1
|
Zhai W, Wei D, Cao M, Wang Z, Wang M. Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review. Food Chem 2023; 429:136944. [PMID: 37487389 DOI: 10.1016/j.foodchem.2023.136944] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.
Collapse
Affiliation(s)
- Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenyu Wang
- Beijing Center of AGRI-Products Quality and Safety, Beijing 100029, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Hou S, Ma J, Cheng Y, Wang Z, Yan Y. Overview-gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Crit Rev Food Sci Nutr 2023; 63:11734-11749. [PMID: 35916760 DOI: 10.1080/10408398.2022.2095973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food-borne mycotoxins is one of the food safety concerns in the world. At present, nanosensors are widely used in the detection and analysis of mycotoxins due to their high specificity and sensitivity. In nanosensor-based mycotoxindetections, the sensitivity is mainly improved from two aspects. On the one hand, based on the principle of immune response, antigens and antibodies can be modified and developed. Such as single-domain heavy chain antibodies, aptamers, peptides, and antigen mimotopes. On the other hand, improvements and innovations have been made on signal amplification materials, including gold nanoparticles (AuNPs), quantum dots, and graphene, etc. Among them, gold nanoparticles can not only be used as a signal amplification material, but also can be used as carriers for identification elements, which can be used for signal amplification in detection. In this article, we systematically summarized the emerging strategies for enhancing the detection sensitivity of traditional gold nanoparticles-based nanosensors, in terms of recognition elements and signal amplification. Representative examples were selected to illustrate the potential mechanism of each strategy in enhancing the colorimetric signal intensity of AuNP and its potential application in biosensing. Finally, our review suggested the challenges and future prospects of gold particles in detection of mycotoxins.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
4
|
Liu Y, Liu D, Li C, Cui S, Yun Z, Zhang J, Wei Y, Sun F. Chromatographic methods for rapid aflatoxin B1 analysis in food: a review. Crit Rev Food Sci Nutr 2022; 64:5515-5532. [PMID: 36519502 DOI: 10.1080/10408398.2022.2155107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin and is the most carcinogenic of all known chemicals. In view of the AFB1 characteristics of widespread distribution, serious pollution, great harm to humans, and animals and difficult to remove, it is urgent to develop a convenient and sensitive detection method. Moreover, chromatographic test strips (CTSs) are a rapid detection technology that combines labeling technology with chromatography technology. CTSs have been widely used in the fields of environmental monitoring, medical diagnosis, and food safety analysis in recent years. Different from other immune assays, they have the advantages of short measuring time, low cost, high efficiency and no need for professionals to operate. In addition, the introduction of nanomaterials has laid a good foundation for the detection of high sensitivity, high specificity and high efficiency via CTSs. Herein, we tend to comprehensively introduce the applications of chromatographic methods in AFB1 detection and pay attention to the signal detection modes based on nanomaterials in antibody-based immunochromatographic strips (ICSs), such as colorimetric, fluorescent, chemiluminescent, and Raman scattering sensing. Some typical examples are also listed in this review. In the end, we make a summary and put forward prospects for the development of CTSs.
