1
|
Christou A, Stavrou IJ, Kapnissi-Christodoulou CP. Combined use of β-cyclodextrin and ionic liquid as electrolyte additives in EKC for separation and determination of carob's phenolics-A study of the synergistic effect. Electrophoresis 2021; 42:1945-1955. [PMID: 34240758 DOI: 10.1002/elps.202100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/11/2022]
Abstract
In this work, a simple, reliable, and fast capillary electrophoretic method was developed and validated for the simultaneous determination of 12 polyphenolic compounds, the most frequently found in carob's pulp and seeds. The present work deals with the development of a novel dual electrophoretic system based on the combined use of β-CD and ionic liquid (IL) as buffer additives. A baseline separation of the target analytes was achieved in less than 10 min by using a BGE consisting of 35 mM borate along with 15 mM β-CD and 3 mM l-alanine tert butyl ester lactate (l-AlaC4 Lac) IL as buffer additives at pH 9.5, a temperature of 25°C, and an applied voltage of 30 kV. The application of the developed electrophoretic method to real samples enabled the identification and quantification of the main phenolic constituents of both ripe and unripe carob pulp extracts. The results revealed the predominance of gallic acid in both ripe (183.92 μg/g carob pulp) and unripe (205.10 μg/g carob pulp) carob pulp and highlighted the great influence of the ripening stage on carobs polyphenolic composition, with unripe pods being more enriched in polyphenols (total phenolics detected: 912.58 and 283.13 μg/g unripe and ripe carob pulp).
Collapse
Affiliation(s)
| | - Ioannis J Stavrou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
2
|
Zhou S, Xu X, Wang L, Guo L, Liu L, Kuang H, Xu C. A fluorescence based immunochromatographic sensor for monitoring chlorpheniramine and its comparison with a gold nanoparticle-based lateral-flow strip. Analyst 2021; 146:3589-3598. [PMID: 33928961 DOI: 10.1039/d1an00423a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlorpheniramine (CPM) is an illegal additive found in herbal teas and health foods, and its excessive intake can cause health problems. In this study, a CPM monoclonal antibody (mAb) was developed based on a new type of hapten. The mAb was found to belong to the IgG2b subclass and showed high sensitivity and specificity when used in ELISA, with a half-maximal inhibitory concentration (IC50) of 0.98 ng mL-1 and cross-reactivity (CR) values below 1.8% when compared to antiallergic drugs. Based on the mAb produced, a fluorescent microsphere-based immunochromatographic strip assay (FM-ICS) and a gold nanoparticle-based immunochromatographic strip assay (GNP-ICS) were developed for the rapid and sensitive detection of CPM in herbal tea samples. Under optimal conditions, the cut-off values for the FM-ICS and GNP-ICS were 10 ng mL-1 and 100 ng mL-1, respectively, in herbal tea samples. The FM-ICS exhibited a higher sensitivity than GNP-ICS, but both could produce results within 15 min. In addition, a variety of high-throughput rapid immunoassay formats could be implemented based on this mAb for use as a convenient and reliable tool for the determination of CPM exposure in foods and the environment.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
3
|
Przybylska A, Gackowski M, Koba M. Application of Capillary Electrophoresis to the Analysis of Bioactive Compounds in Herbal Raw Materials. Molecules 2021; 26:2135. [PMID: 33917716 PMCID: PMC8068163 DOI: 10.3390/molecules26082135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The article is a summary of scientific reports from the last 16 years (2005-2021) on the use of capillary electrophoresis to analyze polyphenolic compounds, coumarins, amino acids, and alkaloids in teas or different parts of plants used to prepare aqueous infusions, commonly known as "tea" or decoctions. This literature review is based on PRISMA guidelines and articles selected in base of criteria carried out using PICOS (Population, Intervention, Comparison, Outcome, Study type). The analysis showed that over 60% of articles included in this manuscript comes from China. The literature review shows that for the selective electrophoretic separation of polyphenolic and flavonoid compounds, the most frequently used capillary electromigration technique is capillary electrophoresis with ultraviolet detection. Nevertheless, the use of capillary electrophoresis-mass spectrometry allows for the sensitive determination of analytes with a lower limit of detection and gives hope for routine use in the analysis of functional foods. Moreover, using the modifications in electrochemical techniques allows methods sensitivity reduction along with the reduction of analysis time.
