1
|
Enhanced Electrochemical Conductivity of Surface-Coated Gold Nanoparticles/Copper Nanowires onto Screen-Printed Gold Electrode. COATINGS 2022. [DOI: 10.3390/coatings12050622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrochemical application has been widely used in the study of biosensors. Small biomolecules need a sensitive sensor, as the transducer that can relay the signal produced by biomolecule interactions. Therefore, we are improvising a sensor electrode to enhance electrochemical conductivity for the detection of small DNA molecule interaction. This work describes the enhanced electrochemical conductivity studies of copper nanowires/gold nanoparticles (CuNWs/AuNPs), using the screen-printed gold electrode (SPGE). The AuNPs were synthesized using the Turkevich method as well as characterized by the high-resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-Vis) analysis for the particle size and absorption nature, respectively. Further, the surface morphology and elemental analysis of a series of combinations of different ratios of CuNWs-AuNPs-modified SPGE were analyzed by field emission scanning electron microscopy (FESEM) combined with an energy dispersive X-ray (EDX). The results indicate that the nanocomposites of CuNWs-AuNPs have been randomly distributed and compacted on the surface of SPGE, with AuNPs filling the pores of CuNWs, thereby enhancing its electrochemical conductivity. The cyclic voltammetry (CV) method was used for the evaluation of SPGE performance, while the characterization of the electrochemical conductivity of the electrode modified with various concentrations of AuNPs, CuNWs, and different volumes of dithiopropionic acid (DTPA) has been conducted. Of the various parameters tested, the SPGE modified with a mixture of 5 mg/mL CuNWs and 0.25 mM AuNPs exhibited an efficient electrochemical conductivity of 20.3 µA. The effective surface area for the CuNWs-AuNPs-modified SPGE was enhanced by 2.3-fold compared with the unmodified SPGE, thereby conforming the presence of a large active biomolecule interaction area and enhanced electrochemical activity on the electrode surface, thus make it promising for biosensor application.
Collapse
|
2
|
Roy N, Yasmin S, Jeon S. Effective electrochemical detection of dopamine with highly active molybdenum oxide nanoparticles decorated on 2, 6 diaminopyridine/reduced graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104501] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide. Mikrochim Acta 2019; 186:235. [PMID: 30868243 DOI: 10.1007/s00604-019-3272-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
Abstract
Gold nanobipyramids were synthesized by a seed-mediated growth method and then supported by multi-walled carbon nanotubes (denoted as AuNBP/MWCNTs). The electrocatalytic activity of the AuNBP/MWCNTs on a glassy carbon electrode (GCE) towards direct glucose oxidation and hydrogen peroxide reduction was superior to that of AuNBPs and MWCNTs. The modified GCE, operated at a typical working voltage of +0.15 V (vs. SCE) and in 0.1 M NaOH solution, exhibits a linear response in the 10 μM to 36.7 mM glucose concentration range with a 3.0 μM detection limit (at S/N = 3) and a sensitivity of 101.2 μA mM-1 cm-2. It also demonstrates good sensitivity towards hydrogen peroxide in at pH 7 solution at a working potential of -0.50 V (vs. SCE), with a linear response range from 5.0 μM to 47.3 mM, a sensitivity of 170.6 μA mM-1 cm-2 and a detection limit of 1.5 μM. Graphical abstract A electrochemical sensing platform based on the use of gold nanobipyramids and multi-walled carbon nanotubes nanocomposites (AuNBP/MWCNTs) is described for the determination of glucose and hydrogen peroxide.
Collapse
|
4
|
Highly Sensitive and Selective Electrochemical Detection of Dopamine using Hybrid Bilayer Membranes. ChemElectroChem 2018. [DOI: 10.1002/celc.201801367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Thakur N, Das Adhikary S, Kumar M, Mehta D, Padhan AK, Mandal D, Nagaiah TC. Ultrasensitive and Highly Selective Electrochemical Detection of Dopamine Using Poly(ionic liquids)-Cobalt Polyoxometalate/CNT Composite. ACS OMEGA 2018; 3:2966-2973. [PMID: 30023855 PMCID: PMC6045466 DOI: 10.1021/acsomega.7b02049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/23/2018] [Indexed: 05/28/2023]
Abstract
A novel sandwich polyoxometalate (POM) Na12[WCo3(H2O)2(CoW9O34)2] and poly(vinylimidazolium) cation [PVIM+] in combination with nitrogen-doped carbon nanotubes (NCNTs) was developed for a highly selective and ultrasensitive detection of dopamine. Conductively efficient heterogenization of Co5POM catalyst by PVIM over NCNTs provides the synergy between PVIM-POM catalyst and NCNTs as a conductive support which enhances the electron transport at the electrode/electrolyte interface and eliminates the interference of ascorbic acid (AA) at physiological pH (7.4). The novel PVIM-Co5POM/NCNT composite demonstrates a superior selectivity and sensitivity with a lowest detection limit of 500 pM (0.0005 μM) and a wide linear detection range of 0.0005-600 μM even in the presence of higher concentration of AA (500 μM).