Collapse
Affiliation(s)
- Yinyin Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dan Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Can Li
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Shuangshuang Cui
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Ziguang Yun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yong Wei
- Animal Husbandry Division, Xinjiang Tianrun Dairy Co., Ltd, Urumqi, Xinjiang, China
| | - Fengxia Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Animal Husbandry Division, Xinjiang Tianrun Dairy Co., Ltd, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Charernchai S, Chikae M, Phan TT, Wonsawat W, Hirose D, Takamura Y. Automated Paper-Based Femtogram Sensing Device for Competitive Enzyme-Linked Immunosorbent Assay of Aflatoxin B 1 Using Submicroliter Samples. Anal Chem 2022; 94:5099-5105. [PMID: 35302345 PMCID: PMC8969870 DOI: 10.1021/acs.analchem.1c05401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are promising biosensors that may be used in a variety of bioanalytical applications. A μPAD for automating the competitive enzyme-linked immunosorbent assay (ELISA) of small-sized target detection at the femtogram level using submicroliter samples is reported in this study. The proposed μPAD was integrated with a sucrose valve to automate the sequential delivery of reagents, providing simple control of reagent delivery time and simple operation. The use of a sample solution dropping location at the zones on the device that had been prepared with an antibody-conjugated enzyme before immersion in a running buffer allowed minimization of sample volume to 0.6 μL, while eliminating the possible loss of a target molecule by adsorption on the membrane, thus improving detection sensitivity. Furthermore, the proposed device was successfully applied to the automation of competitive ELISA for the detection of aflatoxin B1 (AFB1), a potent carcinogen that causes substantial health risks to humans worldwide, with a detection limit of 60 femtograms or 0.1 ng/mL. The method developed in this study provides high sensitivity, small sample volume, on-site and equipment-free measurements, low-cost operation, and user-friendliness. This approach could be used to analyze small-sized molecules in the fields of food safety and quality control, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Sumamal Charernchai
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Miyuki Chikae
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Tue Trong Phan
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Wanida Wonsawat
- Department of Chemistry, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok 10300, Thailand
| | - Daisuke Hirose
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Yuzuru Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
6
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
[Progress of sample preparation and analytical methods of dried fruit foods]. Se Pu 2021; 39:958-967. [PMID: 34486835 PMCID: PMC9404242 DOI: 10.3724/sp.j.1123.2021.06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
坚果、果脯等干果类食品含有丰富的营养成分,深受国内外广大消费者的喜爱。但这些食品在果实生产、加工、储运时会使用农药或产生霉变等,造成干果中农药、重金属、霉菌毒素或添加剂等有害成分残留,甚至超过国家限量要求,带来严重的食品安全问题。因此,加强干果类食品的质量监督具有重要的经济和社会意义。但干果类食品基质复杂,有害物质种类多,结构和性质差异大,含量低,其分析检测需要快速高效的样品前处理技术和准确灵敏的分析检测方法。该文主要综述了近十年来干果类食品中有害物质的样品前处理及分析检测方法研究进展。其中样品前处理方法主要包括各种场辅助萃取法、相分离法和衍生化萃取方法等。场辅助萃取法主要是借助超声波和微波场等外场(协同)作用加快干果中有害物质的溶出速度,提高其萃取效率。相分离法,包括固相(微)萃取、分散固相萃取和液相(微)萃取法等,具有溶剂消耗少、分离富集效率高的优势,是干果样品分析中较常使用的前处理方法。该文还重点介绍了干果中各类有害成分分析检测技术,主要包括色谱、原子光谱、无机质谱、电化学分析等常规实验室方法,以及一些适用于现场分析的快速检测技术,并以此为基础,展望了干果类食品中有害物质分析检测技术的发展趋势。
Collapse
|
8
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
9
|
Wang L, He K, Wang X, Wang Q, Quan H, Wang P, Xu X. Recent progress in visual methods for aflatoxin detection. Crit Rev Food Sci Nutr 2021; 62:7849-7865. [PMID: 33955294 DOI: 10.1080/10408398.2021.1919595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aflatoxins (AFs) contamination in food and agricultural products poses a significant threat to human health. Sensitive and accurate detection of AFs provides a strong guarantee for ensuring food safety. Conventional chromatographic-based or mass spectrum methods, which rely on bulky instrument and skilled personnel, are not suitable for on-site surveillance. By contrast, visual detections which possess the merits of rapidity and sophisticated instrument-free present an excellent potential for the on-site detection of AFs. This review intends to summarize the latest development of visual methods for AFs detection, including paper-based tests, chromogenic reactions, and luminescent methods. Emerging technologies, like nanotechnology, DNAzymes, and aptamers combined with these visual methods are introduced. The basic principles, features, and application advantages of each type of visual methods are discussed. The biggest challenges and perspectives on their future trends are also addressed.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haoran Quan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Xie M, Jia M, Zhao H, Zhang L. Visual determination of oxidation of edible oil by a nanofiber mat prepared from polyvinyl alcohol and Schiff's reagent. Mikrochim Acta 2020; 187:597. [PMID: 33033874 DOI: 10.1007/s00604-020-04574-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/26/2020] [Indexed: 11/24/2022]
Abstract
A fiber mat was developed to visually determine the oxidation of edible oils, based on the colorimetric reaction of Schiff's reagent and aldehydes - the major volatile formed during lipid oxidation. The mixtures of polyvinyl alcohol (PVA) and Schiff's reagent containing various amounts of glycerol were electrospun to form the fiber mats. The response of the PVA/Schiff's reagent fiber mats to gaseous hexanal (model aldehyde) was investigated. Oxidized soybean oils were used to evaluate the effectiveness of the PVA/Schiff's reagent fiber mat for indicating oxidation of the oils. The results showed that the fiber mats obtained had average fiber diameters of less than 100 nm. Upon hexanal exposure, the fiber mats turned from white to purple. Higher amount of glycerol led to larger color change of the fiber mats and shorter response time to hexanal. A linear relationship (R2 = 0.96) was observed between the color change of the mat and hexanal concentration (15-117 μmol L-1). The visual determination limit of the mat for hexanal was 29 μmol L-1. The color change of the PVA/Schiff's reagent fiber mat was increased with an increase of soybean oil oxidation. Out of the seven soybean oils tested, the PVA/Schiff's reagent fiber mat was able to correctly indicate the oxidation states of six oils. The result suggested that the visual determination method developed is a promising method to indicate the oxidation of edible oils, which can be performed easily by non-experts.Graphical abstract.