Collapse
Affiliation(s)
- Anna Przybylska
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL-85089 Bydgoszcz, Poland; (M.G.); (M.K.)
| | | | | |
Collapse
|
4
|
Khani R, Sheykhi R, Bagherzade G. An environmentally friendly method based on micro-cloud point extraction for determination of trace amount of quercetin in food and fruit juice samples. Food Chem 2019; 293:220-225. [DOI: 10.1016/j.foodchem.2019.04.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
|
5
|
Zhang R, Tan ZC, Huang KC, Wen Y, Li XY, Zhao JL, Liu CL. A Vortex-Assisted Dispersive Liquid-Liquid Microextraction Followed by UPLC-MS/MS for Simultaneous Determination of Pesticides and Aflatoxins in Herbal Tea. Molecules 2019; 24:E1029. [PMID: 30875921 PMCID: PMC6472212 DOI: 10.3390/molecules24061029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
A method for detecting the organophosphorus pesticides residue and aflatoxins in China herbal tea has been developed by UPLC-MS/MS coupled with vortex-assisted dispersive liquid-liquid microextraction (DLLME). The extraction conditions for vortex-assisted DLLME extraction were optimized using single-factor experiments and response surface design. The optimum conditions for the experiment were the pH 5.1, 347 µL of chloroform (extraction solvent) and 1614 µL of acetonitrile (dispersive solvent). Under the optimum conditions, the targets were good linearity in the range of 0.1 µg/L⁻25 µg/L and the correlation coefficient above 0.9998. The mean recoveries of all analytes were in the ranged from 70.06%⁻115.65% with RSDs below 8.54%. The detection limits were in the range of 0.001 µg/L⁻0.01µg/L. The proposed method is a fast and effective sample preparation with good enrichment and extraction efficiency, which can simultaneously detect pesticides and aflatoxins in China herbal tea.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Guangzhou 510642, China.
| | - Zhen-Chao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Guangzhou 510642, China.
| | - Ke-Cheng Huang
- Shenzhen Noposion Agrochemical Co. Ltd., Shenzhen 510640, Guangdong, China.
| | - Yan Wen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Guangzhou 510642, China.
| | - Xiang-Ying Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Guangzhou 510642, China.
| | - Jun-Long Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Guangzhou 510642, China.
| | - Cheng-Lan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture & Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Wushan Road 483, Guangzhou 510642, China.
| |
Collapse
|
6
|
Singh B, Kumar A, Malik AK. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis 2017; 38:820-832. [DOI: 10.1002/elps.201600334] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Baljinder Singh
- Department of Biotechnology; Panjab University; Chandigarh India
| | - Ashwini Kumar
- Department of Chemistry; Government Post-Graduate College Una; Himachal Pradesh India
| | | |
Collapse
|
7
|
You R, Guan Y, Li L. Metabonomics: a developing platform for better understanding Chinese herbal teas as a complementary therapy. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rong You
- College of Life Sciences; South China Normal University; 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Yanqing Guan
- College of Life Sciences; South China Normal University; 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Lin Li
- College of Light Industry and Food Sciences; South China University of Technology; 381 Wushan Road Guangzhou 510640 China
| |
Collapse
|
8
|
Arries WJ, Tredoux AGJ, de Beer D, Joubert E, de Villiers A. Evaluation of capillary electrophoresis for the analysis of rooibos and honeybush tea phenolics. Electrophoresis 2016; 38:897-905. [PMID: 27921291 DOI: 10.1002/elps.201600349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Rooibos and honeybush are popular herbal teas produced from the shrubs of Aspalathus linearis and Cyclopia spp., respectively, which are indigenous to South Africa. Both herbal teas are rich in polyphenols and their consumption is associated with several health benefits, partly ascribed to their phenolic constituents. Quantification of phenolics in extracts and teas for quality control and research purposes is generally performed using HPLC, although dedicated and often species-specific methods are required. CE offers an attractive alternative to HPLC for the analysis of phenolics, with potential benefits in terms of efficiency, speed and operating costs. In this contribution, we report quantitative CZE methods for the analysis of the principal honeybush and rooibos phenolics. Optimal separation for honeybush and rooibos phenolics was achieved in 21 and 32 min, respectively, with good linearity and repeatability. Quantitative data for extracts of "unfermented" and "fermented" rooibos and two honeybush species were statistically comparable with those obtained by HPLC for the majority of compounds. The developed methods demonstrated their utility for the comparison of phenolic contents between different species and as a function of manufacturing processes, thus offering cost effective, although less sensitive and robust, alternatives to HPLC analysis.