Collapse
|
6
|
Gao N, Huang P, Wu F. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:174-180. [PMID: 29136582 DOI: 10.1016/j.saa.2017.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, we have developed a method for rapid, highly efficient and selective detection of melamine. The negatively charged citrate ions form an electrostatic layer on gold nanoparticles (AuNPs) and keep the NPs dispersed and stable. When citrate-capped AuNPs were further modified with Triton X-100, it stabilized the AuNPs against the conditions of high ionic strength and a broad pH range. However, the addition of melamine caused the destabilization and aggregation of NPs. This may be attributed to the interaction between melamine and the AuNPs through the ligand exchange with citrate ions on the surface of AuNPs leading Triton X-100 to be removed. As a result, the AuNPs were unstable, resulting in the aggregation. The aggregation induced a wine red-to-blue color change, and a new absorption peak around 630nm appeared. Triton X-100-AuNPs could selectively detect melamine at the concentration as low as 5.1nM. This probe was successfully applied to detect melamine in milk. Furthermore, paper-based quantitative detection system using this colorimetric probe was also demonstrated by integrating with a smartphone.
Collapse
Affiliation(s)
- Nan Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fangying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
7
|
Veera Manohara Reddy Y, Sravani B, Maseed H, Łuczak T, Osińska M, SubramanyamSarma L, Srikanth VVSS, Madhavi G. Ultrafine Pt–Ni bimetallic nanoparticles anchored on reduced graphene oxide nanocomposites for boosting electrochemical detection of dopamine in biological samples. NEW J CHEM 2018. [DOI: 10.1039/c8nj03894e] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present report demonstrates the development of a Pt–Ni/rGO composite electrochemical sensor for the detection of dopamine.
Collapse
Affiliation(s)
- Y. Veera Manohara Reddy
- Electrochemical Research Laboratory
- Department of Chemistry
- Sri Venkateswara University
- Tirupati – 517502
- India
| | - Bathinapatla Sravani
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa-516380
- India
| | - Hussen Maseed
- School of Engineering Science and Technology
- University of Hyderabad
- India
| | - T. Łuczak
- Faculty of Chemistry
- Adam Mickiewicz University in Poznan
- 61-614 Poznan
- Poland
| | - M. Osińska
- Poznan University of Technology
- Institute of Chemistry and Technical Electrochemistry
- 60-965 Poznan
- Poland
| | - L. SubramanyamSarma
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa-516380
- India
| | | | - G. Madhavi
- Electrochemical Research Laboratory
- Department of Chemistry
- Sri Venkateswara University
- Tirupati – 517502
- India
| |
Collapse
|
8
|
Łuczak T. Highly selective voltammetric sensing of paracetamol on nanogold modified electrode in the presence of interfering compounds. NEW J CHEM 2017. [DOI: 10.1039/c7nj01191a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
New self-assembled layers composed with gold nanoparticles, cysteamine and dihydrolipoic acid deposited on bare gold template for highly sensitive and selective simultaneous sensing of dopamine in the presence of interfering ascorbic and uric acids. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Łuczak T, Bułat K. Gold Surface Functionalization with S-containing Organic Compounds and Gold Nanoparticles for Ethylene Glycol Electrooxidation. ELECTROANAL 2016. [DOI: 10.1002/elan.201500536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds. Talanta 2016; 149:347-355. [DOI: 10.1016/j.talanta.2015.11.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 11/21/2022]
|
12
|
Bełtowska-Brzezinska M, Zmaczyńska A, Łuczak T. Effect of Gold Modification with 3-Mercaptopropionic Acid, Cysteamine and Gold Nanoparticles on Monoethanolamine Electrooxidation. Electrocatalysis (N Y) 2015. [DOI: 10.1007/s12678-015-0285-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Nguyen CM, Rao S, Yang X, Dubey S, Mays J, Cao H, Chiao JC. Sol-gel deposition of iridium oxide for biomedical micro-devices. SENSORS (BASEL, SWITZERLAND) 2015; 15:4212-28. [PMID: 25686309 PMCID: PMC4367406 DOI: 10.3390/s150204212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/06/2015] [Indexed: 12/04/2022]
Abstract
Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 µm × 500 µm, and 100 µm × 100 µm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans.
Collapse
Affiliation(s)
- Cuong M Nguyen
- Department of Electrical Engineering, University of Texas, Arlington, TX 76019, USA.
| | - Smitha Rao
- Department of Electrical Engineering, University of Texas, Arlington, TX 76019, USA.
| | - Xuesong Yang
- Department of Electrical Engineering, University of Texas, Arlington, TX 76019, USA.
| | - Souvik Dubey
- Department of Electrical Engineering, University of Texas, Arlington, TX 76019, USA.
| | - Jeffrey Mays
- Department of Electrical Engineering, University of Texas, Arlington, TX 76019, USA.
| | - Hung Cao
- Department of Electrical Engineering, ETS, Montreal, QC H3C 1K3, Canada.
| | - Jung-Chih Chiao
- Department of Electrical Engineering, University of Texas, Arlington, TX 76019, USA.
| |
Collapse
|
14
|
Zhao Z, Zhang M, Li Y, Cheng S, Chen X, Wang J. Evaluation of Electrochemically Reduced Gold Nanoparticle—Graphene Nanocomposites for the Determination of Dopamine. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.984189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Łuczak T. Gold and Nanogold Electrodes Modified with Gold Nanoparticles andmeso-2,3-Dimercaptosuccinic Acid for the Simultaneous, Sensitive and Selective Determination of Dopamine and Its Biogenic Interferents. ELECTROANAL 2014. [DOI: 10.1002/elan.201400313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Rafati AA, Afraz A, Hajian A, Assari P. Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1293-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
de Santana PP, de Oliveira IMF, Piccin E. Evaluation of using xurography as a new technique for the fabrication of disposable gold electrodes with highly reproducible areas. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2011.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0782-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|