Collapse
Affiliation(s)
- Meizhen Xie
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, Shaanxi, China
| | - Mengchao Jia
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, Shaanxi, China
| | - Hong Zhao
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, Shaanxi, China. .,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Luwei Zhang
- School of Food Equipment Engineering and Science, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
11
|
Miklós G, Angeli C, Ambrus Á, Nagy A, Kardos V, Zentai A, Kerekes K, Farkas Z, Jóźwiak Á, Bartók T. Detection of Aflatoxins in Different Matrices and Food-Chain Positions. Front Microbiol 2020; 11:1916. [PMID: 32983001 PMCID: PMC7480073 DOI: 10.3389/fmicb.2020.01916] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxins, produced mainly by filamentous fungi Aspergillus flavus and Aspergillus parasiticus, are one of the most carcinogenic compounds that have adverse health effects on both humans and animals consuming contaminated food and feed, respectively. Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) as well as aflatoxin G1(AFG1) and aflatoxin G2 (AFG2) occur in the contaminated foods and feed. In the case of dairy ruminants, after the consumption of feed contaminated with aflatoxins, aflatoxin metabolites [aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2)] may appear in milk. Because of the health risk and the official maximum limits of aflatoxins, there is a need for application of fast and accurate testing methods. At present, there are several analytical methods applied in practice for determination of aflatoxins. The aim of this review is to provide a guide that summarizes worldwide aflatoxin regulations and analytical methods for determination of aflatoxins in different food and feed matrices, that helps in the decision to choose the most appropriate method that meets the practical requirements of fast and sensitive control of their contamination. Analytical options are outlined from the simplest and fastest methods with the smallest instrument requirements, through separation methods, to the latest hyphenated techniques.
Collapse
Affiliation(s)
- Gabriella Miklós
- Székesfehérvár Regional Food Chain Laboratory, National Food Chain Safety Office, Székesfehérvár, Hungary
| | | | - Árpád Ambrus
- University of Debrecen Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary
| | - Attila Nagy
- Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Valéria Kardos
- Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Andrea Zentai
- System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Kata Kerekes
- System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Zsuzsa Farkas
- Digital Food Institute, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ákos Jóźwiak
- Digital Food Institute, University of Veterinary Medicine Budapest, Budapest, Hungary
| | | |
Collapse
|
12
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
13
|
Xie M, Dong X, Yu Y, Cui L. A novel method for detection of lipid oxidation in edible oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Developing Gold Nanoparticles-Conjugated Aflatoxin B1 Antifungal Strips. Int J Mol Sci 2019; 20:ijms20246260. [PMID: 31842251 PMCID: PMC6941036 DOI: 10.3390/ijms20246260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022] Open
Abstract
Lateral flow immunochromatographic assays are a powerful diagnostic tool for point-of-care tests, based on their simplicity, specificity, and sensitivity. In this study, a rapid and sensitive gold nanoparticle (AuNP) immunochromatographic strip is produced for detecting aflatoxin B1 (AFB1) in suspicious fungi-contaminated food samples. The 10 nm AuNPs were encompassed by bovine serum albumin (BSA) and AFB1 antibody. Thin-layer chromatography, gel electrophoresis and nuclear magnetic resonance spectroscopy were employed for analysing the chemical complexes. Various concentrations of AFB1 antigen (0-16 ng/mL) were tested with AFB1 antibody-BSA-AuNPs (conjugated AuNPs) and then analysed by scanning electron microscopy, ultraviolet-visible spectroscopy, and Zetasizer. The results showed that the AFB1 antibody was coupled to BSA by the N-hydroxysuccinimide ester method. The AuNPs application has the potential to contribute to AFB1 detection by monitoring a visible colour change from red to purple-blue, with a detection limit of 2 ng/mL in a 96-well plate. The lateral flow immunochromatographic strip tests are rapid, taking less than 10 min., and they have a detection capacity of 10 ng/g. The smartphone analysis of strips provided the results in 3 s, with a detection limit of 0.3 ng/g for AFB1 when the concentration was below 10 ng/g. Excellent agreement was found with AFB1 determination by high-performance liquid chromatography in the determination of AFB1 among 20 samples of peanuts, corn, rice, and bread.