Collapse
Affiliation(s)
- William J Arries
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Andreas G J Tredoux
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| | - Dalene de Beer
- Post-Harvest and Wine Technology Division, Agricultural Research Council, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Matieland, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
9
|
Głowacki R, Furmaniak P, Kubalczyk P, Borowczyk K. Determination of Total Apigenin in Herbs by Micellar Electrokinetic Chromatography with UV Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:3827832. [PMID: 27437159 PMCID: PMC4942635 DOI: 10.1155/2016/3827832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Apigenin is a naturally occurring plant flavone that exhibits strong antioxidant, anti-inflammatory, and antitumor properties. A MEKC-UV based method was developed for the determination of total apigenin in selected herbs. Application of pseudostationary phase in the form of SDS micelles resulted in great repeatability of retention times and peak areas. A buffer solution consisting of 30 mmol/L sodium borate (pH 10.2), 10% acetonitrile, and 10 mmol/L sodium dodecyl sulfate was found to be the most suitable BGE for the separation. The method was validated and calibrated for total apigenin in the range of 1.0-100 μmol/L (R (2) = 0.9994). The limits of detection and quantification were 0.48 μmol/L and 0.92 μmol/L, respectively. This precise and robust method was successfully applied to the analysis of plant samples for total apigenin content.
Collapse
Affiliation(s)
- Rafał Głowacki
- Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland
| | - Paulina Furmaniak
- Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland
| | - Paweł Kubalczyk
- Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland
| | - Kamila Borowczyk
- Department of Environmental Chemistry, Faculty of Chemistry, University of Łódź, 163 Pomorska Street, 90-236 Łódź, Poland
| |
Collapse
|
10
|
Chen Q, Xiong M, Zhu J, Li P. RAPID AND SIMPLE QUANTITATIVE DETERMINATION OF ATRACTYLENOLIDE I AND ATRACTYLENOLIDE III IN ATRACTYLODES MACROCEPHALA AND ITS DIFFERENT PROCESSED PRODUCTS BY CAPILLARY ZONE ELECTROPHORESIS. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.738624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qinhua Chen
- a Institute of Pharmaceutical Analysis and Drug Screening, Affiliated Dongfeng Hospital , Hubei University of Medicine , Hubei , China
| | - Min Xiong
- a Institute of Pharmaceutical Analysis and Drug Screening, Affiliated Dongfeng Hospital , Hubei University of Medicine , Hubei , China
| | - Jun Zhu
- a Institute of Pharmaceutical Analysis and Drug Screening, Affiliated Dongfeng Hospital , Hubei University of Medicine , Hubei , China
| | - Peng Li
- a Institute of Pharmaceutical Analysis and Drug Screening, Affiliated Dongfeng Hospital , Hubei University of Medicine , Hubei , China
| |
Collapse
|
11
|
|
12
|
Gan Z, Chen Q, Fu Y, Chen G. Determination of bioactive constituents in Flos Sophorae Immaturus and Cortex Fraxini by capillary electrophoresis in combination with far infrared-assisted solvent extraction. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
CZE/PAD and HPLC-UV/PAD Profile of Flavonoids from Maytenus aquifolium and Maytenus ilicifolia “espinheira santa” Leaves Extracts. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/691509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes the application of HPLC and CZE to analyze flavonoids in the leaves of Maytenus ilicifolia and Maytenus aquifolium, which are species widely used in Brazilian folk medicine. The two species showed different flavonoid profiles, but acidic hydrolysis of the Maytenus extracts confirmed that all these compounds are quercetin or kaempferol derivatives. A comparison of the CZE and HPLC profiles of Maytenus extracts showed numerous flavonoid peaks using HPLC. However, the advantages of CZE such as analysis without requiring clean-up and less generation of chemical waste than with HPLC point to the potential of the CZE technique for the quality control (routine analysis) of “espinheira santa” phytopharmaceuticals.
