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2C2, Canada; (E.C.D.); (K.L.M.)
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork—National University of Ireland, T12 YT20 Cork, Ireland;
| | - Carla M. Prado
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Health Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada; (C.E.O.); (C.M.P.)
| | - Hein M. Tun
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China;
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| |
Collapse
|
32
|
Mahony J, van Sinderen D. Virome studies of food production systems: time for 'farm to fork' analyses. Curr Opin Biotechnol 2021; 73:22-27. [PMID: 34252795 DOI: 10.1016/j.copbio.2021.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
The food industry is under increasing pressure to produce high quality, traceable and minimally processed foods that are produced using sustainable approaches and ingredients. In line with the latter, there is an increased pressure for plant-based products to replace animal-derived products. Until recently, research efforts have mainly focused on dairy and meat products owing to their economic importance. The shift towards plant-based diets and food production requires a corresponding shift in research efforts to define the microbial requirements for and composition of (novel) plant-based foods, the (micro)organisms that are beneficial to such production systems, and the abundance and role of (bacterio)phages in shaping the microbial landscape of these foods. In this review, we explore current efforts in the area of virome analysis of foods and food production environments and highlight the need for more unified approaches to understand the contribution of phages in food safety and quality, and to develop novel tools to enhance the traceability of foods.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|