Collapse
|
15
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
16
|
|
17
|
Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S. Nanomaterials and microbes' interactions: a contemporary overview. 3 Biotech 2019; 9:68. [PMID: 30729092 DOI: 10.1007/s13205-019-1576-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
Use of nanomaterials in the field of science and technology includes different fields in food industry, medicine, agriculture and cosmetics. Nanoparticle-based sensors have wide range of applications in food industry for identification and detection of chemical contaminants, pathogenic bacteria, toxins and fungal toxins from food materials with high specificity and sensitivity. Nanoparticle-microbe interactions play a significant role in disease treatment in the form of antimicrobial agents. The inhibitory mechanism of nanoparticles against different bacteria and fungi includes release of metal ions that interacts with cellular components through various pathways including reactive oxygen species (ROS) generation, pore formation in cell membranes, cell wall damage, DNA damage, and cell cycle arrest and ultimately inhibits the growth of cells. Nanoparticle-based therapies are growing to study the therapeutic treatments of plant diseases and to prevent the growth of phytopathogens leading to the growing utilization of engineered nanomaterials. Hence, with this background, the present review focuses thoroughly on detailed actions and responses of nanomaterials against different bacteria and fungi as well as food sensing and storage.
Collapse
Affiliation(s)
- Jaspreet Singh
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| | - Kanchan Vishwakarma
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| | - Naleeni Ramawat
- 2Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313 India
| | - Padmaja Rai
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| | - Vivek Kumar Singh
- 3Department of Physics, Shri Mata Vaishno Devi University, Katra, Jammu And Kashmir 182320 India
| | - Rohit Kumar Mishra
- Department of Microbiology, Swami Vivekanand University, Sagar, Madhya Pradesh India
| | - Vivek Kumar
- 5Himalayan Institute of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, India
| | - Durgesh Kumar Tripathi
- 2Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, I 2 Block, 5th Floor, AUUP Campus Sector-125, Noida, 201313 India
| | - Shivesh Sharma
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004 India
| |
Collapse
|
18
|
Highly sensitive detection of a small molecule by a paired labels recognition system based lateral flow assay. Anal Bioanal Chem 2018; 410:3161-3170. [DOI: 10.1007/s00216-018-1003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/16/2023]
|
19
|
Abstract
Because multianalyte methods are highly desirable in order to keep analysis time and costs low, the biosensor development increasingly focuses on parallel analysis of several mycotoxins. Here, we describe an indirect competitive immunoassay on regenerable, reusable glass microchips for the parallel determination of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisin B1 in oat extracts, using a fully automated flow-through device with chemiluminescence readout.
Collapse
|
20
|
Preechakasedkit P, Osada K, Katayama Y, Ruecha N, Suzuki K, Chailapakul O, Citterio D. Gold nanoparticle core–europium(iii) chelate fluorophore-doped silica shell hybrid nanocomposites for the lateral flow immunoassay of human thyroid stimulating hormone with a dual signal readout. Analyst 2018; 143:564-570. [DOI: 10.1039/c7an01799e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Simultaneous colorimetric and fluorometric signal detection with hybrid nanocomposite labels.