Collapse
|
14
|
Castro-Puyana M, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2011; 33:147-67. [DOI: 10.1002/elps.201100385] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 12/17/2022]
|
15
|
Rabanes HR, Guidote AM, Quirino JP. Capillary electrophoresis of natural products: Highlights of the last five years (2006-2010). Electrophoresis 2011; 33:180-95. [DOI: 10.1002/elps.201100223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
|
16
|
Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C. Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 2011; 32:289-326. [PMID: 22129270 DOI: 10.3109/07388551.2011.630647] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Salt-tolerant plants grow in a wide variety of saline habitats, from coastal regions, salt marshes and mudflats to inland deserts, salt flats and steppes. Halophytes living in these extreme environments have to deal with frequent changes in salinity level. This can be done by developing adaptive responses including the synthesis of several bioactive molecules. Consequently, several salt marsh plants have traditionally been used for medical, nutritional, and even artisanal purposes. Currently, an increasing interest is granted to these species because of their high content in bioactive compounds (primary and secondary metabolites) such as polyunsaturated fatty acids, carotenoids, vitamins, sterols, essential oils (terpenes), polysaccharides, glycosides, and phenolic compounds. These bioactive substances display potent antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activities, and therefore represent key-compounds in preventing various diseases (e.g. cancer, chronic inflammation, atherosclerosis and cardiovascular disorder) and ageing processes. The ongoing research will lead to the utilisation of halophytes as a new source of healthy products as functional foods, nutraceuticals or active principles in several industries. This contribution focuses on the ethnopharmacological uses of halophytes in traditional medicine and reviews recent investigations on their biological activities and nutraceuticals. The work is distributed according to the different families of nutraceuticals (lipids, vitamins, proteins, glycosides, phenolic compounds, etc.) discussing the analytical techniques employed for their determination. Information about the claimed health promoting effects of the different families of nutraceuticals is also provided together with data on their application.
Collapse
Affiliation(s)
- Riadh Ksouri
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de BorjCédria (CBBC), BP 901, 2050 Hammam-lif, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Advanced analysis of nutraceuticals. J Pharm Biomed Anal 2011; 55:758-74. [DOI: 10.1016/j.jpba.2010.11.033] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 01/18/2023]
|
18
|
Xie F, Yu A, Cheng Y, Qi R, Li Q, Liu H, Zhang S. Rapid Separation and Determination of Five Phenolic Acids in Tobacco by CE. Chromatographia 2010. [DOI: 10.1365/s10337-010-1781-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. J Pharm Biomed Anal 2010; 53:1130-60. [PMID: 20719447 DOI: 10.1016/j.jpba.2010.07.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/09/2010] [Accepted: 07/18/2010] [Indexed: 12/17/2022]
Abstract
Antioxidants are one of the most common active ingredients of nutritionally functional foods which can play an important role in the prevention of oxidation and cellular damage inhibiting or delaying the oxidative processes. In recent years there has been an increased interest in the application of antioxidants to medical treatment as information is constantly gathered linking the development of human diseases to oxidative stress. Within antioxidants, phenolic molecules are an important category of compounds, commonly present in a wide variety of plant food materials. Their correct determination is pivotal nowadays and involves their extraction from the sample, analytical separation, identification, quantification and interpretation of the data. The aim of this review is to provide an overview about all the necessary steps of any analytical procedure to achieve the determination of phenolic compounds from plant matrices, paying particular attention to the application and potential of capillary electroseparation methods. Since it is quite complicated to establish a classification of plant food material, and to structure the current review, we will group the different matrices as follows: fruits, vegetables, herbs, spices and medicinal plants, beverages, vegetable oils, cereals, legumes and nuts and other matrices (including cocoa beans and bee products). At the end of the overview, we include two sections to explain the usefulness of the data about phenols provided by capillary electrophoresis and the newest trends.
Collapse
|