Collapse
Affiliation(s)
| | - Kota Osada
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Yuta Katayama
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Nipapan Ruecha
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Koji Suzuki
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE)
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
| | - Daniel Citterio
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama
- Japan
| |
Collapse
|
21
|
Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit Rev Food Sci Nutr 2017; 58:1715-1734. [PMID: 28071928 DOI: 10.1080/10408398.2016.1276048] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotechnology embraces various physical and chemical phenomena toward advancement of health diagnostics. Toward such advancement, detection of toxins plays an important role. Toxins produce severe health impacts on consumption with high mortality associated in acute cases. The most prominent route of infection and intoxication is through food matrices. Therefore, rapid detection of toxins at low concentrations is the need of modern diagnostics. Lateral flow immunoassays are one of the emergent and popularly used rapid detection technology developed for detecting various kinds of analytes. This review thus focuses on recent advancements in lateral flow immunoassays for detecting different toxins in agricultural food. Appropriate emphasis was given on how the labels, recognition elements, or detection strategy has laid an impact on improvement in immunochromatographic assays for toxins. The paper also discusses the gradual change in sensitivities and specificities of assays in accordance with the method of food processing used. The review concludes with the major challenges faced by this technology and provides an outlook and insight of ideas to improve it in the future.
Collapse
Affiliation(s)
- Pranav Tripathi
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Neha Upadhyay
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Seema Nara
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| |
Collapse
|
22
|
Vasylieva N, Barnych B, Rand A, Inceoglu B, Gee SJ, Hammock BD. Sensitive Immunoassay for Detection and Quantification of the Neurotoxin, Tetramethylenedisulfotetramine. Anal Chem 2017; 89:5612-5619. [PMID: 28398746 PMCID: PMC5920647 DOI: 10.1021/acs.analchem.7b00846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetramethylenedisulfotetramine (TETS, tetramine) is a formerly used and highly neurotoxic rodenticide. Its lethality, recent history of intentional use for mass poisoning, and the absence of a known antidote raise public health concerns. Therefore, rapid, high throughput, and sensitive methods for detection and quantification of TETS are critical. Instrumental analysis method such as GC/MS is sensitive but not rapid or high throughput. Therefore, an immunoassay selective to TETS was developed. The assay shows an IC50 of 4.5 ± 1.2 ng/mL, with a limit of detection of 0.2 ng/mL, comparable to GC/MS. Performance of the immunoassay was demonstrated by a recovery study using known concentrations of TETS spiked into buffer and human and mouse serum matrices giving recoveries in the range of 80-120%. The assay demonstrated good correlation in TETS recovery with established GC/MS analysis. The immunoassay was then used to quantify TETS concentration in the serum of mice exposed to 2× LD50 dose of TETS and to monitor kinetics of TETS clearance from blood over a short period of time. TETS concentration in the serum reached 150 ng/mL without significant change over 4 h post-treatment. Results obtained with the immunoassay had good correlation with GC/MS analysis. Overall, this immunoassay is an important tool to rapidly detect and quantify levels of TETS from biological samples with high sensitivity. The assay can be adapted to multiple formats including field or hospital use.
Collapse
Affiliation(s)
- Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Amy Rand
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bora Inceoglu
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Shirley J Gee
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis , Davis, California 95616, United States
| |
Collapse
|
23
|
Zarei AR, Barghak F. Application of the localized surface plasmon resonance of gold nanoparticles for the determination of 1,1-dimethylhydrazine in water: Toward green analytical chemistry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817040025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Wang J, Zhang L, Huang Y, Dandapat A, Dai L, Zhang G, Lu X, Zhang J, Lai W, Chen T. Hollow Au-Ag Nanoparticles Labeled Immunochromatography Strip for Highly Sensitive Detection of Clenbuterol. Sci Rep 2017; 7:41419. [PMID: 28134263 PMCID: PMC5278391 DOI: 10.1038/srep41419] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.
Collapse
Affiliation(s)
- Jingyun Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.,Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Lei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Youju Huang
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Anirban Dandapat
- Department of Biotechnology, Kumaun University, Bhimtal-263136, Uttarakhand, India
| | - Liwei Dai
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Ganggang Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.,Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xuefei Lu
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Jiawei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tao Chen
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
25
|
Khlebtsov B, Pylaev T, Khanadeev V, Bratashov D, Khlebtsov N. Quantitative and multiplex dot-immunoassay using gap-enhanced Raman tags. RSC Adv 2017. [DOI: 10.1039/c7ra08113h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A highly specific, quantitative, and multiplex dot immunoassay has been developed. The immunoassay utilizes functionalized plasmonic gap-enhanced Raman tags (GERTs) as labels and nitrocellulose membrane as a substrate.
Collapse
Affiliation(s)
- Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
| | - Timophey Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
| | - Vitaly Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
| | | | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms
- Russian Academy of Sciences
- Saratov 410049
- Russia
- National Research Saratov State University
| |
Collapse
|
26
|
Yu L, Li P, Ding X, Zhang Q. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta 2016; 165:167-175. [PMID: 28153237 DOI: 10.1016/j.talanta.2016.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Graphene oxide (GO) and carboxylated GO were used as labels for lateral flow immunoassays, instead of the conventionally used colloidal gold and colored latex labels. A sensor is demonstrated that enables fast screening for aflatoxin B1 (AFB1) as a model analyte using the antibody-GO complex as the recognition element. The visual limit of detection and cut-off value for AFB1 are 0.3 and 1ng/mL, respectively. It is shown that GO and carboxylated GO are viable black labels for use in lateral flow assays, one typical advantage being the saving cost (compared to the use of colloidal gold). Qualitative results are achieved within 15min, and the analytical results were in good agreement with the reference LC MS/MS method. The method was successfully applied to the on-site determination of AFB1 in agricultural products. In our perception, it opens new possibilities for the screening of other toxins by lateral flow immunoassays using GO and carboxylated GO as labels.
Collapse
Affiliation(s)
- Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, PR China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, PR China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, PR China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, 430062, PR China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| |
Collapse
|
27
|
Raeisossadati MJ, Danesh NM, Borna F, Gholamzad M, Ramezani M, Abnous K, Taghdisi SM. Lateral flow based immunobiosensors for detection of food contaminants. Biosens Bioelectron 2016; 86:235-246. [DOI: 10.1016/j.bios.2016.06.061] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
|
28
|
Competitive immunoassay for Ochratoxin a based on FRET from quantum dot-labeled antibody to rhodamine-coated magnetic silica nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1951-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Li Q, Lv S, Lu M, Lin Z, Tang D. Potentiometric competitive immunoassay for determination of aflatoxin B1 in food by using antibody-labeled gold nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1929-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
|
31
|
Hori F, Harada Y, Kuretake T, Uno S. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay. ANAL SCI 2016; 32:355-9. [PMID: 26960618 DOI: 10.2116/analsci.32.355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.
Collapse
Affiliation(s)
- Fumitaka Hori
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| | | | | | | |
Collapse
|
32
|
Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA. Analytical methods for determination of mycotoxins: An update (2009-2014). Anal Chim Acta 2015; 901:12-33. [PMID: 26614054 DOI: 10.1016/j.aca.2015.10.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022]
Abstract
Mycotoxins are a problematic and toxic group of small organic molecules that are produced as secondary metabolites by several fungal species that colonise crops. They lead to contamination at both the field and postharvest stages of food production with a considerable range of foodstuffs affected, from coffee and cereals, to dried fruit and spices. With wide ranging structural diversity of mycotoxins, severe toxic effects caused by these molecules and their high chemical stability the requirement for robust and effective detection methods is clear. This paper builds on our previous review and summarises the most recent advances in this field, in the years 2009-2014 inclusive. This review summarises traditional methods such as chromatographic and immunochemical techniques, as well as newer approaches such as biosensors, and optical techniques which are becoming more prevalent. A section on sampling and sample treatment has been prepared to highlight the importance of this step in the analytical methods. We close with a look at emerging technologies that will bring effective and rapid analysis out of the laboratory and into the field.
Collapse
Affiliation(s)
- Nicholas W Turner
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| | - Heli Bramhmbhatt
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Monika Szabo-Vezse
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Alessandro Poma
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Raymond Coker
- Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Sergey A Piletsky
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
33
|
Kalarestaghi A, Bayat M, Hashemi SJ, Razavilar V. Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:25-31. [PMID: 28959296 DOI: 10.15171/ijb.1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. OBJECTIVES We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from Cd/Te quantum dots (antiaflatoxin B1 antibody immobilized on the surface of Cd/Te quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The specific immune-reaction between the anti-aflatoxin B1 antibody on the QDs and the labeledaflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photo-excitation of the QDs. Using magnetic/silica core shell to intensify the obtained signal is the novelty of this study. MATERIALS AND METHODS Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride under nitrogen atmosphere. Magnetic nanoparticles were synthesized using FeSO4 and FeCl3 (1:2 molar ratio) and ammonia as an oxidizing agent under nitrogen atmosphere. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Nanoparticles synthesis and monodispersity confirmed by TEM. Immobilization of Cd/Te QDs to antibodies and labeling of aflatoxin B1-albumin by Rho 123 were performed by EDC/NHS reaction in reaction mixture buffer, pH 6, at room temperature. RESULTS By using the magnetic/silica core shell sensitivity of the system changed from 2×10-11 in our previous study to 2×10-12 in this work. The feasibility of the method established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the decreased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spiked samples, over the range of 0.01-0.06 μmol.mL-1. CONCLUSIONS This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require multiple separation steps and excessive washing.
Collapse
Affiliation(s)
- Alireza Kalarestaghi
- Department of Pathobiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mansour Bayat
- Department of Pathobiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jamal Hashemi
- Food Microbiology Research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vadood Razavilar
- Department of Food Higiene, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
34
|
XIE YJ, YANG Y, KONG WJ, YANG SH, YANG MH. Application of Nanoparticle Probe-based Lateral Flow Immunochromatographic Assay in Mycotoxins Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1420-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron 2014; 62:288-94. [PMID: 25032679 DOI: 10.1016/j.bios.2014.06.059] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/10/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022]
Abstract
A rapid and simple dipstick assay based on an aptamer has been developed for the determination of aflatoxin B1 (AFB1). The dipstick assay format was based on a competitive reaction of the biotin-modified aptamer specific to AFB1 between target and cy5-modified DNA probes. Streptavidin and anti-cy5 antibody as capture reagents were immobilized at test and control lines on a membrane of the dipstick assay. After optimization, the limit of detection for the dipstick assay was 0.1 ng/ml AFB1 in buffer. The method was confirmed to be specific to AFB1, and the entire process of the assay can be completed within 30 min. Aqueous methanol (20%) provided a good extraction efficiency, and the matrix influence from corn extracts was successfully reduced through 2-fold dilution. The results of AFB1 analysis for corn samples spiked with known concentration of AFB1 by the dipstick assay and ELISA showed good agreement. The cut-off value of the dipstick assay for corn samples was 0.3 ng/g AFB1. Therefore, the dipstick assay is first reported and considered as a rapid, simple, on-site and inexpensive screening tool for AFB1 determination in grains as well as a corn.
Collapse
|
37
|
Dual-layered and double-targeted nanogold based lateral flow immunoassay for influenza virus. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1303-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Hollow nanogold microsphere-signalized lateral flow immunodipstick for the sensitive determination of the neurotoxin brevetoxin B. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1291-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
One-step signal amplified lateral flow strip biosensor for ultrasensitive and on-site detection of bisphenol A (BPA) in aqueous samples. Biosens Bioelectron 2013; 49:457-61. [DOI: 10.1016/j.bios.2013.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/14/2013] [Accepted: 06/04/2013] [Indexed: 12/27/2022]
|
40
|
Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1047-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Colloidal gold based immunochromatographic strip for the simple and sensitive determination of aflatoxin B1 and B2 in corn and rice. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1008-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
|
43
|
Oswald S, Karsunke XYZ, Dietrich R, Märtlbauer E, Niessner R, Knopp D. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 2013; 405:6405-15. [PMID: 23620369 DOI: 10.1007/s00216-013-6920-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/01/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20, v/v), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55-80 and 58-79%, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127-132 and 82-120% higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography-mass spectrometry and found to be in good agreement.
Collapse
Affiliation(s)
- S Oswald
- Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Mei Z, Deng Y, Chu H, Xue F, Zhong Y, Wu J, Yang H, Wang Z, Zheng L, Chen W. Immunochromatographic lateral flow strip for on-site detection of bisphenol A. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0930-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Gold nanoparticle antibody conjugates for use in competitive lateral flow assays. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 906:45-55. [PMID: 22791423 DOI: 10.1007/978-1-61779-953-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Gold nanoparticles (GNPs) are widely used in a variety of biomedical diagnostic assays and for imaging. Their popularity stems from key properties such as their low toxicity and high extinction coefficients, as well as straightforward synthesis methods that allow GNPs to be produced quickly and inexpensively. Here we describe the use of GNPs for visual detection in a lateral flow assay using benzodiazepine affinity assay to illustrate the methods.
Collapse
|
46
|
Suárez-Pantaleón C, Wichers J, Abad-Somovilla A, van Amerongen A, Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens Bioelectron 2012. [PMID: 23202348 DOI: 10.1016/j.bios.2012.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid analytical methods enabling the determination of diverse targets are essential in a number of research areas, from clinical diagnostics to feed and food quality and safety. Herein, the development of a quantitative immunochromatographic assay for the detection of the synthetic phytoregulator forchlorfenuron (CPPU) is described. The competitive lateral flow immunoassay (LFIA) was based on the immobilization onto a nitrocellulose membrane of an ovalbumin-CPPU conjugate (test line) and on the use of an immunodetection ligand consisting of carbon nanoparticles labeled with an anti-CPPU monoclonal antibody through interaction with a secondary antibody. The presence of CPPU in horticultural samples was visually interpreted by the decrease in the black signal intensity of the test line, according to the competitive character of the format. The quantitative determination of the analyte was easily performed by a two-step procedure consisting of flatbed scanning of the strips followed by computer-based image analysis of the pixel gray volumes of the test lines. Under optimized conditions, the immunochromatographic test afforded a limit of quantification in buffer of 89 ng/L. The accuracy of the strip test was assessed by the analysis of fruit samples with incurred residues, and the obtained results were compared with those derived from two reference methods, ELISA and HPLC. The LOQ of the CPPU-specific LFIA in kiwifruits and grapes was established at 33.4 μg/kg. The excellent analytical performance of the developed strip test demonstrates the potential of immunochromatographic assays for the quantitative monitoring of small organic molecules in complex matrices.
Collapse
Affiliation(s)
- Celia Suárez-Pantaleón
- Department of Biotechnology, IATA-CSIC, Agustí Escardino 7, 46980 Paterna, València, Spain
| | | | | | | | | |
Collapse
|
47
|
Li P, Zhang Z, Zhang Q, Zhang N, Zhang W, Ding X, Li R. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 2012; 33:2253-2265. [PMID: 22887149 DOI: 10.1002/elps.201200050] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycotoxin contamination in the food chain has caused serious health issues in humans and animals. Thus, a rapid on-site and lab-independent detection method for mycotoxins, such as aflatoxins (AFTs), is desirable. Microfluidic chip based immunosensor technology is one of the most promising methods for fast mycotoxin assays. In this review, we cover the major microfluidic immunosensors used for mycotoxin analysis, via flow-through (capillary electromigration) and lateral flow technology. Sample preparation from different matrices of agricultural products and foodstuffs is summarized. The choice of materials, fabrication strategies, and detection methods for microfluidic immunosensors are further discussed in detail. The sensors application in mycotoxin determination is also outlined. Finally, future challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Anfossi L, Baggiani C, Giovannoli C, D'Arco G, Giraudi G. Lateral-flow immunoassays for mycotoxins and phycotoxins: a review. Anal Bioanal Chem 2012; 405:467-80. [PMID: 22543716 DOI: 10.1007/s00216-012-6033-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 01/06/2023]
Abstract
Natural toxin (for example mycotoxin and phycotoxin) contamination of food is of safety and economic concern, so much effort is devoted to the development of screening methods which enable the toxins to be continuously and widely monitored in food and feed. More generally speaking, rapid and non-instrumental assays for detection of a variety of food contaminants are generating ever-increasing scientific and technological interest because they enable high-throughput, economical, on-site monitoring of such contaminants. Among rapid methods for first-level screening of food contaminants, lateral-flow immunoassay (LFIA), also named immunochromatographic assay or immune-gold colloid immunoassay, has recently attracted scientific and industrial interest because of its attractive property of enabling very rapid, one-step, in-situ analysis. This review focuses on new aspects of the development and optimization of lateral-flow devices for mycotoxin and phycotoxin detection, including strategies for management of matrix interference and, particularly, for investigation of the improvements achieved by signal-enhancing strategies or by application of non-gold nanoparticle signal reporters.
Collapse
Affiliation(s)
- Laura Anfossi
- Department of Analytical Chemistry, University of Turin, Turin, Italy.
| | | | | | | | | |
Collapse
|